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Outline

• General background of Entanglement Entropy (EE).

• Holographic Entanglement Entropy (HEE).

• Setup of Entanglement Entropy (EE).

• Quantum dimension and EE.

• Summary.
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Basics of Entanglement Entropy

• Recently, (Renyi) entanglement entropy ((R)EE) has wide interest in
theoretical physics.

• It is useful to study the distinctive features of various quantum state in
condensed matter physics. For example: phase transition in Condensed
matter system, probe of Fermi liquid (logarithmic behavior of EE) vs.
non-Fermi-liquid behavior,etc..

• (Renyi) entanglement entropy is expected to be an important quantity
which may shed light on the mechanism behind the AdS/CFT corresponds.

• Probe of quenches and thermalization processes, propagation of
entanglement.

• Probe of phase transition between confinement and deconfinement in
QCD.

• ...
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Basics of Entanglement Entropy
• General diagnostic: divide quantum system into two parts (A and B) and

use entropy as measure of correlations between subsystems

• In QFT, typically introduce a (smooth) boundary or entangling surface Σ
which divides the space into two separate regions (A and B).

• Integrate out degrees of freedom in outside region (B). Remaining dof are
described by a density matrix ρA.

• For Entangled pure state: |ψ⟩ =
∑

i λi|i⟩A|i⟩B

• Entanglement leads to mixture of the reduced density matrix:
ρA = TrB|0⟩⟨0| =

∑
i |λi|2|i⟩⟨i|

• Best way to quantify amount of entanglement is by von Neumann entropy
SEE = −Tr(ρA log ρA).

• For this case |ψ⟩, SEE = −Tr(ρA log ρA) =
∑

i |λi|2 log |λi|2. And we can
defined EE for mixed state in similar way.
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Basics of Entanglement Entropy
• EE is a central concept in quantum statistical mechanics and quantum

information theory.
• Entanglement is a ubiquitous phenomenon in quantum systems.
• Especially, we here consider a lattice system in D − 1 spatial dimensions.

Let the characteristic length L of subsystem A much lager than size of
lattice ϵ.

1 In a generic state, SEE(A) ∼ log dimHA ∼ ( L
ϵ )

D−1

2 In the ground state (or other low-lying pure state),
SEE(A) ∼ log dimH∂A ∼ ( L

ϵ )
D−2. Typically in 2D,

SEE(A) ∼ ( L
ϵ ).

• One can also take ϵ→ 0 to obtain the QFT description.
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Properties of EE in QFT

• There are some nice Properties (which are related to von Neumann
algebras):

1 For pure state SA = SB, otherwise SA ̸= SB.
2 Strong subadditivity: SA+B+C + SB ≤ SA+B + SB+C.

3 Subadditivity: SA+B ≤ SA + SB. This property corresponds to
triangle inequality in Von Neumann algebra.

• Trsubsystem corresponds seminorm which a function from a vector space
(Hilbert space especially) to real number.
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Properties of EE in QFT

• The standard thermal entropy is obtained as a particular case of EE: i.e.
A=total space.

• The density matrix of total system can be expressed by

ρ =
e−βH

Z

where Z = Tre−βH . One can obtain

S =
∂

∂n
log

[
Tr[ρn]

]
|n=1 = − ∂

∂n

(
log

[
Tr[e−βnH ]− nZ

])
= β⟨H⟩+ log Z = β(E − F) = Sthermal (1)
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Replica to calculate EE in QFT

• How to calculate EE in quantum system.

• Firstly, one should introduce the Renyi entropy as following

Sn
A = − log trAρ

n
A

n − 1
.

Where the ρn
A = Pe−

∫ 2πn
0 dτHb,n(τ).

• A basic method of calculating EE in QFTs is so called the replica method.

SA = −∂Tr(ρA)
n

∂n
|n=1 = lim

n→1
Sn

A

• The relation provides a practical way to compute EE in field theory,
although it is difficult.
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Replica trick

• The standard way is to use replica trick [J. Callan et.al. 9401072].

• Here, we only focus on the 2D CFT, which provides more analytic results.

