


Motivation #1: Massive neutrinos

Cosmology currently
provides the best upper
bound on the neutrino
masses, Σmν ≤ 0.23 eV.

The lower bound
Σmν ≥ 0.06 eV will be
reached by cosmological
probes over the next several
years, leading to a detection
of massive neutrinos.

Tensions between data sets
could be hints of extra
neutrino species.
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Motivation #2: Dynamical dark energy

Accelerating expansion
has been confirmed
repeatedly.

The simplest explanation
(Λ) is highly tuned.

Alternatives could give
clues about the early
universe, modifications
to gravity, extra
dimensions, etc.

Models with w(z) = P/ρ
evolving rapidly are
allowed but will be
excluded (or detected)
over the next 5-10 years.
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Power spectrum of large-scale structure
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Power spectrum of large-scale structure
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How well can we do?
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Higher-order perturbation theory

Let’s work in an Einstein-de Sitter cosmology.
(EdS: Ωm = 1, nothing else in the universe)

Continuity and Euler equations:

∂ρ
∂t + ~∇ · (ρ~v) = 0

⇒ ∂δ
∂t + θ = −~∇ · (δ~v) where δ = ρ/ρ̄− 1 and θ = ~∇ · ~v

⇒ ∂δ(~k)
∂ ln a + θ(~k)

aH = − 1
aH

∫ d3p d3q
(2π)3 δD(~k − ~p − ~q)

~k·~p
p2 θ(~p)δ(~q)

ρ
(
∂
∂t + ~v · ~∇

)
~v +∇Φ = 0

⇒ ∂θ
∂t + Hθ + 4πG ρ̄δ = −~∇ · [(~v · ~∇)~v ]

⇒ ∂θ(~k)
∂ ln a + θ(~k) + 3

2 ΩmaHδ(~k) =

− 1
aH

∫ d3p d3q
(2π)3 δD(~k − ~p − ~q)k

2(~p·~q)
2p2q2 θ(~p)θ(~q)
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Standard perturbation theory (SPT)

Linear theory: δ̈ + 2H δ̇ = 4πGδ (growing mode: δL ∝ a)

Standard Perturbation Theory in EdS:
δ(~k , a) =

∑∞
n=1 a

nδn(~k), θ(~k , a) = −aH∑∞n=1 a
nθn(~k)

Power spectrum: (2π)3δD(~k + ~k ′)P(k, a) =
〈
δ(~k)δ(~k ′)

〉
⇒ P(k) = PL(k) + P(1,3)(k) + P(2,2)(k) + . . .

P(1,3) = k3PL(k)

1008π2

∫∞
0

drPL(kr)
[

12
r2 −158+100r 2−42r 4 + 3(r2−1)3(7r2+2)

r2 ln
∣∣∣ 1+r

1−r

∣∣∣]
P(2,2) = k3

392π2

∫∞
0

drPL(kr)
∫ 1

−1
dxPL(k

√
1 + r 2 − 2rx) (3r+7x−10rx2)2

(1+r2−2rx)2

Makino, Sasaki, Suto, PRD 46:585(1992)

Generalization beyond EdS:
δ =

∑∞
n=1 D(a)nδn(~k), θ = −aHf

∑∞
n=1 D(a)nθn(~k)

where f = d lnD/d ln a is 1 in EdS
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Generalization to other cosmologies

We developed SPT in Einstein-de Sitter, then generalized it to
ΛCDM and wCDM through the simple replacement a→ D(a).
Why does this work so well?

First, a shorthand notation for the perturbations. η = ln(a/ain) for
some initial scale factor ain, and define ψb, Ωbc , and γbcd as
ψ0(~k , η) = e−η δ(~k , η),
ψ1(~k , η) = −e−η θ/(aH),
Ω00 = −Ω01 = 1

Ω10(~k , η) = −3ΩmH2
0

2a3H2 = −3
2 Ωm(a)

Ω11(η) = 3 + d lnH
dη

γ010(~k, ~p, ~q) = γ001(~k , ~q, ~p) = δD(~k + ~p + ~q)(~p + ~q) · ~p/(2p2)
γ111(~k , ~p, ~q) = δD(~k + ~p + ~q)(~p + ~q)2~p · ~q/(2p2q2)

Then the evolution equations become
∂
∂ηψb(~k) = −Ωbc(~k)ψc(~k) + eηγbcd(~k,−~p,−~q)ψc(~p)ψd(~q)

Amol Upadhye LSS with massive neutrinos and dynamical dark energy 11



Generalization to other cosmologies

In EdS, Ωbc takes a particularly simple form:

Ω =

(
1 −1
−3

2
3
2

)
.

In a cosmology with a homogeneous dark energy, if we change our
time variable from ln(a/ain) to ln(D/Din) and ψ1 → ψ1/f ,

Ω =

(
1 −1

−3Ωm(a)
2f 2

3Ωm(a)
2f 2

)
with f = d lnD

d ln a

For a large range of cosmologies, f (a) ≈ Ωm(a)0.55 to excellent
precision. Then Ωm(a)/f (a)2 ≈ Ωm(a)−0.1 ≈ 1 to ≈ 10% since
decoupling.
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When does f = Ωm(a)0.55 fail?

