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Overview



..
Motivation

Intriguing phenomena in 4d N = 2 supserymmetric gauge theories:

1 Ω-deformation on R3 × S1

↔ quantization of integrable systems [Nekrasov–Shatashvili]

2 loop operator VEVs on R3 ×ε S
1

↔ deformation quantization on a hyperkähler manifold
[Gaiotto–Moore–Neitzke, Ito–Okuda–Taki]

Derivations of (1) have been given using

brane quantization [Nekrasov–Witten]

topological strings/matrix models [Aganagic et al., Bonelli–Maruyoshi–Tanzini]

Is there a unified framework for understanding both phenomena?



..
Answer

Yes.

I will discuss an approach to quantization

that explains the 4d phenomena

based on a deformation of a 3d TQFT

viewed as a 2d TQFT

The 3d TQFT is Rozansky–Witten theory.

The 2d TQFT is a B-twisted Landau–Ginzburg model.

The idea is similar to [Luo–Tan–JY], where we considered N = 2
gauge theories on R× S2 × S1 and found that they quantize real
integrable systems.



..
From 4d to 3d

Consider a 4d N = 2 gauge theory.

We go down to 3d:

1 Compactify on S1.

2 In IR, we get a 3d abelian gauge theory on the Coulomb branch.

3 In 3d, abelian gauge fields are dual to periodic scalars.

4 Dualization gives an N = 4 sigma model.

This setup was studied by Gaiotto–Moore–Neitzke in connection
with wall-crossing phenomena.



..
Geometry of M

The target M is a torus fibration:

..

B ≃ R2r : Coulomb branch
of the theory on R4.

.

T 2r : parametrized by electric
and magnetic holonomies

....

M is hyperkähler:

CP1 of complex structures aI + bJ + cK , a2 + b2 + c2 = 1,
with I2 = J2 = K2 = IJK = −1

metric g that is Kähler with respect to Jζ for all ζ ∈ CP1

For theories in “class S ,” the target is the Hitchin moduli space.



..
Geometry of M

In I , M is a complex integrable system:

complex version of phase space in classical mechanics

holomorphic symplectic form ΩI = ωJ + iωK

B holomorphic, T 2r holomorphic Lagrangian

There are complex coordinates (ai) ∈ B, (zi) ∈ T 2r in which the
Poisson bracket is given by

{zi, zj} = {ai, aj} = 0, {zi, aj} = δij .

Integrability: 1
2 dimCM commuting conserved momenta {ai}



..
Quantization by Ω-deformation [Nekrasov–Shatashvili, Nekrasov–Witten]

Start with an N = 2 gauge theory on R3 × S1.

Turn on an Ω-deformation:

1 Lift to a 5d theory on R3 × S1 × S1
R.

2 Replace R2 × S1
R by R2 ×ε S

1
R:

...

Identify with a rotation
by angle ∼ ε.

....
R2

3 Take R→ 0 to go back to 4d.



..
Quantization by Ω-deformation [Nekrasov–Shatashvili, Nekrasov–Witten]

The original theory has a TQFT sector. (Donaldon–Witten theory)

After the Ω-deformation, this sector becomes quasi-TQFT.
.
.The quasi-TQFT is equivalent to quantum mechanics on L ⊂ M.

L is a symplectic submanifold, determined by the boundary condition.

The Planck constant ℏ ∝ ε:

[zi, zj ] = [ai, aj ] = 0, [zi, a
j ] ∝ iεδij .



..
Quantization by twisting of the spacetime [Gaiotto–Moore–Neitzke, Ito–Okuda–Taki]

Start again with an N = 2 gauge theory on R3 × S1.

Define supercharges Qζ ∝ Q+ ζG4, ζ ∈ CP1.

For ζ ̸= 0, ∞, there are Qζ-invariant line operators Lζ
a.

Lζ
a realize the algebra of holomorphic functions on (M, Jζ):

1 Wrap them on {pa} × S1 ⊂ R3 × S1.

2 We can actually move pa around freely.

3 Taking them far apart, we find

⟨Lζ
1 · · · L

ζ
n⟩ = ⟨Lζ

1⟩ · · · ⟨L
ζ
n⟩.

