Timm Wrase

IPMU

August 6, 2014

Based on: Liam McAllister, Eva Silverstein, Alexander Westphal, TW 1405.3652

Outline

• Why string cosmology

- Axion monodromy inflation:
 - -BICEP2 as motivation

– New constructions in string theory

Conclusion

There are (at least) three reasons:

- 1. Extrapolating backwards in time using GR we hit a singularity
- 2. The cosmological constant in the current universe seems to be very small and non-zero
- 3. Inflation is UV sensitive

- 1. Extrapolating backwards in time using GR we hit a singularity
- String theory is a UV complete theory of quantum gravity
- We know how string theory can resolve time-like singularities
- The cosmic singularity is much more complicated see for example H. Liu, G. Moore and N. Seiberg arxiv:gr-qc/0301001

= long term goal

- 2. The cosmological constant in the current universe seems to be very small and non-zero
- Compactifications of string theory give rise to dS vacua

KKLT, LVS, ...

- There seem to be so many string vacua (10^{500}) that a very small cosmological constant (as observed in our universe) can plausible arise \implies landscape
- Our understanding of dS vacua is still very basic

= work in progress

- 3. Inflation is UV sensitive
- The energy scale of inflation is below the Planck scale, so that we can use GR + QFT (bottom-up)
- However, higher dimensional operators lead to the eta-problem

$$V(\phi_0) = V_0 \left(1 + \sum_{n \ge 1} c_n \left(\frac{\phi - \phi_0}{M_{pl}} \right)^n \right) \implies \eta = M_{pl}^2 \frac{V''}{V} = \sum_{n \ge 2} n(n-1) c_n \left(\frac{\phi - \phi_0}{M_{pl}} \right)^{n-2}$$

• If $\phi - \phi_0 \ll M_{pl}$ then we need to control c_2

- 3. Inflation is UV sensitive
- The energy scale of inflation is below the Planck scale, so that we can use GR + QFT (bottom-up)
- However, higher dimensional operators lead to the eta-problem

$$V(\phi_0) = V_0 \left(1 + \sum_{n \ge 1} c_n \left(\frac{\phi - \phi_0}{M_{pl}} \right)^n \right) \implies \eta = M_{pl}^2 \frac{V''}{V} = \sum_{n \ge 2} n(n-1) c_n \left(\frac{\phi - \phi_0}{M_{pl}} \right)^{n-2}$$

• If $\phi - \phi_0 \ge M_{pl}$ then we need to control **all** c_n

- The size of these higher dimensional operators can often be checked in string theory models of inflation
- String theory might tell us what is (and is not) possible in a theory of quantum gravity
- String theory compactifications can lead to new ideas for inflationary models

- The size of these higher dimensional operators can often be checked in string theory models of inflation
- String theory might tell us what is (and is not) possible in a theory of quantum gravity
- String theory compactifications can lead to new ideas for inflationary models
 - = Bottom-up (QFT+GR) and top-down (string

theory) approaches complement each other

Description of the early universe cosmology in a UV complete theory of quantum gravity

Description of the early universe cosmology in a UV complete theory of quantum gravity

Not a simple task:

- String theory has several extra dimensions that we need to compactify
- The simplest compactifications give rise to 4D theories with many massless scalar fields ϕ^{I}

 \implies Moduli Problem

Description of the early universe cosmology in a UV complete theory of quantum gravity

Not a simple task:

- We can generate a potential for these scalar fields
- However, to describe our universe we need: $V(\phi^{I})\Big|_{\min} \approx 10^{-120} M_{Pl}^{4}$ but $m_{\phi^{I}}$ much larger, a period of inflation ending in this dS vacuum, a reheating mechanism, a standard model sector, dark matter

Description of the early universe cosmology in a UV complete theory of quantum gravity

Not a simple task:

- We can generate a potential for these scalar fields
- However, to describe our universe we need: $V(\phi^{I})\Big|_{\min} \approx 10^{-120} M_{Pl}^{4}$ but $m_{\phi^{I}}$ much larger, a period of inflation ending in this dS vacuum, a reheating mechanism, a standard model sector, dark matter Currently too complicated!

Description of the early universe cosmology in a UV complete theory of quantum gravity

Break the problem down into pieces:

- Try to generate a potential that allows for a period of inflation that ends in a dS vacuum
- In explicit models it is often possible to do more (like discussing a reheating mechanism or adding an SM sector)

Outline

• Why string cosmology

- Axion monodromy inflation:
 - -BICEP2 as motivation

– New constructions in string theory

Conclusion

A small telescope at the south pole with the primary goal of measuring the very faint polarization of the cosmic microwave background (CMB).