Massive neutrinos behave as a warm dark matter component. In
the late universe they cluster like matter for k below a
free-streaming scale kfs(a), and don’t cluster for k much greater
than kfs. Growth becomes scale-dependent.

Exotic dark energy models such
as early dark energy can change
f (a) to Ωm(a)γ(a) with γ 6= 0.55:
Mortonson, Hu, Huterer,

PRD 81:063007(2010)[arXiv:0912.3816]

FIG. 4: Upper panel: Comparison of distance constraints
from SN data and best fit models, plotted relative to the
best fit H0D(z) for flat ΛCDM (dotted line). Blue points
with error bars show the Union SN data in redshift bins of
width ∆ log z = 0.05. The best fit model for flat quintessence
without early dark energy is plotted as a dashed curve, and
the solid curve shows how the relative distances are affected
by smoothing w(z) for this model by a Gaussian of width
σz = 0.1. The full distribution of relative distance predictions
for this quintessence model class is also shown with light gray
shading (68% CL) and curves (95% CL). Lower panel: w(z)
for each of the models from the upper panel.

Interestingly, the quintessence predictions are no
longer centered on the flat ΛCDM ML model. From
the H(z) predictions which mainly reflect variation in
evolution of the dark energy density, we see that on av-
erage the data favor a smaller low-redshift (z <∼ 0.5) and
larger intermediate-redshift (0.5 <∼ z <∼ 2) dark energy
density. Correspondingly, the best fit growth function
G(z) of ΛCDM is higher than that of ∼ 85% of the
quintessence models in the chain. Therefore a measure-
ment of the growth relative to high redshift that is smaller
than the ΛCDM prediction by more than a few percent
not only rules out a cosmological constant but actually fa-
vors these quintessence models. The additional freedom
in growth opens up predictions for γ to include 2 − 3%
deviations at z <∼ 1.

Many of the shifts in the predictions relative to flat
ΛCDM are reflected in the evolution of w(z) in the max-
imum likelihood model for flat quintessence without early
dark energy. The ML model in this class marginally im-
proves the fit to the current data sets relative to the
ΛCDM ML model, largely due to variations in the SN
data with redshift that are fit marginally better by dy-

FIG. 5: Flat quintessence models with (dark blue) and with-
out (light gray) early dark energy.

namical dark energy than by a cosmological constant.
Figure 4 compares ML models, quintessence predictions,
and relative distance constraints from the Union SN data
sets at z <∼ 1. Freedom in w(z) at these redshifts allows
changes in the dark energy density to improve the fit
to SN distances by −2∆ lnL ∼ 4.5. However, some of
this improvement is due to the large oscillations in the
equation of state at z ∼ 0.1, which are allowed to vi-
olate the −1 ≤ w ≤ 1 bound due to the conservative
implementation of the quintessence prior on PC ampli-
tudes described in Sec. II C. Smoothing the ML w(z)
by a Gaussian with width σz ∼ 0.1 or requiring w(z)
to satisfy stricter quintessence bounds reduces the im-
provement relative to ΛCDM to −2∆ lnL ∼ 2, but has
little effect on the overall distributions of the predicted
observables.

Although differences in the ML models cause
quintessence to not be centered around ΛCDM, the al-
lowed width of quintessence predictions around the max-
imum likelihood relative to ΛCDM follows the expecta-
tions of the Stage IV predictions from MHH except for
being weaker by a factor of 2 − 3. The PCs allow for os-
cillatory variations in H(z), f(z)G(z), and γ(z) at z < 1
that would not be readily observable with expansion his-
tory or growth measures due to limited resolution in red-
shift. On the other hand, G(z), G0(z), and D(z) are still
predicted with ∼ 2 − 3% precision, so the class of flat
quintessence models without early dark energy remains
highly falsifiable.

Adding early dark energy to flat quintessence (Fig. 5)
has very little impact on the 68% CL predictions of most

7

We need a perturbation theory that doesn’t rely on this close
cancellation!
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Time Renormalization Group (TRG) perturbation theory

Rather than treating D as a time variable, integrate the evolution
equations for the power spectrum directly:

∂
∂η 〈ψaψb〉 = −Ωac 〈ψcψb〉 − Ωbc 〈ψaψc〉

+eηγacd 〈ψcψdψb〉+ eηγbcd 〈ψaψcψd〉
∂
∂η 〈ψaψbψd〉 = −Ωad 〈ψdψbψc〉 − Ωbd 〈ψaψdψc〉 − Ωcd 〈ψaψbψd〉

+eηγade 〈ψdψeψbψc〉+ eηγbde 〈ψaψdψeψc〉
+eηγcde 〈ψaψbψdψe〉

. . .

Linear theory: Neglect the bispectrum ∼ 〈ψaψbψc〉. Then the
infinite tower of evolution equations truncates, and we can
integrate to find the power spectrum.