4 ⟨Lζ
a⟩ are holomorphic functions on M. (framed BPS indices)



..
Quantization by twisting of the spacetime [Gaiotto–Moore–Neitzke, Ito–Okuda–Taki]

Twist the spacetime: R3 × S1 → R× R2 ×ε S
1:

Now Lζ
a must be inserted at (ta, 0) ∈ R× R2 in order to be

Qζ-invariant.

Ordering is well-defined: Lζ
1(t1)L

ζ
2(t2) ̸= Lζ

2(t1)L
ζ
1(t2).

One finds
.

.

The algebra of holomorphic functions on M gets quantized:

⟨Lζ
1(t1) · · · L

ζ
n(tn)⟩ = ⟨Lζ

1⟩ ⋆ · · · ⋆ ⟨L
ζ
n⟩.

⋆: noncommutative multiplication with ℏ ∼ ε.



..
Main results

Consider RW theory, a TQFT based on 3d N = 4 sigma model.

Let the spacetime R× Σ.

Let the target be a hyperkähler manifold X .

Pick a complex structure I on X .
.
.We can construct an Ω-deformation of RW theory.

The construction involves an Ω-deformation of a B-twisted LG
model with infinite-dimensional target.



..
Main results

Take Σ = D, a disk.

Choose L ⊂ X that is of type (A,B,A):

Lagrangian with respect to ωI

holomorphic in J

Lagrangian with respect to ωK

Use L as the support of a brane placed on ∂D.
.
.The Ω-deformed RW theory is equivalent to QM on L.

It seems closely related to brane quantization of Gukov–Witten.



..
Main results

Furthermore,
.
.the 4d phenomena are two special cases with the same target.

The two cases just differ by the choice of complex structure.

The case (1) (the NS correspondence) should be equivalent to the
Nekrasov–Witten approach.

I’ll explain things by going 2d → 3d → 4d.



2d: Ω-deformation of B-twisted LG models



..
Ω-deformation in 4d

Topologically twisted 4d N = 2 gauge theory:

scalar supercharge Q, with Q2 = 0, used as a BRST operator

TQFT – invariant under deformations of the metric

Pick a Killing vector field V on the spacetime 4-manifold M4.

Use V to introduce the Ω-deformation:

1 Lift to a 5d theory on M4 × S1.

2 Replace M4 × S1 by M4 ×V S
1:

...

identify with the isom-
etry exp(V )

....
M4

.

V

3 Shrink the S1 to go back to 4d.



..
Ω-deformation in 4d

Topologically twisted 4d N = 2 gauge theory:

scalar supercharge Q, with Q2 = 0, used as a BRST operator

TQFT – invariant under deformations of the metric

Pick a Killing vector field V on the spacetime 4-manifold M4.

Ω-deformed twisted theory:

Q2 = LV , with LV acting as the Lie derivative LV on fields

quasi-TQFT – invariant under deformations of the metric as
long as V remains to be a Killing vector field



..
Ω-deformation of B-twisted LG model

B-twisted LG model:

scalar supercharge Q, with Q2 = 0, used as a BRST operator

TQFT – invariant under deformations of the metric

Pick a Killing vector field V on the worldsheet Σ.

Ω-deformed B-twisted LG model:

Q2 = LV , with LV acting as the Lie derivative LV on fields

quasi-TQFT – invariant under deformations of the metric as
long as V remains to be a Killing vector field



..
Ω-deformation of B-twisted LG model

Input data:

worldsheet (Σ, h)

target (Y, g), a (curved) Kähler manifold

superpotential W , a holomorphic function on Y

Killing vector field V on Σ

Field content:

bosonic field: Φ: Σ → Y

fermions: scalar ηı̄, 1-form ρi, 2-form µı̄

bosonic auxiliary 2-forms: F i, F
ı̄

We use µı̄ instead of the scalar θi in ordinary B-twisted models:

µı̄ ∼ gı̄j ⋆ θj .



