Cosmology with the Baryon Oscillation Spectroscopic Survey (BOSS)

Florian Beutler

Collaborators: Shun Saito, Hee-Jong Seo + BOSS collaboration

June, 2014

Lawrence Berkeley National Lab

Part I:

- The BOSS-CMASS sample.
- What are Baryon Acoustic Oscillations?
- What is the Alcock-Paczynski effect?
- What are redshift-space distortions?
- The CMASS power spectrum multipoles.
- Constraining σ_8 .
- Part II:
 - Constraints on the neutrino mass.

Part I:

- The BOSS-CMASS sample.
- What are Baryon Acoustic Oscillations?
- What is the Alcock-Paczynski effect?
- What are redshift-space distortions?
- The CMASS power spectrum multipoles.
- Constraining σ_8 .
- Part II:
 - Constraints on the neutrino mass.

Part I, The BOSS-CMASS sample

- Optimised for the measurement of Baryon Acoustic Oscillations.
- CMASS: 0.43 < *z* < 0.7
- LOWz: < 0.43
- The effective volume is 6 Gpc³ for CMASS and 2.4 Gpc³ for LOWz.
- DR9: 3275 deg²

•

Part I, The BOSS-CMASS sample

- Optimised for the measurement of Baryon Acoustic Oscillations.
- CMASS: 0.43 < *z* < 0.7
- LOWz: < 0.43
- The effective volume is 6 Gpc³ for CMASS and 2.4 Gpc³ for LOWz.
- DR9: 3275 deg²
- DR10: 6262.1 deg²

٥

Part I, The BOSS-CMASS sample

- Optimised for the measurement of Baryon Acoustic Oscillations.
- CMASS: 0.43 < *z* < 0.7
- LOWz: < 0.43
- The effective volume is 6 Gpc³ for CMASS and 2.4 Gpc³ for LOWz.
- DR9: 3275 deg²
- DR10: 6262.1 deg²
- DR11: 8509.6 deg²

Part I, Correlation function and power spectrum

The correlation function is defined via the excess probability of finding a galaxy pair at separation r:

$$dP = \overline{n}^2 \left[1 + \xi(r) \right] dV_1 dV_2$$

 \rightarrow The correlation function measures the degree of clustering on different scales.

In practice we just count galaxy pairs:

$$\xi(r) = \frac{DD(r)}{RR(r)} - 1$$

The correlation function and the power spectrum are just Fourier transforms of each other

$$P(k) = \int \xi(r) \exp(ik \cdot r) d^3r$$
$$\xi(r) = \frac{1}{(2\pi)^3} \int P(k) \exp(-ik \cdot r) d^3k$$

Part I, What are Baryon Acoustic Oscillations?

credit: Nasa

- Preferred distance scale between galaxies as a relict of sound waves in the early Universe.
- Can be used as a standard ruler.
- The systematic errors are far below the current statistical errors.

credit: Martin White

Part I, What is the Alcock-Paczynski effect?

The BAO signal is expected to be isotropic. However, the fiducial cosmological model, which we used to transfer the observables into co-moving distances affects the radial distance differently than the angular distance.

The radial BAO signal is given by $H(z) = c\Delta z/s$. The tangential BAO signal is given by $D_A(z) = s/\Delta\theta$. $\rightarrow \delta z/\delta\theta \sim D_A(z)H(z) \sim F_{AP}$

Florian Beutler

Part I, What is the Alcock-Paczynski effect?

$$\Omega_{\Lambda}/(1+z)^{1+w}$$
 $H(z) = H_0 \left[\Omega_m/(1+z)^{-3} + \Omega_{\mathrm{DE}}/(1+z)^{-3(1+w)}\right]^{1/2}.$

Florian Beutler

Part I, What are redshift space distortions?

The redshift of a galaxy has two velocity components which we can't distinguish

$$\vec{s} = \vec{r} \left(1 + \frac{u(\vec{r})}{r} \right).$$

The effect is proportional to the growth rate

$$\frac{f(z)}{b_1} = \frac{\Omega_m^{0.55}(z)}{b_1}$$

f = growth rate, b_1 = linear bias, $\Omega_m = rac{
ho_m}{
ho_0}$

Part I, What are redshift space distortions?