History of the Universe

Only gravitational waves can generate B-modes in the CMB

March 2014 data release after *three long nights*: 2010-2012

BICEP2 I: Detection Of B-mode Polarization at Degree Angular Scales

Abstract:

- We find an excess of B-mode power over the base lensed-LCDM expectation in the range 30<l<150, inconsistent with the null hypothesis at a significance of >5σ.
- The observed B-mode power spectrum is well-fit by a lensed-LCDM + tensor theoretical model with tensor/scalar ratio r=0.20+0.07-0.05, with r=0 disfavored at 7.0 σ .

March 2014 data release after *three long nights*: 2010-2012

BICEP2 I: Detection Of B-mode Polarization at Degree Angular Scales

Abstract:

- We find an excess of B-mode power over the base lensed-LCDM expectation in the range 30<l<150, inconsistent with the null hypothesis at a significance of >5σ.
- The observed B-mode power spectrum is well-fit by a lensed-LCDM + tensor theoretical model with tensor/scalar ratio r=0.20+0.07-0.05, with r=0 disfavored at 7.0σ.

Primordial B-modes can tell us the energy scale of inflation:

March 2014 data release after *three long nights*: 2010-2012

BICEP2 I: Detection Of B-mode Polarization at Degree Angular Scales

Abstract:

- We find an excess of B-mode power over the base lensed-LCDM expectation in the range 30<l<150, inconsistent with the null hypothesis at a significance of >5σ.
- The observed B-mode power spectrum is well-fit by a lensed-LCDM + tensor theoretical model with tensor/scalar ratio r=0.20+0.07-0.05, with r=0 disfavored at 7.0σ.

$$r = \frac{\Delta_t^2}{\Delta_s^2} = .2 \qquad \Rightarrow \qquad \left(V_{\text{inf}}\right)^{1/4} \approx 2 \times 10^{16} \text{GeV} \left(\frac{r}{0.1}\right)^{\frac{1}{4}} \approx 2 \times 10^{16} \text{GeV}$$

"Can you say it again?"

Alan Guth and Andrei Linde are very happy!!!

A word of caution: Flauger, Hill, Spergel 1405.7351

A word of caution: Flauger, Hill, Spergel 1405.7351

We have to wait for Planck (and probably many more experiments)

Simple potentials favored: $V(\phi) = \phi^p, \ p \le 4$

Lyth bound

David Lyth hep-ph/9606387:

A large value of the scalar to tensor ratio leads to large field range, so called large-field inflation:

$$\frac{\Delta\phi}{M_{Pl}} \ge 2\sqrt{\frac{r}{.01}} \approx 10$$

Lyth bound

David Lyth hep-ph/9606387:

A large value of the scalar to tensor ratio leads to large field range, so called large-field inflation:

$$\frac{\Delta\phi}{M_{Pl}} \ge 2\sqrt{\frac{r}{.01}} \approx 10$$

How can we trust a low energy expansion?

$$V(\phi) = V(\phi_0) \left(1 + \sum_{n \ge 1} c_n \left(\frac{\phi - \phi_0}{M_{Pl}} \right)^n \right)$$

Lyth bound

David Lyth hep-ph/9606387:

A large value of the scalar to tensor ratio leads to large field range, so called large-field inflation:

$$\frac{\Delta\phi}{M_{Pl}} \ge 2\sqrt{\frac{r}{.01}} \approx 10$$

How can we trust a low energy expansion?

$$V(\phi) = V(\phi_0) \left(1 + \sum_{n \ge 1} c_n \left(\frac{\phi - \phi_0}{M_{Pl}} \right)^n \right)$$

⇒ String theory very useful

Having a UV complete theory of quantum gravity seems very useful, but this is not enough: Usually we expect to have new features in the potential whenever we move by one Planck distance

Having a UV complete theory of quantum gravity seems very useful, but this is not enough: Usually we expect to have new features in the potential whenever we move by one Planck distance For inflation we need

- String compactification usually have 100-1000 scalar fields
- We want to move one field over 10 Planck distances without disturbing the other fields (too much)
- The best approach seems to use a field with a (broken) shift symmetry as inflaton

- In string compactification we find many axion fields
- These axion fields have only derivative couplings in the 4D effective theory

$$S = \int d^4 x \, \partial_\mu a \cdot (\dots)^\mu$$

• This leads to a shift symmetry for these axion fields

$$a \rightarrow a + c, \quad c \in \mathsf{R}$$

Side note:

Usual lore:

There are no continuous global symmetries in a theory of quantum gravity
<u>Side note:</u>

Usual lore:

There are no continuous global symmetries in a theory of quantum gravity

- This seems to be true in string theory
- The continuous shift symmetry of axions is broken by non-perturbative effects to a discrete symmetry

$$a \rightarrow a + f_a n, \quad n \in \mathbb{Z}$$

The discrete shift symmetry still forbids many corrections!