Time-RG is the next level of approximation. Keep the bispectrum
but neglect the trispectrum, the connected part of 〈ψaψbψcψd〉.
This includes the 1-loop terms and some of the 2-loop terms.
Pietroni, JCAP 810:36(2008)[arXiv:0806.0971]
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Dark energy and neutrinos in Time-RG

Dark energy can be included trivially. Just use the actual linear
evolution matrix Ω rather than its EdS approximation.

Neutrinos modify the calculation several ways:

1 Homogeneous evolution H(a) is modified;

2 Growth becomes scale-dependent, D(a) −→ D(~k , a);

3 ψ0 becomes e−η δcb, the CDM+baryon density contrast, and
ψ1 becomes the CDM+baryon velocity divergence;

4 Ω10 changes from −3
2 Ωm(a) to −3

2 Ωm(a)
[
(1− fν) + fν

δν
δcb

]
.

Amol Upadhye LSS with massive neutrinos and dynamical dark energy 15
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N-body simulations

The gravitational motion of cold, collision-less dark matter is
described by the Vlasov-Poisson equations:

df

dt
≡ ∂f

∂t
+ ~v · ∂f

∂~x
− ∂Φ

∂~x

∂f

∂~v
= 0

∇2Φ(~x , t) = 4πG

∫
f (~x , ~v , t)d~v

An N-body simulation is a Monte Carlo solution to this set of
equations. In each time step of a Particle-Mesh (PM) simulation,
the gravitational field Φ is computed on a mesh and then used to
move the particles.

Our simulations use 5123 particles on a 10243 grid in 1 Gpc boxes.
For each model we average the results of 16 simulation runs in
order to reduce noise at large scales.
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Massive neutrinos in simulations

Massive neutrinos are warm dark matter and have a large velocity
dispersion. Including them as particles in an N-body simulation is
quite difficult.

Our simulation used a linear approximation for massive neutrinos,
neglecting their contribution to non-linear dark matter growth:

1 neutrinos were included in the evolution H(z) and the
scale-independent linear growth D(a);

2 particles in the N-body simulation only represented cold
matter (dark matter and baryons), not neutrinos;

3 the power spectrum was computed by adding the linear
neutrino power and the cross term:

P = fcbPcb + 2fcbfν
√

PcbPν + f 2
ν Pν

This approximation was proposed and tested in Saito, Takada,

Taruya, PRL 100:191301(2008). It works well for testing perturbation
theory at low k .
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How accurate is perturbation theory?
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Outline
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Tests of perturbation theory

4 Results

Parameter-dependence of the power spectrum: w0, wa, mν

Non-linear shift of the BAO peak
Applications and future work
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Varying w0, wa, and Σmν in Time-RG at z = 1
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Effect of non-linearity on the BAO peak
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Future work: Bispectrum in Time-RG
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Equilateral component of the bispectrum
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Future work: Redshift-space distortions
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Future work: Forecasts on w0, wa, Ων

Amol Upadhye LSS with massive neutrinos and dynamical dark energy 32

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0.001  0.01  0.1  1

gr
ow

th
 G

(a
) =

 D
(a

)/a

scale factor a

fiducial ΛCDM



Future work: Forecasts on w0, wa, Ων

Amol Upadhye LSS with massive neutrinos and dynamical dark energy 32

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0.001  0.01  0.1  1

gr
ow

th
 G

(a
) =

 D
(a

)/a

scale factor a

fiducial ΛCDM
|∆w0| = 0.1



Future work: Forecasts on w0, wa, Ων

Amol Upadhye LSS with massive neutrinos and dynamical dark energy 32

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0.001  0.01  0.1  1

gr
ow

th
 G

(a
) =

 D
(a

)/a

scale factor a

fiducial ΛCDM
|∆w0| = 0.1
|∆wa| = 0.1



Future work: Forecasts on w0, wa, Ων

Amol Upadhye LSS with massive neutrinos and dynamical dark energy 32

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0.001  0.01  0.1  1

gr
ow

th
 G

(a
) =

 D
(a

)/a

scale factor a

fiducial ΛCDM
|∆w0| = 0.1
|∆wa| = 0.1
Ων < 0.005



Future work: Coupled dark energy (modified gravity)
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Conclusions

1 Higher-order perturbation theory improves significantly upon
the linear computation of the power spectrum of large-scale
structure.

2 Time-RG perturbation theory allows for scale-dependent
growth, and agrees well with N-body simulations for early
dark energy models with massive neutrinos.

3 w0 and wa mainly affect the power spectrum through the
linear growth rate, while Σmν causes a scale-dependent
suppression of power.

4 Although non-linearities shift the BAO peak scale, the
contribution of neutrinos to this shift is small in the current
generation of surveys.

5 Over the next decade, perturbation theory and N-body
simulations will be powerful tools for interpreting galaxy
surveys and constraining fundamental physics.
The next 5-10 years will be very exciting!
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