The redshift of a galaxy has two velocity components which we can't distinguish

$$\vec{s} = \vec{r} \left(1 + \frac{u(\vec{r})}{r} \right).$$

The effect is proportional to the growth rate

$$\frac{f(z)}{b_1} = \frac{\Omega_m^{0.55}(z)}{b_1}$$

$$f={
m growth}$$
 rate, $b_1={
m linear}$ bias, $\Omega_m=rac{
ho_m}{
ho_0}$

The matter clustering is normalized by the r.m.s. mass fluctuation amplitude in spheres of 8 Mpc/h (σ_8). Since we only measure the galaxy clustering we are sensitive to $b_1\sigma_8$ and therefore our observable is

$$b_1\sigma_8 imesrac{f(z)}{b_1}=f(z)\sigma_8$$

Part I, What are redshift space distortions?

Part I, Power spectrum measurement

$$extsf{P}_\ell(k) = rac{2\ell+1}{2}\int_{-1}^1 d\mu \ extsf{P}(k,\mu) \mathcal{L}_\ell(\mu)$$

Power spectrum estimator by Yamamoto et al. (2005)

Part I, Power spectrum modeling

Our power spectrum model is based on renormalized perturbation theory (Taruya et al. 2011, McDonald & Roy 2009)

$$\begin{split} P_{\mathrm{g}}(k,\mu) &= \exp\left\{-(fk\mu\sigma_{\mathrm{v}})^{2}\right\}\left[P_{\mathrm{g},\delta\delta}(k)\right. \\ &+ 2f\mu^{2}P_{\mathrm{g},\delta\theta}(k) + f^{2}\mu^{4}P_{\theta\theta}(k) \\ &+ b_{1}^{3}A(k,\mu,\beta) + b_{1}^{4}B(k,\mu,\beta)\right], \end{split}$$

with

$$\begin{split} P_{\mathrm{g},\delta\delta}(k) &= b_{1}^{2}P_{\delta\delta}(k) + 2b_{2}b_{1}P_{b2,\delta}(k) + 2b_{s2}b_{1}P_{bs2,\delta}(k) \\ &+ 2b_{3\mathrm{nl}}b_{1}\sigma_{3}^{2}(k)P_{\mathrm{m}}^{\mathrm{L}}(k) + b_{2}^{2}P_{b22}(k) \\ &+ 2b_{2}b_{s2}P_{b2s2}(k) + b_{s2}^{2}P_{bs22}(k) + N, \\ P_{\mathrm{g},\delta\theta}(k) &= b_{1}P_{\delta\theta}(k) + b_{2}P_{b2,\theta}(k) + b_{s2}P_{bs2,\theta}(k) \\ &+ b_{3\mathrm{nl}}\sigma_{3}^{2}(k)P_{\mathrm{m}}^{\mathrm{lin}}(k), \end{split}$$

Part I, Power spectrum measurement

Let's remember that there is some tension here: Planck predicts $f(z=0.57)\sigma_8(z=0.57)=0.481\pm0.010$

The BOSS-CMASS constraints are:

$$V^{\text{data}} = egin{pmatrix} D_V(z_{ ext{eff}})/r_s(z_d) \ F_{ ext{AP}}(z_{ ext{eff}}) \ f(z_{ ext{eff}})\sigma_8(z_{ ext{eff}}) \end{pmatrix} = egin{pmatrix} 13.88 \ 0.683 \ 0.422 \end{pmatrix} & \pm 1.3\% \ \pm 4.6\% \ \pm 11\% \end{cases}$$

where $F_{\rm AP}(z_{\rm eff}) = (1 + z_{\rm eff})D_A(z_{\rm eff})H(z_{\rm eff})/c$ at the the effective redshift $z_{\rm eff} = 0.57$. The symmetric covariance matrix between these constraints is given by

$$10^{3}C = \begin{pmatrix} 36.400 & -2.0636 & -1.8398 \\ & 1.0773 & 1.1755 \\ & & 1.8478 + 0.196 \end{pmatrix}$$

See Anderson et al. (2013) and Beutler et al. (2013)