• In Euclidean path-integral, the ground state wave-functional is represented
by [T. Takayanagi’s lecture in 7th Asian winter school]
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After gluing boundaries successively, one can obtain the
Tr(ρA)

n = [ρA]ab[ρA]bc...[ρA]ka. This procedure can be shown explicitly as
following

In this way, one can obtain the following Tr(ρA)
n = Zn

Zn
1

where Zn is partition
function on the n-sheeted Riemann surface Σn. We will show how to use this
trick to study EE explicitly in this talk.
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Holographic Entanglement Entropy

The holographic entanglement entropy of a subsystem A on the boundary is
given by the area of the (t = const) bulk minimal surface γA

SA =
Area(γA)

4G
, ∂γA = ∂A

For higher derivative gravity, this functional of EE should be modified.
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Extensive ways to check HEE
• leading contribution yields area law SEE ∼ Area

cut offd−2

• recover known results for d=2 CFT [Holzhey, Larsen and Wilczek;
Calabrese and Cardy] : SEE = c

3 log( C
πδ

sin(πl
C )).

• SA = SĀ in a pure state, where the A and Ā share the same entangled
surface.

• strong sub-additivity [Headrick and Takayanagi]: SA+B ≤ SA + SB

• for even d, connection of universal/logarithmic contribution in SEE to
central charges of boundary CFT, eg, in d = 4

• New proof given by [Lewkowycz and Maldacena]
• Generalization of Euclidean path integral calc’s for SBH , extended to

"periodic" bulk solutions without Killing vector. Where breaking the U(1)
Isometry time direction.

• For AdS/CFT, just translates replica trick for boundary CFT to bulk and
then

• at n=1, linearized gravity eom demand: induced curvature vanishing. The
Euclidean time circle shrinks to zero on an extremal surface in bulk.
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Motivation: ‘First Law’

• First law of thermodynamics: TdS = dE. In a generic quantum system
which are far from the equilibrium, can we find the analogous relation
between the EE (information) and energy of A:

TentdSA = dEA ?

• The first study in field theory in [F. C. Alcaraz, M. I. Berganza, G. Sierra,
PRL 106, 201601]

• First holographic studied in [Jyotirmoy Bhattacharya, Masahiro Nozaki,
Tadashi Takayanagi, Tomonori Ugajin, PRL 110, 091602]

• More general studies given by [Nozaki,Numasawa,Prudenziati,Tadashi
Takayanagi 13],[Wu-zhong Guo, S.H, Jun Tao, 13](Higher derivative
gravity)[S.H, Danning Li, Jun-Bao Wu, 13](Non-conformal cases with full
backreaction) [Bhattacharya,Tadashi Takayanagi, 13]...
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Motivation: ‘First Law’

• The entanglement temperature is

Tent =
c
l
, (2)

where c is constant and l is characteristic length of small subsystem.

1 The constant c is universal in that it only depends on the
shape of the subsystem A in pure AdS
background.[Jyotirmoy Bhattacharya, Masahiro Nozaki,
Tadashi Takayanagi, Tomonori Ugajin, PRL 110, 091602]

2 The constant c is no longer universal which is highly
depending on the vacuum of boundary field
theory.[Wu-zhong Guo, S.H, Jun Tao, 13][S.H, Danning Li,
Jun-Bao Wu, 13]
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Motivation: ‘First Law’

• More Recent Progresses:

1 The first law can be simply expressed as follows
[Blanco-Casini-Hung-Myers 13,Wong-Klich-Pando
Zayas-Vaman 13]: ∆SA = ∆HA

2 The perturbative Einstein eq. is equivalent to a constraint of
HEE: (∂2

l − ∂l − ∂2
x − 3

l2 )∆SA = ⟨O⟩⟨O⟩.[Nozaki-
Numasawa-Prudenziati-TT 13, Bhattacharaya-TT
13]

3 Moreover, the first law was shown to be equivalent to the
perturbative Einstein eq (Pure
AdS).[Lashkari-McDermott-Raamsdonk 13,
Faulkner-Guica-Hartman-Myers- Raamsdonk 13]

• All these studies show that Entanglement temperature can only be well
defined in low excited quantum states with small size of subsystem region.

