Simulations of Type Ib/c Supernova Shock Breakouts Using Multigroup Radiation Hydrodynamics

Alexey Tolstov (Kavli IPMU, Tokyo Univ)
alexey.tolstov@ipmu.jp

ACP Seminar

Collaborators:
Ken’ichi Nomoto (Kavli IPMU)
Sergey Blinnikov (ITEP)
Shigehiro Nagataki (RIKEN)
Nozomu Tominaga (Konan Univ)
Sung-Chul Yoon (SNU)
First detection of 56CO gamma-ray lines from type Ia supernova (SN2014J) with INTEGRAL

arXiv:1405.3332
E.Churazov R.Sunyaev J.Isern J.Knödlseder P.Jean F.Lebrun N.Chugai S.Grebenev
E.Bravo S.Sazonov M.Renaud

Fig. 1. Spectrum of the SN2014J obtained by SPI over the period ~50 – 100 days after the outburst (red).
First detection of 56CO gamma-ray lines from type Ia supernova (SN2014J) with INTEGRAL

Fig. 2.— Signatures of 56Co lines at 847 and 1238 keV in SPI images.

- It provides solid proofs of the interpretation of Type Ia supernova as a thermonuclear explosion of near Chandrasekhar-mass WD (Nomoto et al., 1984)
Contents

Introduction
- Shocks in supernovae

I. Numerical solution of relativistic radiation transfer equation
- Development of algorithm for solving a problem of radiation transfer in fluids moving with high values of Lorentz factor
- Calculation of radiation fluxes for the distant observer

II. Supernova shock breakout
- Shock breakout model for type I b/c supernovae using multigroup radiation hydrodynamics
- The influence of relativistic and geometric effects of radiation propagation to the distant observer on light curves and spectra
- Numerical modeling in application for data analysis and interpretation of cosmic observations
Role of shock breakouts in astrophysics

Observations of shock breakouts

- Explosion properties and presupernova parameters
- Finding the star formation history
- SN – GRB connection
- Improvements of new direct measurements of distance in the Universe

Numerical modeling

- Prediction, analysis and interpretation of data for future surveys like HSC/Subaru, LSST
Radioactive decays
$^{56}\text{Ni} \rightarrow ^{56}\text{Co}$
(following D.K. Nadyozhin)

The luminescence due to shock interacting with medium can last tens of thousand of years
Supernova light curves
Supernova shock breakout (by N. Tominaga)

SN 2006gy (z=0.02; Smith + 08; Kawabata, ...) (z=0.02)
- $M_R \sim -22$ ($M(^{56}\text{Ni}) \sim 15M_\odot$ or CSM interaction)

This is a “peculiar” SN.

One of the brightest SNe
Type II In SN 2006gy

Shock breakout of the “normal” SN is BRIGHTER than the peculiar SN!!
Supernova shock breakout (SB) observations

SN2008D, Type Ib/c, WR candidate progenitor, Swift

SNLS-04D2dc, Type II RSG progenitor, GALEX
Subaru/Hyper Supreme Camera (HSC)

Interpretation of early light curves and spectra – explanation of the nature of exploding stars. From Swift, GALEX to Subaru/HSC, PTF, LOSS, CRTS, KWFC, Skymapper, DES, Pan-STARRS, LSST, KMTNet

Theoretical models are in demand!

- The detection of transients such as shock breakout of SNe is one of the most important missions of HSC

<table>
<thead>
<tr>
<th></th>
<th>Suprime-Cam</th>
<th>HSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCD Make and Model</td>
<td>Hamamatsu S10892-01</td>
<td>Hamamatsu S10892-02</td>
</tr>
<tr>
<td>Number of CCDs</td>
<td>10</td>
<td>104 + AG 4 + AF 8</td>
</tr>
<tr>
<td>Pixel</td>
<td>15 micron square (0.2 arcsec)</td>
<td>15 micron square (0.17 arcsec)</td>
</tr>
<tr>
<td>Field of View</td>
<td>34 arcmin x 27 arcmin</td>
<td>90 arcmin diameter</td>
</tr>
<tr>
<td>Conversion Factor</td>
<td>2.5-3.7 e/ADU</td>
<td>3.0 e/ADU</td>
</tr>
<tr>
<td>Readout noise</td>
<td>~ 10 e</td>
<td>TBD e</td>
</tr>
<tr>
<td>Readout time</td>
<td>18 sec</td>
<td>20 sec</td>
</tr>
<tr>
<td>Full well</td>
<td>150,000 e</td>
<td>150,000 e</td>
</tr>
<tr>
<td>Number of Filters</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Filter Exchange Time</td>
<td>300 s</td>
<td>600 s (900 s while commissioning)</td>
</tr>
</tbody>
</table>
KMTNet (Korea Microlensing Telescope Network)

