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Outline of the talk

o Part I:

The BOSS-CMASS sample.
What are Baryon Acoustic Oscillations?
What is the Alcock-Paczynski effect?
What are redshift-space distortions?
The CMASS power spectrum multipoles.
Constraining og.
o Part Il:

o Constraints on the neutrino mass.
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Part |, The BOSS-CMASS sample
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Part |, Correlation function and power spectrum

The correlation function is defined via the excess probability of finding a
galaxy pair at separation r:

dP =7 [1 4 £(r)] dV1dV2

— The correlation function measures the degree of clustering on different
scales.
In practice we just count galaxy pairs:

_ DD(r)
&) = RR(r)

The correlation function and the power spectrum are just Fourier
transforms of each other

P(k) = /ﬁ(r) exp(ik - r)d>r

£(r) = (2717)3 / P(k) exp(—ik - r)d3k
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Part |, What are Baryon Acoustic Oscillations?

credit: Nasa

o Preferred distance scale between galaxies as a
relict of sound waves in the early Universe.

o Can be used as a standard ruler.
@ The systematic errors are far below the
current statistical errors.

credit: Martin White
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Part |, What is the Alcock-Paczynski effect?

The BAO signal is expected to be isotropic. However, the fiducial
cosmological model, which we used to transfer the observables into
co-moving distances affects the radial distance differently than the angular
distance.

The radial BAO signal is given by H(z) = cAz/s.

The tangential BAO signal is given by Da(z) = s/A6.

— 52/59 ~ DA(Z)H(Z) ~ FAP

8r=D,50 Sr = (c/H)dz

=)
>
—
3
-
Il
CTTTTTTTTTY

Af = apparent angular size
~ 2.6 deg at z=1

Az = apparent redshift extent H(z) =
~ 0.06 at z=1 Observer
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Part |, What is the Alcock-Paczynski effect?
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Part |, What are redshift space distortions?

The redshift of a galaxy has two velocity com-
ponents which we can't distinguish

ey, U s T
oo r(1442) . I

fo

The effect is proportional to the growth rate

flz) _ 90%5(2)

by b1

observer

f = growth rate, by = linear bias, Q,, = ‘/’)—’;’

Florian Beutler June, 2014 11



Part |, What are redshift space distortions?

The redshift of a galaxy has two velocity com-
ponents which we can't distinguish

The effect is proportional to the growth rate

fz) _ Q5>°(2)

bl bl observer

f = growth rate, by = linear bias, Q,, = ‘;—’;’

The matter clustering is normalized by the r.m.s. mass fluctuation
amplitude in spheres of 8 Mpc/h (0g). Since we only measure the galaxy
clustering we are sensitive to byog and therefore our observable is

f(z)

b10’8 X — = f(z)og
by
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rt |, What are redshift s
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Part |, Power spectrum measurement

1
Pk = 23 [ d Pk ()

Power spectrum estimator by
Yamamoto et al. (2005)
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Part |, Power spectrum modeling

Our power spectrum model is based on renormalized perturbation theory
(Taruya et al. 2011, McDonald & Roy 2009)

Py(k, 1) = exp {—(tkpo,)?} [Pgss(k)
+ 2f/1,2Pg759(k) + f2,u4P99(k)
+ b{A(k, 1, B) + biB(k, 1, B)]
with
Py 55(k) = b2Pss(k) + 2bab1 Py 5(k) + 2bsabi Pps 5(k)
+ 2bsn b1 o3 (k) PL (k) + b3 Py (k)
+ 2by by Posa (k) + b2 Ppsaa(k) + N,
Py s6(k) = b1Psg(k) + b2Pp g(k) + bs2Pps2 9(k)
+ bSnIU?%(k)Prlriln(k)v
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Part |, Power spectrum measurement
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Part |, Power spectrum measurement
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Let's remember that there is some tension here: Planck predicts
f(z=0.57)og(z = 0.57) = 0.481 £+ 0.010
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Part |, Power spectrum measurement

The BOSS-CMASS constraints are:

DV(zeg)/rs(zd) 13.88 :|:1.3%
ydata — Fap(zer) = | 0.683 +4.6%
f(zett)os(Zoft) 0.422 +11%

where Fap(zeft) = (1 + zeft) Da(zet)H(Zett) /€ at the the effective redshift
Zof = 0.57. The symmetric covariance matrix between these constraints is
given by
36.400 —2.0636 —1.8398
10°C = 1.0773 1.1755
1.8478 +0.196

See Anderson et al. (2013) and Beutler et al. (2013)

Florian Beutler June, 2014 17
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given by
36.400 —2.0636 —1.8398
10°C = 1.0773 1.1755
1.8478 +0.196

See Anderson et al. (2013) and Beutler et al. (2013)
— You can use these constraints to test your own favorite cosmological
model.
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Part |, 05-C2,, likelihood
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Part |, 05-C2,, likelihood
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Part |, 05-C2,, likelihood
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Part |, 05-C2,, likelihood
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Part |, 05-C2,, likelihood
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Part |, Summary

@ The BOSS project is ahead of schedule and the final dataset will
become public at the end of this year.
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Part |, Summary

@ The BOSS project is ahead of schedule and the final dataset will
become public at the end of this year.