• In this paper, we try to consider EE of the excited states with large size
limit and We try to figure out properties of EE from different point of view.
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Our main result

• In next two slices, I want to show our setup and main results roughly in
this paper. Firstly, let us to go to the setup
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Our main result

• In this slice, we can go to final result.
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Setup
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Our main motivation

• In this talk, we just only consider 1+1 dimension space time. Our system
can be shown as follow carton
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Our main motivation

• The EE has been studied in D=2,4,6 for free scalar fields.

• In this paper, we would like to study EE in 2 dimensional Rational CFT.
Our main result is nth Reni entropy of state excited by Local operator O(x)
corresponds to quantum dimension of O(x).

• The definition of ∆S(n)
A is defined by the excess of REE

∆S(n)
A = S(n)

A [|Ψ⟩]− S(n)
A [|0⟩], (3)

where S(n)
A [|Ψ⟩] denote the n-th Renyi entanglement entropy for the state

|Ψ⟩ with the subsystem A. Thus ∆S(n)
A measures the increased amount of

the entropy compared with the ground state |0⟩.
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EE for Excited State

• Where REE for |Ψ(t)⟩ = e−itH−ϵHO(−l)|0⟩,

S(n)[|Ψ(t)⟩] = 1
1 − n

log

[∫
ϕO+(x1)O(x2)...O+(x2n−1)O(x2n)e−S

(
∫
ϕO+(x1)O(x2)e−S)n

]
(4)

• Where REE for |0⟩,

S(n)[|0⟩] = 1
1 − n

log
Zn

Zn
1

(5)

• In the end, we find that ∆S(n)
A can be computed as

∆S(n)
A =

1
1 − n

[
log
⟨
O†

a (wl, w̄1)Oa(w2, w̄2)...Oa(w2n, w̄2n)
⟩
Σn

−n log
⟨
O†

a (wl, w̄1)Oa(w2, w̄2)
⟩
Σ1

]
, (6)
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EE for Excited State

• Where (w2k+1,w2k+2) for k = 1, 2, ..., n − 1 are n − 1 replicas of (w1,w2)
in the k-th sheet of Σn. We just glue all sheets with proper boundary
conditions to construct Σn.

O
†

a
(w

1
)

O
a
(w

2
)

x

k =1

O
†

a
(w

2n−1)
O
a
(w

2n
)

O
†

a
(w

3
)

O
a
(w

4
)
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!"

!!
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EE for Excited State
• To be more precise, each sheet Σ1 is shown as following

wi, w̄i can be expressed by

w1 = i(ϵ− it)− l, w2 = −i(ϵ+ it)− l, (7)

w̄1 = −i(ϵ− it)− l, w̄2 = i(ϵ+ it)− l. (8)

These coordinates correspond to positions where we have inserted
operators locally.

• For single sheet, we can define the reduced density matrix

ρA = TrB[|Ψ(t)⟩⟨Ψ(t)|]. (9)
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EE for Excited State

• In term of introduction of replica trick, one can follow the logic

• The n-th Renyi entanglement entropy S(n)
A [|Ψ(t)⟩] is defined by

S(n)
A [|Ψ(t)⟩] = 1

1 − n
log Tr[ρn

A]. (10)

• The causality argument tells us that ∆S(n)
A = 0 for t < l and t > L.

Especially we will be interested in the late time behavior L > t ≫ l and
we will call the final value of ∆S(n)

A as ∆S(n)f
A .
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EE for Excited State

• In order to study Reny entropy, one should make use of following
conformal map to do replica trick:

w
w − L

= zn, (11)

which maps Σn to Σ1. Setting n = 2 and using (7), the coordinates zi are
given by (similarly z̄i using (8))

z1 = −z3 =

√
l − t − iϵ

l + L − t − iϵ
,

z2 = −z4 =

√
l − t + iϵ

l + L − t + iϵ
. (12)

It is useful to define the cross ratios (z, z̄)

z =
z12z34

z13z24
, z̄ =

z̄12z̄34

z̄13z̄24
, (13)

where zij = zi − zj.
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EE for Excited State

• We would like to study the behavior of (z, z̄) in the limit ϵ→ 0. When
0 < t < l or t > L + l, we find (z, z̄) → (0, 0):

z ≃ L2ϵ2

4(l − t)2(L + l − t)2 , z̄ ≃ L2ϵ2

4(l + t)2(L + l + t)2 .