..
Ω-deformation of B-twisted LG model

For Y flat, Q = QV=0 + V µGµ, with G the 1-form supercharge:

δϕi = ιV ρ
i, δϕ̄ı̄ = ηı̄,

δρi = dϕi + ιV F
i, δηı̄ = V (ϕ̄ı̄),

δF i = dρi, δµı̄ = F
ı̄
,

δF
ı̄
= dιV µ

ı̄.

Compare with the 4d formula for abelian gauge group:

δϕ = ιV ψ, δϕ̄ = η,

δψ = dϕ+ ιV FA, δη = V (ϕ̄),

δA = ψ, δχ = iH,

δH = −iLV χ.

It makes sense to call the auxiliary field F !



..
Ω-deformation of B-twisted LG model

The action S = S0 + SW .

S0 is the sigma model action:

Q-exact

contains the metrics g on Y and h on Σ

SW is the superpotential part:

not Q-exact, but Q-invariant assuming ∂Σ = ∅
independent of g and h

The theory is invariant under

overall rescaling of g

deformations of h as long as V remains Killing



..
Branes for Ω-deformed LG model

Suppose ∂Σ = S1 and V |∂Σ = ε∂φ:

..

Σ

.

V

We find δSW ̸= 0.

To recover Q-invariance, change

SW → SW − i

ε

∫
∂Σ
Wdφ.

Now δSW = 0.



..
Branes for Ω-deformed LG model

But the boundary term

− i

ε

∫
∂Σ
Wdφ.

is not bounded in general.

To remedy this, place a brane supported on γ ⊂ Y and impose

ImW is constant on γ

We can set ImW = 0 by shift W →W +W0.

For a reason that will become clear shortly, we also impose

γ is a Lagrangian submanifold

The brane is more analogous to A-branes than B-branes.



..
Localization of Ω-deformed LG model

Localize the path integral for Σ = D:

1 Send g → ∞.

2 The path integral localizes to constant maps Φ0.

3 The 1-loop determinant is independent of Φ0 if γ is Lagrangian.

4 For Φ = Φ0, only the boundary term survives in S.

5 No fermion zero modes by the boundary condition.

We obtain the localization formula

⟨O⟩ =
∫
γ
dΦ0 exp

(2πi
ε

ReW (Φ0)
)
O(Φ0).



3d: Quantization via Ω-deformed RW theory



..
Ω-deformation of RW theory

Consider RW theory, a TQFT based on N = 4 sigma model, with

spacetime R× Σ.

target X hyperkähler (as opposed to complex symplectic)

Pick a complex structure on X , say I .

View the theory as a B-twisted LG model on Σ:

Y = Map(R, X), with complex structure induced from I

The terms with ∂t are provided by the superpotential

W (Φ) =
1

2

∫
R
Φ∗Λ, ΩI = dΛ.

We can Ω-deform the theory.



..
Branes for Ω-deformed RW theory

Suppose ∂Σ = S1.

Recall the conditions on the support of brane γ:

1 ImW is constant on γ

2 γ is Lagrangian

To satisfy these we take γ = Map(R, L), with L ⊂ X such that

1 ImΩI = ωK = 0 on L

2 L is Lagrangian with respect to ωI

It follows that L is of type (A,B,A); the brane is similar to
(A,B,A)-branes in N = (4, 4) sigma models.



..
Localization of the Ω-deformed RW theory

Take Σ = D. The localization formula

⟨O⟩ =
∫
γ
dΦ0 exp

(2πi
ε

ReW (Φ0)
)
O(Φ0)

translates into

⟨O⟩ =
∫
Map(R,L)

DΦ0 exp
( iπ
ε

∫
R
Φ∗
0ReΛ

)
O(Φ0).

If ReΩI = ωJ = dpa ∧ dqa, then the Lagrangian is padqa.
.

.