The KASI plans to build a network of wide-field photometric survey systems called Korea Microlensing Telescopes Network (KMTNet), funded by the government of Korea, in the southern hemisphere (Chile, South Africa, and Australia).

http://www.kasi.re.kr/english/project/KMTNet.aspx
SN Shock Breakout Summary

• The phenomenon of a supernova in most cases should start with a bright flash, caused by a shock wave emerging on the surface of the star after the phase of collapse or thermonuclear explosion in interiors.

• The detection of such outbursts associated with SN SBO can be used to obtain information about explosion properties and presupernova parameters.

• For an accurate treatment of the shock wave propagation near the surface of a presupernova it is necessary to perform numerical calculations.

• In some cases, e.g. in compact type Ibc presupernovae, shock waves reach relativistic velocities. Then one has to include into consideration a number of relativistic effects.
Numerical simulation of relativistic radiation transfer
Theoretical models

- Stellar evolution models
- Thermal/kinetic explosion
- Modeling of light curves/spectra
Background and significance

- The most reliable predictions for SN outbursts in observations
- The theory of radiation hydrodynamics in the fluid moving with high value of Lorentz factor can be improved (Now theoretical considerations relates to mildly relativistic case).
- Stellar evolution problems resolution, e.g. unknown number of outbursts collapsing I b/c supernovae hard for detection.
- Better description of the connection of SNe with GRBs
- For nearby supernovae (in our galaxy), correlation with the detection of gravitational waves and neutrinos.
- Improvements of new direct measurements of distance in the Universe, aimed at studying the evolution of the dark energy.
Numerical algorithms STELLA and RADA

STELLA (STatic Eddington-factor Low-velocity Limit Approximation) (Blinnikov et al., 1998)

- 1D Lagrangian NR Hydro + Radiation Moments Equations, VEF closure, multigroup (100-300 groups)
- Opacity includes photoionization, free-free absorption, lines and electron scattering (Blandford, Payne 1981). Ionization – Saha’s approximation
- STELLA was used in modeling of many SN light curves: SN 1987A, SN 1993J and many others (Blinnikov et al. 2006)
- STELLA shows good agreement with observations in case of SNLS-04D2dc. (Tominaga et al. 2009, 2011)

 For Ib/c model STELLA is not accurate!

RADA (fully Relativistic rADiative transfer Approximation) (Tolstov, Blinnikov, 2003)

- 1D Relativistic Radiative Transfer in comoving frame (McCrea & Mitra 1936, Mihalas, 1980)
- Relativistic transformation of fluxes from the source to the observer

\[
\tau = \frac{\delta R}{l} \lesssim \frac{c}{D} \sim 10
\]

\(l\) – photon mean free path
\(\delta R\) - the distance from the shock to the photosphere
\(D\) – shock front velocity
\(c\) – speed of light
Comoving radiation transfer (Mihalas, 1980)

Transfer equation:

\[
\frac{\gamma}{c} \left(1 + \beta \mu_0\right) \frac{\partial I_0(\mu_0, v_0)}{\partial t} + \gamma(\mu_0 + \beta) \frac{\partial I_0(\mu_0, v_0)}{\partial r} \\
+ \gamma(1 - \mu_0^2) \left[\frac{(1 + \beta \mu_0)}{r} - \frac{\gamma^2}{c} (1 + \beta \mu_0) \frac{\partial \beta}{\partial t} - \gamma^2 (\mu_0 + \beta) \frac{\partial \beta}{\partial r}\right] \frac{\partial I_0(\mu_0, v_0)}{\partial \mu_0} \\
- \gamma \left[\frac{\beta (1 - \mu_0^2)}{r} + \frac{\gamma^2 \mu_0}{c} (1 + \beta \mu_0) \frac{\partial \beta}{\partial t} + \gamma^2 \mu_0 (\mu_0 + \beta) \frac{\partial \beta}{\partial r}\right] v_0 \frac{\partial I_0(\mu_0, v_0)}{\partial v_0} \\
+ 3 \gamma \left[\frac{\beta (1 - \mu_0^2)}{r} + \frac{\gamma^2 \mu_0}{c} (1 + \beta \mu_0) \frac{\partial \beta}{\partial t} + \gamma^2 \mu_0 (\mu_0 + \beta) \frac{\partial \beta}{\partial r}\right] I_0(\mu_0, v_0)
\]

\[
= \eta_o(v_0) - \chi_0(v_0) I_0(\mu_0, v_0).
\]

