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Motivation #1: Massive neutrinos

@ Cosmology currently
provides the best upper
bound on the neutrino
masses, 2m, < 0.23 eV.

@ The lower bound
>m, > 0.06 eV will be P AR Taed]

reached by cosmological @@
probes over the next several 1=

+ ML +9% Mass

(1 N -

years, leading to a detection

of massive neutrinos. @
@ Tensions between data sets 02 1k

57738 4o 47 BIgNEWART#E
N, Ny

Sv-Td |1 Sv-Ad

could be hints of extra
neutrino species. Wyman, Rudd, Vanderveld,
Hu, PRL 112:051302(2014)
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Motivation #2: Dynamical dark energy

@ Accelerating expansion
has been confirmed
repeatedly.

@ The simplest explanation
(A) is highly tuned.

o Alternatives could give
clues about the early
universe, modifications
to gravity, extra
dimensions, etc.

@ Models with w(z) = P/p
evolving rapidly are
allowed but will be
excluded (or detected)
over the next 5-10 years.
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Outline

© Motivation and introduction to large-scale structure

@ Cosmological perturbation theory at higher orders
o Standard Perturbation Theory (SPT)
o Time-Renormalization Group (Time-RG) perturbation theory
e Massive neutrinos and dynamical dark energy

© N-body dark matter simulations

o Massive neutrinos in simulations
o Tests of perturbation theory

Q Results

e Parameter-dependence of the power spectrum: wy, w,, m,
o Non-linear shift of the BAO peak
o Applications and future work

AU, Biswas, Pope, Heitmann, Habib, Finkel, Frontiere,
PRD 89:103515(2014)[arXiv:1309.5872]
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Power spectrum of large-scale structure
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Power spectrum of large-scale structure
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How well can we do?
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Higher-order perturbation theory

Let's work in an Einstein-de Sitter cosmology.
(EdS: Q, = 1, nothing else in the universe)

Continuity and Euler equations:
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Higher-order perturbation theory

Let's work in an Einstein-de Sitter cosmology.
(EdS: Q, = 1, nothing else in the universe)

Continuity and Euler equations:

V- (p?) =0
0+6= —V-(6V) whered=p/p—1and=V-v

Qj‘ﬁ
e +

° p(%jﬁﬁ)wqu):o
= % | H+4xGps = —V - [(V - V)7]
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Higher-order perturbation theory

Let's work in an Einstein-de Sitter cosmology.
(EdS: Q, = 1, nothing else in the universe)

Continuity and Euler equations:

° % +V . (oV) =0
é%+9:—§-((5\7) wheredzp/ﬁ—land&zﬁ-v
= Gud+ 58 =~ | &0k - B - D RIPI)
o p(f+7-V)7+ve=
= % 4 HO +4nGpd = —V - [(V- V)V
= 50 1 (k) + 32maHa(k) =
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Standard perturbation theory (SPT)

o Linear theory: 6 +2HJ = 4w G6 (growing mode: 4, o a)
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Standard perturbation theory (SPT)

o Linear theory: 6 +2HJ = 4w G6 (growing mode: 4, o a)

° Stzindard PerturbationﬁTheory in EdS:
O kyd) =D 5% al6,(k), 6(k,a) = —aH> o2, a"0n(k)
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Standard perturbation theory (SPT)

o Linear theory: 6 +2HJ = 4w G6 (growing mode: 4, o a)

° Stzindard PerturbationﬁTheory in EdS:
O kyd) =D 5% al6,(k), 6(k,a) = —aH> o2, a"0n(k)

@ Power spectrum: (27r)36D( +k') (k,a) = <5(E)5(El)>
= P(k) = PL(k)+ P13 (k) + P22)(k) 4

P(1~,3>:kfo’;§7, il drPL(kr)[i — 15841002 —42r" +7('2*” s V|, ‘H'
P(22

= s [ drPu(kr) [, dxPL(kV/I ¥ 12 — 2px) G100

(14+r2—2rx)2

}

Makino, Sasaki, Suto, PRD 46:585(1992)
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Standard perturbation theory (SPT)

o Linear theory: 6 +2HJ = 4w G6 (growing mode: 4, o a)

° Stzindard PerturbationﬁTheory in EdS:
O kyd) =D 5% al6,(k), 6(k,a) = —aH> o2, a"0n(k)

e Power spectrum: (27r)36 (k + K')P(k,a) = <5(/?)(5(l_<”)>
= P(k) = PL(k) + PU3)(k) + P32 (k) +
P<1=3>:kfo’ggﬂ e drPL(kr)[i} — 15841001 —42r* 4 AZ=10242) |y ‘H'

PR3 = K [ drPy(kr) [, dxPy(kv/T T 12 — 2rx) BEDI0n0)

Makino, Sasaki, Suto, PRD 46:585(1992)

}

@ Generalization beyond EdS:

6 =021 D(a)"6s(k), 6= —aHf 2 D(a)"0n(K)
where f =dInD/dInais 1 in EdS
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Generalization to other cosmologies

We developed SPT in Einstein-de Sitter, then generalized it to
ACDM and wCDM through the simple replacement a — D(a).
Why does this work so well?