<u>Side note:</u>

Usual lore:

There are no continuous global symmetries in a theory of quantum gravity

A continuous shift symmetry:

V(a)

Side note:

Usual lore:

There are no continuous global symmetries in a theory of quantum gravity

A discrete shift symmetry:

а

<u>Side note:</u>

Usual lore:

There are no continuous global symmetries in a theory of quantum gravity

The axion potential after breaking the symmetry:

Liam McAllister, Eva Silverstein, Alexander Westphal, TW 1405.3652

 String theory has higher dimensional generalizations of gauge fields: B₂ and C_p

- String theory has higher dimensional generalizations of gauge fields: B₂ and C_p
- Their gauge invariance gives rise to the shift symmetry of the 4D axions after compactification

E&M:
$$A_{M}(X^{M})dX^{M} = A_{\mu}(x^{\mu})dx^{\mu} + a(x^{\mu})dy + ..., \quad a(x^{\mu}) = A_{\mu}(x^{\mu})dx^{\mu}$$

- String theory has higher dimensional generalizations of gauge fields: B₂ and C_p
- Their gauge invariance gives rise to the shift symmetry of the 4D axions after compactification

E&M:
$$A_{M}(X^{M})dX^{M} = A_{\mu}(x^{\mu})dx^{\mu} + a(x^{\mu})dy + ..., \quad a(x^{\mu}) = A_{\mu}(x^{\mu})dx^{\mu}$$

$$A(X^{M}) \to A(X^{M}) + d(c \cdot y) = A(X^{M}) + c \, dy$$

$$\Rightarrow a(x^{\mu}) = a(x^{\mu}) + c, \quad c \in \mathsf{R}$$

- String theory has higher dimensional generalizations of gauge fields: B₂ and C_p
- Their gauge invariance gives rise to the shift symmetry of the 4D axions after compactification
- In compactifications of critical string theory half of the light fields are axions

- String theory has higher dimensional generalizations of gauge fields: B₂ and C_p
- Their gauge invariance gives rise to the shift symmetry of the 4D axions after compactification
- In compactifications of critical string theory half of the light fields are axions
- Turning on background fluxes in the internal dimension breaks this shift symmetry and generates a polynomial potential for the axions

- We focus on compactification of the 10D type IIA/B string theory and axions arising from B₂
- The 10D low energy action contains terms of the form

$$S = -\frac{1}{\alpha'^{4}} \int_{M} d^{10}x \sqrt{-G} \left\{ \frac{1}{g_{s}^{2}} \left| dB_{2} \right|^{2} + \sum_{p} \left| \widetilde{F}_{p} \right|^{2} \right\}$$

- We focus on compactification of the 10D type IIA/B string theory and axions arising from B₂
- The 10D low energy action contains terms of the form

$$S = -\frac{1}{\alpha'^{4}} \int_{M} d^{10} x \sqrt{-G} \left\{ \frac{1}{g_{s}^{2}} |dB_{2}|^{2} + \sum_{p} |\widetilde{F}_{p}|^{2} \right\}$$

• For type IIA with $F_0 = Q_0$ or type IIB with $F_1 = Q_0$ we find

$$S = -\frac{1}{\alpha'^{4}} \int_{M} d^{10}x \sqrt{-G} \left\{ \frac{1}{g_{s}^{2}} |dB_{2}|^{2} + |Q_{0}B_{2}|^{2} + |Q_{0}B_{2}B_{2}|^{2} + \dots \right\}$$
$$\widetilde{F}_{3} = dC_{2} + F_{1}B_{2} \qquad \widetilde{F}_{5} = dC_{4} + F_{1}B_{2} + \frac{1}{2}F_{1}B_{2}B_{2}$$