• In the other case l < t < L + l, we find (z, z̄) → (1, 0):

z ≃ 1 − L2ϵ2

4(l − t)2(L + l − t)2 , z̄ ≃ L2ϵ2

4(l + t)2(L + l + t)2 .

Though this limit (z, z̄) → (1, 0) does not seem to respect the complex
conjugate, it inevitably arises via our analytical continuation of t from
imaginary to real values.
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EE for Excited State

• For more general n copies of original system, we use replica trick to obtain
the difference of EE between excited state and ground state.

Our problem has been changed to calculate multiple points Green function
in 2D CFT.
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EE in 2D CFT

• As a warmup, we consider some states excited by primary operators in the
2D minimal model. Firstly, we just only consider the simplest case ∆S(2)

with n = 2. To obtain ∆S(2), normally, we should know the two-point
Green function on Σ1 and 2n Green function on Σn.

• The two point function on the Σ1 looks like

⟨O(w1, w̄1)O(w2, w̄2)⟩Σ1
=

N
|w12|4∆

=
N

(2ϵ)4∆ , (14)

• For n = 2 case, the four point green function on Σ2 is follow

⟨O(w1, w̄1)O(w2, w̄2)O(w3, w̄3)O(w4, w̄4)⟩Σ2

=

4∏
i=1

∣∣∣∣dwi

dzi

∣∣∣∣−2∆

⟨O(z1, z̄1)O(z2, z̄2)O(z3, z̄3)O(z4, z̄4)⟩Σ1
(15)

Due to conformal map, the difference of correlation function for primary
operator on Σ2 and Σ1 is so called Jacobi factor. Roughly speaking, one
can combine the two formula to obtain the ratio Trρ2 for ∆S(2)

A .
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EE in 2D CFT

• Especially for our previous setup, we should use conformal map
w/(w − L) = zn and obtain

Trρ2
A =

⟨O(w1, w̄1)O(w2, w̄2)O(w3, w̄3)O(w4, w̄4)⟩Σ2(
⟨O(w1, w̄1)O(w2, w̄2)⟩Σ1

)2

∼ |z|4∆|1 − z|4∆ · G(z, z̄). (16)

Where G(z, z̄) is related to conformal block. This formula is very
important. We will make use of this formula to discuss general rational
CFT.

• As we know precisely (z, z̄) → (1, 0) in late time limit:

z ≃ 1 − L2ϵ2

4(l − t)2(L + l − t)2 , z̄ ≃ L2ϵ2

4(l + t)2(L + l + t)2 .

In this limit, we can roughly expect that there maybe some nice properties
of Renyi entropy.
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Considering c = 1 CFT

• Firstly, let us consider a c = 1 CFT defined by a (non-compact) massless
free scalar ϕ and choose two operators

O1 = e
i
2 ϕ, O2 =

1√
2
(e

i
2 ϕ + e−

i
2 ϕ), (17)

which have the same conformal dimension ∆1 = ∆2 = 1
8 .

• Then, the function Ga(z, z̄) is found to be

G1(z, z̄) =
1√

|z| |1 − z|
(18)

It is obvious that the Renyi entropy always becomes trivial ∆S(2)
A = 0 for

the operator O1.

• For O1 is because the excited state e
i
2 ϕ|0⟩ can be regarded as a direct

product state e
i
2 ϕL |0⟩L ⊗ e

i
2 ϕR |0⟩R in the left-moving (L: chiral) and

right-moving (R: anti-chiral) sector. Therefore it is not an entangled state.
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EE in c = 1 CFT

• Further, let us consider the second operator in c = 1 2D CFT massless free
field.

O1 = e
i
2 ϕ, O2 =

1√
2
(e

i
2 ϕ + e−

i
2 ϕ), (19)

which have the same conformal dimension ∆1 = ∆2 = 1
8 .

• Then, the function Ga(z, z̄) is found to be

G2(z, z̄) =
1

2
√

|z||1 − z|
(|z|+ 1 + |1 − z|) . (20)

• For O2, we find

∆S(2)
A =

{
0 (0 < t < l, or t > l + L) ,
log 2 (l < t < l + L) .