First, a shorthand notation for the perturbations. 7 = In(a/aj,) for
some initial scale factor ay,, and define ¥, Qpe, and Ypeq as

wO(Ea 77) =e™" 5(E> 77)'

Qio(k,n) = —32%31},1_5 —30n(a)

Gl 1 =

Yo10(k, . @) = 001(k. 4, B) = dp(k + B + §)(B + §) - B/(2p°)
mui(k, B, §) = on(k+ B+ §)(B+ 4)°B - G/(2p%3°)

Then the evolution equations become
a%wb(k) = —Qpc(k)c(k) + €"Ybea(k, =P, —G)be(P)Va(q)
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Generalization to other cosmologies

In EdS, Qp takes a particularly simple form:

1 -1
Q—<_3 3).
2y 2
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Generalization to other cosmologies

In EdS, Qp. takes a particularly simple form:
1 -1
PR

In a cosmology with a homogeneous dark energy, if we change our
time variable from In(a/ain) to In(D/Dyy) and 91 — 1 /f,

1 -1 ;
Q = < 3911)(3) 3Qm(a)> Wlth f = Zlf:]g
R 2f2
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Generalization to other cosmologies

In EdS, Qp. takes a particularly simple form:

1 -1

PR
In a cosmology with a homogeneous dark energy, if we change our
time variable from In(a/ain) to In(D/Dyy) and 91 — 1 /f,

1 g
Q= ( 30m(a) 39m(a)> with f = £i82
i or2 2f2

For a large range of cosmologies, f(a) Qm(a)o'55 to excellent
precision. Then Q1,(a)/f(3)? =~ Qm(a) %! =~ 1 to ~ 10% since
decoupling.
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When does f = Q,,(a)%%° fail?

Massive neutrinos behave as a warm dark matter component. In
the late universe they cluster like matter for k below a
free-streaming scale kgs(a), and don't cluster for k much greater
than kg. Growth becomes scale-dependent.

O.1||||||||||||||

Exotic dark energy models such
as early dark energy can change 5
f(a) to Qm(a)"® with  # 0.55: 3

0 N ==
Mortonson, Hu, Huterer, N / ]
PRD 81:063007(2010)[arXiv:0912.3816] B I

0.05

“w

=T

0 1 2 3
z

We need a perturbation theory that doesn't rely on this close
cancellation!
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Time Renormalization Group (TRG) perturbation theory

Rather than treating D as a time variable, integrate the evolution
equations for the power spectrum directly:

& (Yathp) = —Qac (Yetbp) — Dpe (Yathe)
+€"Yacd <wcwdwb> + €"Ybed <¢a¢c¢d>
& (Yahpthd) = —Qad (Yapihc) — Lba (Vathathe) — Lea (atbptha)
+€"Yade <¢d¢e¢b7pc> + €"Ybde <wawd7pe¢]c>
+en7cde <¢a¢b¢d¢e>

Linear theory: Neglect the bispectrum ~ (,¥p1)c). Then the
infinite tower of evolution equations truncates, and we can
integrate to find the power spectrum.

Time-RG is the next level of approximation. Keep the bispectrum
but neglect the trispectrum, the connected part of (,9ptc)q).
This includes the 1-loop terms and some of the 2-loop terms.
Pietroni, JCAP 810:36(2008)[arXiv:0806.0971]
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Dark energy and neutrinos in Time-RG

Dark energy can be included trivially. Just use the actual linear
evolution matrix € rather than its EdS approximation.

Neutrinos modify the calculation several ways:
@ Homogeneous evolution H(a) is modified;
@ Growth becomes scale-dependent, D(a) —» D(k, a);

© Y becomes e d.p,, the CDM+baryon density contrast, and
11 becomes the CDM+baryon velocity divergence;

Q@ Qo changes from —3Q,,(a) to —3Q,,(a) [(1 — T f,,(%”b .