Moments equation:

\[
\frac{\gamma}{c} \left[\frac{\partial J_0(v_0)}{\partial t} + \beta \frac{\partial H_0(v_0)}{\partial t}\right] + \gamma \left[\frac{\partial H_0(v_0)}{\partial r} + \beta \frac{\partial J_0(v_0)}{\partial r}\right] \\
- \gamma v_0 \left[\beta \left[\frac{\partial J_0(v_0)}{\partial v_0} - \frac{\partial K_0(v_0)}{\partial v_0}\right] + \frac{\gamma^2 \partial \beta}{c} \left[\frac{\partial H_0(v_0)}{\partial v_0} + \beta \frac{\partial K_0(v_0)}{\partial v_0}\right] + \gamma^2 \frac{\partial \beta}{\partial r} \left[\frac{\partial K_0(v_0)}{\partial v_0} + \beta \frac{\partial H_0(v_0)}{\partial v_0}\right]\right] \\
+ \gamma \left[\frac{2}{r} [H_0(v_0) + \beta J_0(v_0)] + \frac{\gamma^2 \partial \beta}{c} [H_0(v_0) + \beta J_0(v_0)] + \gamma^2 \frac{\partial \beta}{\partial r} [J_0(v_0) + \beta H_0(v_0)]\right]
\]

\[
= \eta_o(v_0) - \chi_0(v_0) J_0(v_0).
\]

\[
\frac{\gamma}{c} \left[\frac{\partial H_0(v_0)}{\partial t} + \beta \frac{\partial K_0(v_0)}{\partial t}\right] + \gamma \left[\frac{\partial K_0(v_0)}{\partial r} + \beta \frac{\partial H_0(v_0)}{\partial r}\right] \\
- \gamma v_0 \left[\beta \left[\frac{\partial H_0(v_0)}{\partial v_0} - \frac{\partial N_0(v_0)}{\partial v_0}\right] + \frac{\gamma^2 \partial \beta}{c} \left[\frac{\partial K_0(v_0)}{\partial v_0} + \beta \frac{\partial N_0(v_0)}{\partial v_0}\right] + \gamma^2 \frac{\partial \beta}{\partial r} \left[\frac{\partial N_0(v_0)}{\partial v_0} + \beta \frac{\partial K_0(v_0)}{\partial v_0}\right]\right] \\
+ \gamma \left[\frac{1}{r} [3K_0(v_0) - J_0(v_0) + \beta H_0(v_0) + \beta N_0(v_0)] + \frac{\gamma^2 \partial \beta}{c} [J_0(v_0) + 2\beta H_0(v_0) - \beta N_0(v_0)]\right]
\]

\[
+ \gamma^2 \frac{\partial \beta}{\partial r} [2H_0(v_0) - N_0(v_0) + \beta J_0(v_0)]\right] = - \chi_0(v_0) H_0(v_0)
\]
Hydrodynamics

STELLA hydro equations:

\[
\frac{\partial r}{\partial t} = u
\]

\[
\frac{\partial u}{\partial t} = -4\pi r^2 \frac{\partial (p + q)}{\partial m} - \frac{G m}{r^2} + a_r + a_{\text{mix}}
\]

\[
\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}
\]

\[
a_r = \frac{4\pi}{c} \int_0^\infty (\chi_a + \chi_s) \frac{H_\nu}{\rho} d\nu
\]

\[
\left(\frac{\partial e}{\partial T} \right)_\rho \frac{\partial T}{\partial t} = \varepsilon + 4\pi \int_0^\infty \chi_a \frac{J_\nu - B_\nu}{\rho} d\nu - 4\pi \frac{\partial r^2 u}{\partial m} \left[T \left(\frac{\partial p}{\partial T} \right)_\rho + q \right]
\]

\[
\mathcal{K} = f_{\text{Edd}} \mathcal{J}
\]
SRRHD. Non-relativistic strong shock