(21)

• On the other hand, O2 creates a maximally entangled state (or equally
Einstein-Podolsky-Rosen state):

1√
2

(
e

i
2 ϕL |0⟩L ⊗ e

i
2 ϕR |0⟩R + e−

i
2 ϕL |0⟩L ⊗ e−

i
2 ϕR |0⟩R

)
, which carries the

Renyi entropy log 2
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2D Ising Model

• A very interesting example involves the minimal model family of exactly
solvable 2D CFT. The unitary minimal models are numbered by an integer
m=3,4..., and describe the universality class of the multicritical Ginzburg-
Landau model:

L ∼ (∂ϕ)2 + λϕ2m−2 (22)

For m = 3, the Ising model is in the same universality class.

• The central charge of the model is

c = 1 − 6
m(m − 1)

. (23)

• All Virasoro primaries are scalar Or,s 1 ≤ s ≤ r ≤ m − 1 whose
dimension is

∆r,s =
(r + m(r − s))2 − 1

4m(m + 1)
(24)
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EE in Ising model

• We consider primary operator O2,2 in Ising model whose conformal
dimension is

∆2,2 =
3

4m(m + 1)
|m=3 =

1
16

(25)

This operator is also called spin operator.

• For Ising model, the conformal block of spin operator can be expressed by

G(z, z̄) =
1√
2

√√√√√ |z|
|1 − z| +

1√
|z||1 − z|

+

√
|1 − z|
|z| . (26)

Using this explicit expression, one can take late time limit to obtain

∆S(2)
A = log

√
2. (27)
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EE in Ising model

• Through very very highly nontrivial calculation, we can show that
∆S(2)

A = ∆S(3)
A = ∆S(4)

A = ... = log
√

2. Here we arrange a systematic
program to check the result up to n = 6 by using computer.

• In terms of above exercises, it is nature to ask What is the meaning of
√

2.

• We have answered to this question in this paper. The
√

2 is exact quantum
dimension of spin operator σ in Ising model.
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EE in Minimal model

• Before answering the question, we would like to know what happen for
general rational CFTs. In general CFTs, the function G(z, z̄) can be
expressed using the conformal blocks:

Ga(z, z̄) =
∑

b

(Cb
aa)

2Fa(b|z)F̄a(b|̄z), (28)

where b runs over all primary fields. In our normalization, the conformal
block Fa(b|z) behaves in the z → 0 limit:

Fa(b|z) = z∆b−2∆a(1 + O(z)), (29)

∆b is the conformal dimension of Ob.

• Since we found (z, z̄) → (0, 0) when 0 < t < l or t > l + L, we get the
behavior Ga(z, z̄) ≃ |z|−4∆a , as the dominant contribution arises when
b = 0 i.e. when Ob coincides with the identity O0(≡ I) operator. We get
∆S(2)

A = 0, as expected from the causality argument.



Introduction of
general back
ground
Replica trick in QFT

Holographic
Entanglement
Entropy

Setup of
Entanglement
Entropy (EE)
EE in c = 1 CFT
(Non compact)

EE in 2D Ising Model

EE in Minimal model

Quantum
dimension and
EE

Summary and
comments

EE in Minimal model
• To analyze the entropy when the causality condition l < t < l + L is

satisfied, we need to apply the fusion transformation, which exchanges z2

with z4 (or equally z with 1 − z):

Fa(b|1 − z) =
∑

c

Fbc[a] · Fa(c|z), (30)

where Fbc[a] is a constant, called Fusion matrix [ G.Moore and N. Seiberg,
’88][E.Verlinde, ’88]. In the limit (z, z̄) → (1, 0), we obtain

Ga(z, z̄) ≃ F00[a] · (1 − z)−2∆a z̄−2∆a . (31)

Therefore we find the following expression from (16):

∆S(2)
A = − log F00[a]. (32)

• Moreover, in rational CFTs, based on the arguments of bootstrap relations
of correlations functions [ G.Moore and N. Seiberg, ’88], it was shown in
[E.Verlinde, ’88] that F00[a] coincides with the inverse of the quantity
called quantum dimension da:

F00[a] =
1
da

=
S00

S0a
, (33)

where Sab is the modular S matrix of the rational CFT we consider.
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What is quantum dimension

• Here we just list the standard alternative definition of quantum dimension
in Minimal model.
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What is quantum dimension

• Especially in Ising model, one can easily work out quantum dimension of
spin operator σ.