Potential:
$$V(b) = c_0 + c_2 b^2 + c_4 b^4$$

 $S = -\frac{1}{\alpha'^4} \int_M d^{10}x \sqrt{-G} \left\{ \frac{1}{g_s^2} |dB_2|^2 + |Q_0B_2|^2 + |Q_0B_2B_2|^2 + ... \right\}$
Kinetic term
for axion b

Potential:
$$V(b) = c_0 + c_2 b^2 + c_4 b^4$$

 $S = -\frac{1}{\alpha'^4} \int_M d^{10} x \sqrt{-G} \left\{ \frac{1}{g_s^2} |dB_2|^2 + |Q_0B_2|^2 + |Q_0B_2B_2|^2 + \dots \right\}$

- What about Planck suppressed operators?
- We turn on $\left|\widetilde{F}\right|^2 \supset \left|Q_0 B_2 B_2\right|^2$. What about $\left|\widetilde{F}\right|^4 \supset \left|Q_0 B_2 B_2\right|^4$?
- Can we break the shift symmetry by only turning on the operator $\left|\widetilde{F}\right|^2 \supset \left|Q_0 B_2 B_2\right|^2$?

Potential:
$$V(b) = c_0 + c_2 b^2 + c_4 b^4$$

 $S = -\frac{1}{\alpha'^4} \int_M d^{10} x \sqrt{-G} \left\{ \frac{1}{g_s^2} |dB_2|^2 + |Q_0B_2|^2 + |Q_0B_2B_2|^2 + \dots \right\}$

- What about Planck suppressed operators?
- We turn on $\left|\widetilde{F}\right|^2 \supset \left|Q_0 B_2 B_2\right|^2$. What about $\left|\widetilde{F}\right|^4 \supset \left|Q_0 B_2 B_2\right|^4$?
- Can we break the shift symmetry by only turning on the operator $|\widetilde{F}|^2 \supset |Q_0 B_2 B_2|^2$? NO!

Potential:
$$V(b) = c_0 + c_2 b^2 + c_4 b^4$$

 $S = -\frac{1}{\alpha'^4} \int_M d^{10} x \sqrt{-G} \left\{ \frac{1}{g_s^2} |dB_2|^2 + |Q_0B_2|^2 + |Q_0B_2B_2|^2 + \dots \right\}$

- What about Planck suppressed operators?
- In this setup all the operators $|\widetilde{F}|^{2n} \supset |Q_0B_2B_2|^{2n}$ appear, but they are all suppressed by the string coupling:

...
$$\supset g_s^{2(n-1)} |\widetilde{F}|^{2n} \supset g_s^{2(n-1)} |Q_0 B_2 B_2|^{2n} \ll |Q_0 B_2 B_2|^2$$
 for $g_s \ll 1$

- We see that in string compactifications axions arise naturally with a variety of exponents
- We can suppress the infinite number of dangerous irrelevant operators
- Can we build explicit models in which these axions serve as inflaton?

- We see that in string compactifications axions arise naturally with a variety of exponents
- We can suppress the infinite number of dangerous irrelevant operators
- Can we build explicit models in which these axions serve as inflaton?
- 1. This requires us to stabilize all moduli in a dS vacuum
- 2. Then we have to ensure that moving the B-axion a lot does not destabilize our construction

Stabilizing all fields in a dS vacuum:

- A variety of constructions exist like KKLT, LVS etc.
- Most of these use perturbative and nonperturbative ingredients
- = Generically small barriers towards a runaway direction

Stabilizing all fields in a dS vacuum:

- A variety of constructions exist like KKLT, LVS etc.
- Most of these use perturbative and nonperturbative ingredients
- Generically small barriers towards a runaway direction
- String theory has 10D flat Minkowski space as its solution so all dS vacua are metastable but barriers can be high

Stabilizing all fields in a dS vacuum:

- A variety of constructions exist like KKLT, LVS etc.
- Most of these use perturbative and nonperturbative ingredients
- Generically small barriers towards a runaway direction
- We use the dS vacua construction of Saltman and Silverstein hep-th/0411271 that breaks supersymmetry at the compactification scale and has high barriers

We compactify type IIB string theory on the product of three Riemann surfaces $\Sigma_1 x \Sigma_2 x \Sigma_3$ and add 7-branes and fluxes

- In four dimensions this leads to a slightly complicated potential $V(\phi')$
- We can usually not keep all other fields fixed at their minimum value while the axion moves over many Planck distance

 \implies Flattening of the potential

flux quanta (can be chosen)