@ There are (at least) three signals in the distribution of galaxies, which
can be exploited for cosmology: BAO, AP and RSD.

@ In BOSS we were able to measure the BAO scale at redshift z = 0.57
with an error of 1% (1.3%), representing the best BAO scale
measurement to date.

@ We can constrain og using CMASS alone finding 0g = 0.731 + 0.052,
which is about 20 lower than current CMB predictions.

© It might be a statistical fluctuation?
@ Systematic errors?
© Modifications to ACDM?

Florian Beutler June, 2014 23



Outline of the talk

o Part I:

The BOSS-CMASS sample.
What are Baryon Acoustic Oscillations?
What is the Alcock-Paczynski effect?
What are redshift-space distortions?
The CMASS power spectrum multipoles.
Constraining og.
o Part Il:

o Constraints on the neutrino mass.
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Part |l, Neutrino mass constraints
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Part |l, Neutrino mass constraints

@ Neutrino oscillation experiments tell us that neutrinos must have a
mass.
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Part |l, Neutrino mass constraints

@ Neutrino oscillation experiments tell us that neutrinos must have a
mass.

@ Cosmological probes are sensitive to the sum of the neutrino masses
> my,.

@ Neutrinos cannot cluster on scales below their free streaming scale

kps = 0.8

VA + Qm(1+2)3 ( m,

1+ z2)? 1eV) h/Mpc

— Degeneracy between og and > m, in the CMB.

@ The neutrino mass also affects the geometry of the Universe which
allows the CMB to break this degeneracy.

e Additional constraints come from gravitational lensing of the CMB.

@ The remaining degeneracy can be broken by using low redshift og
constraints.
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Part |l, Neutrino mass constraints
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Part |l, Neutrino mass constraints
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Part |l, Neutrino mass constraints
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Part |l, Neutrino mass constraints
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Part |l, Neutrino mass constraints
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Part |l, Neutrino mass constraints
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Part |l, Neutrino mass constraints
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Part |l, Neutrino mass constraints
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Part Il, Lensing contribution to Planck
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Part Il, Lensing contribution to Planck

1e-09 .
unlensed Multipole moment, L

lensed 2 10 100 500 1000 1500 2000

. 100G Hz

§ 143G Hz

F 217GHz
1e-10 a
il H
o g
I 2
= £
2
fe-11 g
L
a
=
S

1e-12
o 500 1000 1500 2000 2500 3000 Angular scale (degrees)
multipole order

credit: Planck col.

Tlensed(ﬁ) — 7—unlensed(;\7 + V¢(ﬁ))

with the CMB lensing potential

x(2+) _
o(h) = —2/0 dx%w(xﬁ, no — X)
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Part Il, Lensing contribution to Planck
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Part Il, Lensing contribution to Planck
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@ Lensing leads to a damping of the high £ peaks in the temperature
power spectrum
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Part Il, Lensing contribution to Planck
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Part Il, Lensing contribution to Planck
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Part Il, Lensing contribution to Planc
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Part |l, Neutrino mass constraints
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Part |l, Neutrino mass constraints
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@ There is tension between WMAP9 and Planck, which has a significant
impact on the neutrino mass constraints.



@ There is tension between WMAP9 and Planck, which has a significant
impact on the neutrino mass constraints.

dataset(s) > my, [eV]

68% c.l. 95% c.l.
WMAP9+CMASS 0.36 £0.14 0.36 £0.28
Planck+CMASS 0.20+0.13 < 0.37
Planck-A;,+CMASS 0.34+0.14 0.34+0.26

dataset(s) > m, [eV]

68% c.l. 95% c.l.
WMAP9+CMASS+CFHTLenS 0.37+0.12 0.37+£0.24
Planck+CMASS+CFHTLenS 0.29+0.13  0.297933
Planck-A;,+CMASS+CFHTLenS 0.384+0.11 0.38+0.24




Conclusion

@ Introducing a neutrino mass lowers the tension between the og
prediction of WMAP9 and low redshift datasets.
— However in Planck this doesn’t seem to work.
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we see shifts > 1o in Q,,, and og which bring Planck in much better
agreement with WMAPO.

— Without the lensing contribution Planck+CMASS also shows
preference for a non-zero neutrino mass with 2.5 — 3.50 significance.



Conclusion

@ Introducing a neutrino mass lowers the tension between the og
prediction of WMAP9 and low redshift datasets.
— However in Planck this doesn’t seem to work.

@ When removing the lensing effect in the 2-point function of Planck,
we see shifts > 1o in Q,,, and og which bring Planck in much better
agreement with WMAPO.

— Without the lensing contribution Planck+CMASS also shows
preference for a non-zero neutrino mass with 2.5 — 3.50 significance.

@ The preference for non-zero neutrino mass is dominated by the growth
of structure constraints.



Thank you very much



Appendix: GR test with free neutrino mass
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Appendix: Testing RSD and CFHTLenS
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