• Comment: In the Ising model (i.e.(4,3) minimal model), there are three
primary operators: the identity I, the spin σ and the energy operator ψ.
Since the quantum dimension is 1 for I and ψ, ∆S(n)

A is always vanishing
for these. However, for the spin operator σ, we find ∆S(n)

A = log
√

2 for
any n as dσ =

√
2.



Introduction of
general back
ground
Replica trick in QFT

Holographic
Entanglement
Entropy

Setup of
Entanglement
Entropy (EE)
EE in c = 1 CFT
(Non compact)

EE in 2D Ising Model

EE in Minimal model

Quantum
dimension and
EE

Summary and
comments

Our claim

• We propose following result to our experiences.
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Proof of Conjecture
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Essence of the Derivation

• In the left part, we would like to prove the claim. Firstly, we would like to
start from n = 2 to show ∆S(2)

EE (A) = log dQ

• For n = 2 case, one can see z → 1 − z corresponding to interchange z2

and z4. This is crucial rule to generalize this proof to arbitrary n.
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Essence of the Derivation



Introduction of
general back
ground
Replica trick in QFT

Holographic
Entanglement
Entropy

Setup of
Entanglement
Entropy (EE)
EE in c = 1 CFT
(Non compact)

EE in 2D Ising Model

EE in Minimal model

Quantum
dimension and
EE

Summary and
comments

Graph proof
• One can generalize this procedure to arbitrary n to show

∆S(n)
EE (A) = log dQ. The following procedure can be described by the

above cartoon.
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F00[a] +…

(F00[a])
n−1 +… (F00[a])

n−1
+…

• One alternative way to understand this procedure.
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Graph proof

• If we just repeat n − 1 times the fusion transformation. Thus we obtain

⟨Oa(z1, z̄1)Oa(z2, z̄2)...Oa(z2n, z̄2n)⟩Σ1

≃ (F00[a])n−1 ·

[
n−1∏
k=0

(z2k+1 − z2k)(̄z2k+1 − z̄2k+2)

]−2∆a

.

Finally, the ratio at late time limit is computed to be (F00[a])n−1 = (da)
1−n

And ∆S(n)(A) = 1
1−n log(da)

1−n.
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Summary
1 We derived the simple formula which is applicable to both Renyi (n ≥ 2)

and von-Neumann (n = 1) entanglement entropy for primary operator
excitations at late time.

2 Intuitively, this result fits nicely with the fact that the quantum dimension
is a measure of the number of elementary fields included in a given
primary field.

3 The essence of this calculation was that the time evolution performs the
fusion transformation only in left-moving sector.

4 If we consider a product of primary operators
∏

a(Oa)
na , we obtain

∆S(n)
A =

∑
a na log da, using the sum rule in [Nozaki,14]. The quantum

dimension da satisfies dadb =
∑

c Nc
abdc.

5 Note that the topological entanglement entropy defined in the 3d
topological theories also has the same contribution log da from anyons, in
terms of its equivalent 2d (chiral) rational CFT which lives on their
boundary. In this sense, our results formally look like a holographic dual
of topological entanglement entropy. However, in our results, this
contribution arises in dynamical systems defined by two dimensional
rational CFTs, where their real time evolutions played an important role.
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Comments

1 One may ask how about the irrational CFT, for example: Liouvile Theory.
For irrational CFT, there are infinite number of conformal blocks. One can
also study EE in this frame work. One difficult is that there are multiple
contour integrals and it seems no way to extract leading contribution to EE
in late time limit. Also the definition of quantum dimension in Liouvile
theory is also subtle.

2 One may also consider much more complicated operators which are
composed by primary operators with different way, linear combination,
product, etc. In principle, it can be realized. To resolve such kind of
problem highly depend on explicit formulas for conformal block in some
rational CFT. One may make use of conformal boostrap to solve this
problem. At this stage, we just move on some of them. If you have any
comments and suggestions, please let me know.

3 One can also consider local operator and EE in WZW, D1-D5 system...

4 How about Higher dimensional generalization? Are there any
characteristic quantities like quantum dimension.

5 From holographic point of view, how to realize this in gravity side?
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Thanks for your attention!