Semi-analytic relativistic hydro + Relativistic radiation transfer (no closure condition)

Shock tube configuration (Farris et al., 2008), $P_r/P_g \approx 0.001$

<table>
<thead>
<tr>
<th>Γ</th>
<th>κ^a</th>
<th>Left state</th>
<th>Right State</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5/3$</td>
<td>0.4</td>
<td>$\rho_0 = 1.0$</td>
<td>$\rho_0 = 2.4$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$P = 3.0 \times 10^{-5}$</td>
<td>$P = 1.61 \times 10^{-4}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$u^x = 0.015$</td>
<td>$u^x = 6.25 \times 10^{-3}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$E = 1.0 \times 10^{-8}$</td>
<td>$E = 2.51 \times 10^{-7}$</td>
</tr>
</tbody>
</table>

Closure condition: $P = fE$
- Eddington approximation: $f = 1/3$
- M1-closure (Levermore, 1984)
 $f = f(E,F)$ joins “optically thin” and “thick” cases
- Photon Boltzmann equation
SRRHD. Strong shock and relativistic wave

- Mildly Relativistic Strong Shock (Test 2)

- Relativistic Strong Shock (Test 3)
SRRHD. Radiation-dominated mildly-relativistic shock wave

Semi-analytic relativistic hydro +
Relativistic radiation transfer
(no closure condition)

Shock tube configuration
(Farris et al., 2008), \(P_r/P_g \approx 10 \)

<table>
<thead>
<tr>
<th>(\Gamma)</th>
<th>(\kappa^a)</th>
<th>(\rho_0 = 1.0)</th>
<th>(\rho_0 = 3.65)</th>
<th>(P = 6.0 \times 10^{-3})</th>
<th>(P = 3.59 \times 10^{-2})</th>
<th>(u^x = 0.69)</th>
<th>(u^x = 0.189)</th>
<th>(E = 0.18)</th>
<th>(E = 1.30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/3</td>
<td>0.08</td>
<td></td>
<td></td>
<td>(P = 6.0 \times 10^{-3})</td>
<td>(P = 3.59 \times 10^{-2})</td>
<td>(u^x = 0.69)</td>
<td>(u^x = 0.189)</td>
<td>(E = 0.18)</td>
<td>(E = 1.30)</td>
</tr>
</tbody>
</table>

Closure condition: \(P = fE \)
- Eddington approximation: \(f = 1/3 \)
- M1-closure (Levermore, 1984)
 \(f = f(E,F) \) joins “optically thin” and “thick” cases
- Photon Boltzmann equation
Radiative shocks

Discontinuity disappears if radiation energy and pressure exceeds gas energy and pressure. Theoretical estimations (Belokon, 1959, Imshennik, Morozov, 1964):

\[\frac{P_r}{P_g} \sim 8.5 \]
Transformation of fluxes from source to observer’s frame

Allowance of time delay, Doppler effect and aberration

Flux F in the point of observation – integral of intensity I_0 over the surface:

$$F_v(t_{obs}) = 2\pi \int_{\mu_{min}}^{1} \mu p^2 I_0(R(\mu), \nu \left(\frac{v_0}{\nu}\right), \cos \delta_0(\cos \delta)) \left(\frac{\nu}{v_0}\right)^3 d\mu$$
Effects of Lorentz covariance

Transfer equation Lorentz covariance, Doppler effect and aberration:

\[I(\mu, \nu) = (\nu/\nu_0)^3 I_0(\mu_0, \nu_0) , \]
\[\nu = \nu_0 \gamma (1 + \beta \mu_0) , \]
\[\mu = \frac{\mu_0 + \beta}{1 + \beta \mu_0} , \]

lead to the following visible effects in moving to radiation sources:

1. Radiation flux increases
2. Spectrum becomes harder
3. The space moves towards the direction of motion
Transformation of fluxes from source to observer’s frame

Lorentz covariance, Doppler effect and aberration

• Radiation flux increases
• Spectrum becomes harder
• The space shrinks towards the direction of motion

\[V = 0 \]
\[V = 0.5 \, c \]
\[\Gamma = 10 \]
\[\Gamma = 100 \]
Flux calculation for distant observer at high bulk velocities

\[\beta = 0 \]

\[\beta' (t) > 0 \]

\[\alpha \]

\[\mu = \cos \alpha \]

\[\mu > \beta (t) \]

\[\mu = \beta \]

\[\beta > 0 \]

\[c \, dt \]
Algorithm RADA turns on before shock breakout starts

STELLA uses Lagrangian grid over mass coordinate, RADA – short characteristics with physical quantities interpolation.