Example: $V \sim M_{pl}^{4} \frac{g_{s}^{4}}{L^{12}} \left(\frac{Q_{1}^{2}}{u^{3}} + \frac{Q_{2}^{2}}{L^{4}} u b^{4} + Q_{3}^{2} u^{3} \right)$

one extra scalar field

axion = inflaton

Example:

$$V \sim M_{pl}^4 \frac{g_s^4}{L^{12}} \left(\frac{Q_1^2}{u^3} + \frac{Q_2^2}{L^4} u b^4 + Q_3^2 u^3 \right)$$

Example:

$$V \sim M_{pl}^{4} \frac{g_{s}^{4}}{L^{12}} \left(\frac{Q_{1}^{2}}{u^{3}} + \frac{Q_{2}^{2}}{L^{4}} u b^{4} + Q_{3}^{2} u^{3} \right)$$
$$\implies u = \frac{3^{1/4} L}{b} \sqrt{\frac{Q_{1}}{Q_{2}}} \propto \frac{1}{b}$$

Example:

$$V \sim M_{pl}^{4} \frac{g_{s}^{4}}{L^{12}} \left(\frac{Q_{1}^{2}}{u^{3}} + \frac{Q_{2}^{2}}{L^{4}} u b^{4} + Q_{3}^{2} u^{3} \right)$$
$$\implies u = \frac{3^{1/4} L}{b} \sqrt{\frac{Q_{1}}{Q_{2}}} \propto \frac{1}{b}$$

Flattening: $V \propto b^4 \rightarrow V \propto b^3$

Generic feature in our models:

• One or more fields adjust their value during inflation and thereby flatten the scalar potential

$$V(b,\phi^{I}) = \sum_{n=0}^{p_{0}} c_{n}(\phi^{I}) b^{n} \xrightarrow{\phi^{I} = \phi^{I}_{\min}, b >>1} \rightarrow \widetilde{c}(\phi^{I}_{\min}) b^{p}, \quad p \leq p_{0}$$

Generic feature in our models:

• One or more fields adjust their value during inflation and thereby flatten the scalar potential

$$V(b,\phi^{I}) = \sum_{n=0}^{p_{0}} c_{n}(\phi^{I}) b^{n} \xrightarrow{\phi^{I} = \phi^{I}_{\min}, b >>1} \rightarrow \widetilde{c}(\phi^{I}_{\min}) b^{p}, \quad p \leq p_{0}$$

- Other nice ideas with fractional power:
 - F. Takahashi 1006.2801
 - K. Harigaya, M. Ibe, K. Schmitz, T. T. Yanagida 1211.6241, 1403.4536, 1407.3084

Generic feature in our models:

• One or more fields adjust their value during inflation and thereby flatten the scalar potential

$$V(b,\phi^{I}) = \sum_{n=0}^{p_{0}} c_{n}(\phi^{I}) b^{n} \xrightarrow{\phi^{I} = \phi^{I}_{\min}, b >>1} \rightarrow \widetilde{c}(\phi^{I}_{\min}) b^{p}, \quad p \leq p_{0}$$

- There is some freedom in choosing fluxes to control the flattening
- We find p = 3, 2, 4/3, 2/3 (previously only $p \le 2$)

- Our models are just a proof of principle
- Axions arise very generically in string theory

- Our models are just a proof of principle
- Axions arise very generically in string theory
- Axion monodromy inflation leads to a variety of different predictions
- For r ≈ .1 future experiments will be able to measure it to the percent level

- Our models are just a proof of principle
- Axions arise very generically in string theory
- Axion monodromy inflation leads to a variety of different predictions
- For r ≈ .1 future experiments will be able to measure it to the percent level

We will be able to distinguish between these different models!

Conclusion

• String theory very useful for understanding inflation

Conclusion

- String theory very useful for understanding inflation
- If BICEP2 results are confirmed
 - they have detected the imprint of quantum fluctuations of the gravitational field, stretched to superhorizon scales.
 - inflation took place at the GUT scale and we can observe its imprints!
 - we have an unprecedented window on quantum gravity!

Conclusion

- String theory very useful for understanding inflation
- If BICEP2 results are confirmed
 - they have detected the imprint of quantum fluctuations of the gravitational field, stretched to superhorizon scales.
 - inflation took place at the GUT scale and we can observe its imprints!
 - we have an unprecedented window on quantum gravity!
- We are in the golden era of (string) cosmology, in which our models are confronted with ever improving data

THANK YOU!