Amol Upadhye LSS with massive neutrinos and dynamical dark energy
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Outline

© Motivation and introduction to large-scale structure

@ Cosmological perturbation theory at higher orders
o Standard Perturbation Theory (SPT)
o Time-Renormalization Group (Time-RG) perturbation theory
e Massive neutrinos and dynamical dark energy

© N-body dark matter simulations

e Massive neutrinos in simulations
o Tests of perturbation theory

Q Results

e Parameter-dependence of the power spectrum: wy, w,, m,
o Non-linear shift of the BAO peak
o Applications and future work

AU, Biswas, Pope, Heitmann, Habib, Finkel, Frontiere,
PRD 89:103515(2014)[arXiv:1309.5872]
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N-body simulations

The gravitational motion of cold, collision-less dark matter is
described by the Vlasov-Poisson equations:

dfe? pf % aF iR

gt o HoR R o

V20(X, t) :47TG/f(>?, v, t)dv

An N-body simulation is a Monte Carlo solution to this set of
equations. In each time step of a Particle-Mesh (PM) simulation,
the gravitational field ® is computed on a mesh and then used to
move the particles.

Our simulations use 5123 particles on a 10243 grid in 1 Gpc boxes.
For each model we average the results of 16 simulation runs in
order to reduce noise at large scales.
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Massive neutrinos in simulations

Massive neutrinos are warm dark matter and have a large velocity
dispersion. Including them as particles in an N-body simulation is
quite difficult.

Our simulation used a linear approximation for massive neutrinos,
neglecting their contribution to non-linear dark matter growth:
@ neutrinos were included in the evolution H(z) and the
scale-independent linear growth D(a);
@ particles in the N-body simulation only represented cold
matter (dark matter and baryons), not neutrinos;
© the power spectrum was computed by adding the linear
neutrino power and the cross term:

P = f,Pey + 2fa fyr/ Pan Py + F2Py

This approximation was proposed and tested in Saito, Takada,
Taruya, PRL 100:191301(2008). It works well for testing perturbation
theory at low k.

Amol Upadhye LSS with massive neutrinos and dynamical dark energy
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How accurate is perturbation theory?

P /P

P Ry
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How accurate is perturbation theory?

Standard Perturbation Theory (1-loop)

1 T T T T _50
22l 2 8 8
08 F =& B = « 1 & o0
o
()]
N 06 f _--1o§
@ me -
® 04 F . =
S
__2 B
02 F . e
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0 1 1 1 1 L
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AU et al., PRD 89:103515(2014)
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How accurate is perturbation theory?

red shift z
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Time-RG and massive neutrinos

ACDM with massive neutrinos (Q,h? = 0.01)
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AU et al., PRD 89:103515(2014)
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Time-RG and massive neutrinos
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Time-RG, massive neutrinos, and early dark energy

wCDM (w(a) = wp + ws(1 — a), wo = —0.7, w, = 0.67)
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Time-RG, massive neutrinos, and early dark energy
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Q Results
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AU, Biswas, Pope, Heitmann, Habib, Finkel, Frontiere,
PRD 89:103515(2014)[arXiv:1309.5872]
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Varying wy, w,, and Xm,

in Time-RG at z =1
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Effect of non-linearity on the BAO peak

0.035 T . =
MOO0ONO (linear)
MOO0ONO (Time-RG)
0.03 MO0O0ONn1 (linear) g
MOO0ON1 Time-RGg
M000n1 (8,=0
0.025 8
P \
0.02 | / ]
M
0.015 |
0.01 \/ ]
0.005
O 1 1 1 1
80 90 100 110 120 130
r [Mpc/h]

Amol Upadhye

LSS with massive neutrinos and dynamical dark energy 28



Effect of non-linearity on the BAO peak
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Effect of non-linearity on the BAO peak
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Future work: Bispectrum in Time-RG

Equilateral component of the bispectrum
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Future work: Redshift-space distortions

Scoccimarro ansatz: Pg(k,p) = e_(fk“UV)Q(P(;(; — 212 Psg + u*Pyg)
1

< > =
> o ®
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Future work: Redshift-space distortions
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Future work: Forecasts on wy, w,, €2,
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Future work: Forecasts on wy, w,, €2,
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Future work: Forecasts on wy, w,, €,
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Future work: Coupled dark energy (modified gravity)

m-M

I(I+1)Py / (210)

Ishak, AU, Spergel, PRD T4:043513(2006)[arXiv:astro-ph/0507184]
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Conclusions

o

2]

Higher-order perturbation theory improves significantly upon
the linear computation of the power spectrum of large-scale
structure.

Time-RG perturbation theory allows for scale-dependent
growth, and agrees well with N-body simulations for early
dark energy models with massive neutrinos.

wo and w, mainly affect the power spectrum through the
linear growth rate, while ¥m, causes a scale-dependent
suppression of power.

Although non-linearities shift the BAO peak scale, the
contribution of neutrinos to this shift is small in the current
generation of surveys.

Over the next decade, perturbation theory and N-body
simulations will be powerful tools for interpreting galaxy
surveys and constraining fundamental physics.

The next 5-10 years will be very exciting!
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