The BOSS-CMASS constraints are:

$$V^{\text{data}} = egin{pmatrix} D_V(z_{ ext{eff}})/r_s(z_d) \ F_{ ext{AP}}(z_{ ext{eff}}) \ f(z_{ ext{eff}})\sigma_8(z_{ ext{eff}}) \end{pmatrix} = egin{pmatrix} 13.88 \ 0.683 \ 0.422 \end{pmatrix} & \pm 1.3\% \ \pm 4.6\% \ \pm 11\% \end{cases}$$

where $F_{\rm AP}(z_{\rm eff}) = (1 + z_{\rm eff})D_A(z_{\rm eff})H(z_{\rm eff})/c$ at the the effective redshift $z_{\rm eff} = 0.57$. The symmetric covariance matrix between these constraints is given by

$$10^{3}C = \begin{pmatrix} 36.400 & -2.0636 & -1.8398 \\ & 1.0773 & 1.1755 \\ & & 1.8478 + 0.196 \end{pmatrix}$$

See Anderson et al. (2013) and Beutler et al. (2013)

 \rightarrow You can use these constraints to test your own favorite cosmological model.

• The BOSS project is ahead of schedule and the final dataset will become public at the end of this year.

- The BOSS project is ahead of schedule and the final dataset will become public at the end of this year.
- There are (at least) three signals in the distribution of galaxies, which can be exploited for cosmology: BAO, AP and RSD.

- The BOSS project is ahead of schedule and the final dataset will become public at the end of this year.
- There are (at least) three signals in the distribution of galaxies, which can be exploited for cosmology: BAO, AP and RSD.
- In BOSS we were able to measure the BAO scale at redshift z = 0.57 with an error of 1% (1.3%), representing the best BAO scale measurement to date.

- The BOSS project is ahead of schedule and the final dataset will become public at the end of this year.
- There are (at least) three signals in the distribution of galaxies, which can be exploited for cosmology: BAO, AP and RSD.
- In BOSS we were able to measure the BAO scale at redshift z = 0.57 with an error of 1% (1.3%), representing the best BAO scale measurement to date.
- We can constrain σ_8 using CMASS alone finding $\sigma_8 = 0.731 \pm 0.052$, which is about 2σ lower than current CMB predictions.

- The BOSS project is ahead of schedule and the final dataset will become public at the end of this year.
- There are (at least) three signals in the distribution of galaxies, which can be exploited for cosmology: BAO, AP and RSD.
- In BOSS we were able to measure the BAO scale at redshift z = 0.57 with an error of 1% (1.3%), representing the best BAO scale measurement to date.
- We can constrain σ_8 using CMASS alone finding $\sigma_8 = 0.731 \pm 0.052$, which is about 2σ lower than current CMB predictions.

It might be a statistical fluctuation?

- The BOSS project is ahead of schedule and the final dataset will become public at the end of this year.
- There are (at least) three signals in the distribution of galaxies, which can be exploited for cosmology: BAO, AP and RSD.
- In BOSS we were able to measure the BAO scale at redshift z = 0.57 with an error of 1% (1.3%), representing the best BAO scale measurement to date.
- We can constrain σ_8 using CMASS alone finding $\sigma_8 = 0.731 \pm 0.052$, which is about 2σ lower than current CMB predictions.
 - It might be a statistical fluctuation?
 - O Systematic errors?

- The BOSS project is ahead of schedule and the final dataset will become public at the end of this year.
- There are (at least) three signals in the distribution of galaxies, which can be exploited for cosmology: BAO, AP and RSD.
- In BOSS we were able to measure the BAO scale at redshift z = 0.57 with an error of 1% (1.3%), representing the best BAO scale measurement to date.
- We can constrain σ_8 using CMASS alone finding $\sigma_8 = 0.731 \pm 0.052$, which is about 2σ lower than current CMB predictions.
 - It might be a statistical fluctuation?
 - Output: Systematic errors?
 - O Modifications to ΛCDM?

Part I:

- The BOSS-CMASS sample.
- What are Baryon Acoustic Oscillations?
- What is the Alcock-Paczynski effect?
- What are redshift-space distortions?
- The CMASS power spectrum multipoles.
- Constraining σ_8 .
- Part II:
 - Constraints on the neutrino mass.

Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 20 March 2014 (MN LATEX style file v2.2)

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Signs of neutrino mass in current cosmological datasets

Florian Beutler^{1*}, Shun Saito², Joel R. Brownstein³, Chia-Hsun Chuang⁴, Antonio J. Cuesta⁵, Will J. Percival⁶, Ashley J. Ross⁶, Nicholas P. Ross⁷, Donald P. Schneider^{8,9}, Lado Samushia⁶, Ariel G. Sánchez¹⁰, Hee-Jong Sco¹¹, Jeremy L. Tinker¹², Christian Wagner¹³, Benjamin A. Weaver¹²

¹Lawrence Berkeley National Lab, 1 Cycletron Rd, Berkeley CA 94780, USA, ²Kaeki Institute for the Physics and Mathematics of the Universe (WPI), Todai Institues for Advanced Study, The University of Tokyo, Chiba 277-8582, Japan,

• Neutrino oscillation experiments tell us that neutrinos must have a mass.

- Neutrino oscillation experiments tell us that neutrinos must have a mass.
- Cosmological probes are sensitive to the sum of the neutrino masses $\sum m_{
 u}.$

- Neutrino oscillation experiments tell us that neutrinos must have a mass.
- Cosmological probes are sensitive to the sum of the neutrino masses $\sum m_{
 u}.$
- Neutrinos cannot cluster on scales below their free streaming scale

$$k_{
m FS}=0.8rac{\sqrt{\Omega_{\Lambda}+\Omega_m(1+z)^3}}{(1+z)^2}\left(rac{m_
u}{1\,{
m eV}}
ight)h/{
m Mpc}$$

- Neutrino oscillation experiments tell us that neutrinos must have a mass.
- Cosmological probes are sensitive to the sum of the neutrino masses $\sum m_{
 u}$.
- Neutrinos cannot cluster on scales below their free streaming scale

$$k_{
m FS} = 0.8 rac{\sqrt{\Omega_{\Lambda}+\Omega_m(1+z)^3}}{(1+z)^2} \left(rac{m_
u}{1\,{
m eV}}
ight) h/{
m Mpc}$$

 \rightarrow Degeneracy between σ_8 and $\sum m_{\nu}$ in the CMB.

- Neutrino oscillation experiments tell us that neutrinos must have a mass.
- Cosmological probes are sensitive to the sum of the neutrino masses $\sum m_{\nu}$.
- Neutrinos cannot cluster on scales below their free streaming scale

$$k_{
m FS}=0.8rac{\sqrt{\Omega_{\Lambda}+\Omega_m(1+z)^3}}{(1+z)^2}\left(rac{m_
u}{1\,{
m eV}}
ight)h/{
m Mpc}$$

 \rightarrow Degeneracy between σ_8 and $\sum m_{\nu}$ in the CMB.

• The neutrino mass also affects the geometry of the Universe which allows the CMB to break this degeneracy.

- Neutrino oscillation experiments tell us that neutrinos must have a mass.
- Cosmological probes are sensitive to the sum of the neutrino masses $\sum m_{\nu}$.
- Neutrinos cannot cluster on scales below their free streaming scale

$$k_{
m FS}=0.8rac{\sqrt{\Omega_{\Lambda}+\Omega_m(1+z)^3}}{(1+z)^2}\left(rac{m_
u}{1\,{
m eV}}
ight)h/{
m Mpc}$$

 \rightarrow Degeneracy between σ_8 and $\sum m_{\nu}$ in the CMB.

- The neutrino mass also affects the geometry of the Universe which allows the CMB to break this degeneracy.
- Additional constraints come from gravitational lensing of the CMB.

- Neutrino oscillation experiments tell us that neutrinos must have a mass.
- Cosmological probes are sensitive to the sum of the neutrino masses $\sum m_{\nu}$.
- Neutrinos cannot cluster on scales below their free streaming scale

$$k_{
m FS}=0.8rac{\sqrt{\Omega_{\Lambda}+\Omega_m(1+z)^3}}{(1+z)^2}\left(rac{m_
u}{1\,{
m eV}}
ight)h/{
m Mpc}$$

 \rightarrow Degeneracy between σ_8 and $\sum m_{\nu}$ in the CMB.