\[
\frac{dI(s)}{s} = \eta + \tilde{\eta}s - \chi I(s) - \tilde{\chi} s I(s)
\]

\[
I(s) = I_0 - \frac{\tilde{\eta}}{\tilde{\chi}} e^{-\tau} + \frac{\tilde{\eta}}{\tilde{\chi}} \left(\eta - \chi \frac{\tilde{\eta}}{\tilde{\chi}} \right) e^{-\tau} \int_0^s e^{\tau(s')} ds', \quad \tau = 0.5 \tilde{\chi} s^2 + \chi s
\]

\[
\eta_v = \alpha_v b_v + \sigma_v J
\]
I b/c Shock Breakout Simulations
The **black** and **blue** lines represent, respectively, the STELLA and RADA calculations in the **comoving frame** of reference.

Red line - RADA calculations in **observer’s frame** of reference taking into account radiation time delay.
SN 1987A shock breakout spectra

![Graphs showing shock breakout spectra at different times.]
The hardest semi-relativistic model, the SN Ib/c model

- Evolutionary calculation of KEPLER program for a main sequence star (Woosley et al., 1995)
- STELLA provides a shock velocity at breakout up to 0.6c (Blinnikov, 1998)
- $M = 3.199 \, M_\odot$
 $R = 1.41 \times 10^{11} \, \text{cm}$
 $E = 0.9 \times 10^{51} \, \text{erg}$

![Graph showing abundance ratios for various elements like Fe, Mg, C, O, Ne, He, Si, Ni56, and He.](s1b7a)
SN Ibc shock breakout modeling \(\text{ (Tolstov et al. 2013)\)}

Explosion energy = 1.8 foe,

Shock velocity at shock breakout \(\approx 0.5c\)

- Radiation Transfer – Short Characteristic Method (about 90% of calculation time)

- Radius \(\times\) Angle \(\times\) Energy \(= 350 \times 100 \times 200 = 7,000,000\) for 1 time step

- 200 steps of RADA, 10,000 steps of STELLA, 3 days of calculation

\[
\begin{align*}
\text{74 s} & \quad \text{76.5 s} & \quad \text{77 s} \\
\text{78 s} & \quad \text{80 s} & \quad \text{84 s}
\end{align*}
\]
Spectra in observer’s frame of reference

- Instantaneous spectra for various times at the epoch of SBO.
Figure 20. Comparison of the bolometric light curves at the epoch of shock breakout for a type Ib/c presupernova models: explosion energy $E = 9 \cdot 10^{50}$ erg, maximum matter velocity $v_{max} \approx 0.3c$ (top) and $E = 1.8 \cdot 10^{51}$ erg, $v_{max} \approx 0.5c$ (bottom). The solid and dotted lines represent, respectively, the STELLA and RADA calculations in comoving frame of reference. Dashed line represents RADA calculations in observer’s frame of reference taking into account radiation time delay in the observer’s frame of reference.
Scattering is important!

Like for the 14E1X2 version above we switched off the thermalization of photons at the first scattering and increase the number of frequency bins for the version s1b7a2X. The maximum temperature becomes enormous (∼ 10^{10} K), but small admixture of true “gray” (i.e. frequency-independent) absorption, 10^{-6} of the Thomson scattering in an SN Ib progenitor, makes the temperature lower for several orders of magnitude (the version s1b7a2Xm6)

Matter temperature for the version s1b7a2X (left) and s1b7a2Xm6 (right) at shock breakout versus Lagrangian mass M_r measured from the surface. The time in seconds is given near the curves. The temperature peak is at an optical depth ∼ 200; 50; 4; 1; 0 at times 67.0, 67.5, 67.9, 68.1, 68.9 s.
Modeling of XRO080109/SN2008D
On 2008 Jan 9 at 13:32:49 UT, we serendipitously discovered an extremely bright X-ray transient during a scheduled Swift X-ray Telescope (XRT) observation of the galaxy NGC 2770 (d = 27 Mpc). Previous XRT observations of the field just two days earlier revealed no pre-existing source at this location. The transient, hereafter designated as X-ray outburst (XRO) 080109, lasted about 400 s, and was coincident with one of the galaxy's spiral arms (Soderberg A. et al. Nature, Volume 453, Issue 7194, pp. 469-474 (2008))

Drawing on optical, UV, radio, and X-ray observations shows that the progenitor was compact (R ≈ 10^{11} cm) and stripped of its outer Hydrogen envelope by a strong and steady stellar wind. These properties are consistent with those of Wolf-Rayet (WR) stars, the favored progenitors of Type Ibc SNe.
How to explain the duration and spectrum of the outburst?