The Ω-deformed RW theory on R×D is equivalent to QM on
(L, ωJ) with ℏ ∝ ε.

Note that (L, ωJ) is a Kähler submanifold of X , hence symplectic.



..
Localization of the Ω-deformed RW theory

What about the observables?

The SUSY transformations

δϕi = ιV ρ
i, δϕ̄ı̄ = ηı̄,

δρi = dϕi + ιV F
i, δηı̄ = V (ϕ̄ı̄)

show Q↔ ∂̄, ηı̄ ↔ dϕ̄ı̄ at zeros of V .

Thus H0,q(X;C) ⊂ Q-cohomology.

The localization sets fermions to zero; only the q = 0 part survives.
.
.The Ω-deformation quantizes the algebra of holomorphic functions.

This is a deformation quantization.



4d: Applications to N = 2 gauge theory



..
Quantization by Ω-deformation

Let’s derive the Nekrasov–Shatahsvili correspondence:

1 Consider a twisted N = 2 gauge theory on R×D × S1.

2 Ω-deform the theory.

3 By topological invariance, we can shrink the S1.

4 We get the Ω-deformed RW theory on R×D whose target is
the complex integrable system (M,ΩI).

5 It is QM on L ⊂ M, specified by the brane.

We conclude:
.
.The Ω-deformation quantizes (L, ωJ).



..
Quantization by Ω-deformation

We can derive the Bethe/gauge correspondence:

1 Take L to be the locus Im aD,i = θm,i = 0.

2 The QM Lagrangian is −Re aD,idθ
i
e.

3 Integrating over θie imposes Re aD,i/ℏ = Z.

4 Combined with Im aD,i = 0, we obtain

exp
(2πi

ℏ
aD,i

)
= exp

(∂W̃
∂ai

)
= 1,

where W̃ = 2πiF/ℏ and F is the deformed prepotential.

This is the Bethe equations of the integrable system, with W̃
identified with the Yang–Yang function.



..
Quantization by twisting of the spacetime

Now we derive the second correspondence:

1 Consider a twisted N = 2 gauge theory on R×D ×ε S
1.

2 Wrap Lζ
a on the S1 at {ta} × {0} ∈ R×D.

3 The VEV is an index, so we can shrink the S1.

4 We get the Ω-deformed RW theory on R×D with target
(M, Jζ).

5 Lζ
a descend to local operators, namely holomorphic functions

on M, and their algebra is quantized.

.

.

Twisting the spacetime quantizes the algebra of holomorphic
functions on (M, Jζ) generated by SUSY loop operators.



Concluding remarks



..
Summary

In this talk I discussed

Ω-deformation of B-twisted LG models in 2d

branes are analogous to A-branes
localization formula on a disk

Ω-deformation of RW theory in 3d

branes are similar to (A,B,A)-branes
the Ω-deformed RW theory on R×D quantizes a symplectic
submanifold of the hyperkähler target space

applications to N = 2 gauge theory in 4d

Ω-deformation on R×D × S1 quantizes the integrable system
(M,ΩI) associated with the Coulomb branch
loop operator VEVs on R×D ×ε S

1 quantize the algebra of
holomorphic functions on (M, Jζ), ζ ̸= 0, ∞



..
Future directions

Possible directions for future research:

Ω-deformation of mirror symmetry
The A-model side compute vortex partition functions. Reproduced by B-twisted LG

models?

Ω-deformation of gauged RW theory
Constructed by Kapustin & Saulina. A TQFT version of N = 4 sigma model with

Chern–Simons coupling, constructed by Gaiotto–Witten. Lead to “equivariant”

quantization?

quantization of Seiberg–Witten curve [Fucito et al., ...]

wall-crossing?

Work in progress (with Y. Luo, M.-C. Tan and Q. Zhao):

Ω-deformation of B-twisted gauge theories
Application to the 3d/3d correspondence between 3d SCFT and complex CS [Dimofte et

al., Terashima–Yamazaki]. The idea is similar to [JY, Cordova–Jafferis, Lee–Yamazaki].
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