- The neutrino mass also affects the geometry of the Universe which allows the CMB to break this degeneracy.
- Additional constraints come from gravitational lensing of the CMB.
- The remaining degeneracy can be broken by using low redshift σ_8 constraints.

credit: Planck col.

$$T^{ ext{lensed}}(\hat{\pmb{n}}) = T^{ ext{unlensed}}(\hat{\pmb{n}} +
abla \phi(\hat{\pmb{n}}))$$

with the CMB lensing potential

$$\phi(\hat{n}) = -2 \int_0^{\chi(z_*)} d\chi \frac{\chi(z_*) - \chi}{\chi(z_*)\chi} \Psi(\chi \hat{n}, \eta_0 - \chi)$$

credit: Planck col.

 \bullet Lensing leads to a damping of the high ℓ peaks in the temperature power spectrum

credit: Planck col.

• Lensing leads to a damping of the high ℓ peaks in the temperature power spectrum \rightarrow 10 σ detection.

- Lensing leads to a damping of the high ℓ peaks in the temperature power spectrum $\rightarrow 10\sigma$ detection.
- Gravitational lensing introduces non-Gaussianity into the CMB fluctuations, which can be measured with the 4-point function or trispectrum

- Lensing leads to a damping of the high ℓ peaks in the temperature power spectrum $\rightarrow 10\sigma$ detection.
- Gravitational lensing introduces non-Gaussianity into the CMB fluctuations, which can be measured with the 4-point function or trispectrum $\rightarrow 25\sigma$ detection.

- Lensing leads to a damping of the high ℓ peaks in the temperature power spectrum $\rightarrow 10\sigma$ detection.
- Gravitational lensing introduces non-Gaussianity into the CMB fluctuations, which can be measured with the 4-point function or trispectrum $\rightarrow 25\sigma$ detection.

See Planck collaboration XVI section 5.1

See Planck collaboration XVI section 5.1

Summary:

• There is tension between WMAP9 and Planck, which has a significant impact on the neutrino mass constraints.

d

V

• There is tension between WMAP9 and Planck, which has a significant impact on the neutrino mass constraints.

	dataset(s)	$\sum m_{ u}$ [eV]				
		68%	б с.I.	95%	c.l.	
	WMAP9+CMASS	0.36	± 0.14	0.36 -	± 0.28	
	Planck+CMASS	0.20	± 0.13	< 0).37	
	$Planck-A_{\mathrm{L}}+CMASS$	0.34	± 0.14	0.34 =	± 0.26	
dataset(s)			$\sum m_{ u}$ [eV]			
			68%	c.l.	95%	c.l.
WMAP9+CMASS+CFHTLe		enS	$0.37 \pm$	0.37 ± 0.12		0.24
Planck+CMASS+CFHTLen		S	$0.29 \pm$	0.13	0.29^{+}_{-}	0.29 0.23
$Planck\text{-}A_{\mathrm{L}}\text{+}CMASS\text{+}CFHT$		LenS	$0.38 \pm$	0.11	$0.38\pm$	0.24

Introducing a neutrino mass lowers the tension between the σ₈ prediction of WMAP9 and low redshift datasets.
 → However in Planck this doesn't seem to work.

- Introducing a neutrino mass lowers the tension between the σ₈ prediction of WMAP9 and low redshift datasets.
 → However in Planck this doesn't seem to work.
- When removing the lensing effect in the 2-point function of Planck, we see shifts $> 1\sigma$ in Ω_m and σ_8 which bring Planck in much better agreement with WMAP9.

 \rightarrow Without the lensing contribution Planck+CMASS also shows preference for a non-zero neutrino mass with 2.5 – 3.5 σ significance.

- Introducing a neutrino mass lowers the tension between the σ₈ prediction of WMAP9 and low redshift datasets.
 → However in Planck this doesn't seem to work.
- When removing the lensing effect in the 2-point function of Planck, we see shifts $> 1\sigma$ in Ω_m and σ_8 which bring Planck in much better agreement with WMAP9.

 \rightarrow Without the lensing contribution Planck+CMASS also shows preference for a non-zero neutrino mass with 2.5 – 3.5 σ significance.

• The preference for non-zero neutrino mass is dominated by the growth of structure constraints.

Thank you very much

Appendix: GR test with free neutrino mass

 $\gamma = \textbf{0.67} \pm \textbf{0.14}$

Appendix: Testing RSD and CFHTLenS