Can we explain the observational data by ‘natural’ model (WR star + wind)?

1. The growth of photosphere
2. Changes in absorption/emission of the perturbed wind
XRO080109/SN2008D Spectra and Light Curves

- X-Ray light curves and spectra, averaged over the duration of the flash, of XRO 080109 in Swift/XRT band (0.3-10 keV) for 10A presupernova model
- No extinction
XRO080109/SN2008D Spectra and Light Curves (extinction)

- X-Ray light curves and spectra, averaged over the duration of the flash, of XRO 080109 in Swift/XRT band (0.3-10 keV) for 10A presupernova model
- $N_H = 2 \times 10^{21} \text{ cm}^{-2}$, XRT response
- $E_K = 6 \pm 2.5 \text{ foe}$ (Tanaka et al. 2009) in modeling of SN2008D light curve
Ibc models. Variations of stellar wind parameters
XRO080109 Spectrum Evolution
SNO 080109 Optical data

(Page K.L. et al. GCN Report 110.1 15 Jan 2008), $E = 2.5$ foe
SN2008D light curve modeling, E=2 foe

Tanaka M. et al., 2009, Bersten M. 2013

Density modulations of circumstellar medium
OR
Chemical composition of the progenitor
OR
Jet geometry

STELLA
STELLA+RADA
SN2008 data
Current projects and Future plans
Objectives

- **Analyses, prediction and interpretation of data of Subaru Hyper-Suprime Cam (HSC) using SB templates for SN type Ib/c**
 New surveys: Palomar Transient Factory (PTF), Lick Observatory Supernova Search (LOSS), Catalina Real-Time Transient Survey (CRTS), Kiso/Kiso Wide Field Camera (KWFC), Skymapper, Dark Energy Survey (DES), Pan-STARRS, Subaru/HSC, Large Synoptic Survey Telescope (LSST), KMTNet

- **Research and development of new and effective numerical methods** for calculating the radiation of relativistic gas dynamics

- **Numerical Improvements in SRRHD code:**
 - Relativistic radiation hydrodynamics in 1D
 - Relativistic radiation hydrodynamics in 2D-3D
 - Scattering processes and radiation mechanisms
SN Ibc Shock Breakout at High Redshift

- Cosmological parameters (Komatsu et al. 2009):
 \[H_0 = 70.5 \text{ km s}^{-1} \text{ Mpc}^{-1} \]
 \[k = 0 \]
 \[\Omega_\Lambda = 0.726 \]
 \[\Omega_M = 0.274 \]

- Dilated and redshifted multigroup LCs with the g bandpass of the Subaru/HSC

- The horizontal line – 5\(\sigma\) detection limit in the g-band for the Subaru/HSC 1 hr integration

- No extinction and no IGM absorption
Current status of Radiation Hydrodynamics calculations

<table>
<thead>
<tr>
<th>RHD Technique</th>
<th>Spacial Dim</th>
<th>1D</th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
</table>
| **Single Energy**
(Relativistic code / Nonrelativistic code) | | RRMHD Codes (Farris, Zanotti, Roedig, Sadowski, Takahashi) Edd Approx | Herant (1994) | SNSPH (Fryer 2006) , HARMRAD (McKinley 2013) |
Conclusions

- Our numerical calculations provides us the opportunity to build robust templates for the analysis and interpretation of the SN Ibc observations
- The phenomenon of XRO080109/SN2008D may well be explained qualitatively by the explosion of a conventional WR-star surrounded by a stellar wind. The explosion energy > 3 foe. Previous analytic estimations do not take into account the growth of the photosphere accurately
- SN2008D light curve must be modeled for the optimal model
- For the accurate consideration of mildly relativistic radiation dominated shock waves it is necessary to solve radiation transfer equation (Eddington and M1 closure are not good approximations)
Thank you!

E-mail: alexey.tolstov@ipmu.jp