Moonshine and String Theory

Timm Wrase

IPMU
August 7, 2014

Based on:
N. Paquette, TW to appear
M. Cheng, X. Dong, J. Duncan, S. Harrison, S. Kachru, TW 1406.5502

TW 1402.2973
M. Cheng, X. Dong, J. Duncan, J. Harvey, S. Kachru, TW 1306.4981

Outline

- Introduction to moonshine
- Mathieu Moonshine and string compactifications
- New moonshine phenomena

Moonshine

Finite simple groups

There are 18 infinite families, e.g.

- Alternating group of n elements A_{n}
e.g. $A_{3}: \quad(123) \leftrightarrow(231) \leftrightarrow(312)$
- Cyclic groups of prime order C_{p} e.g.: $\quad C_{p}=\mathbb{Z}_{p}=\left\langle\mathbb{e}^{2 \pi i / p}\right\rangle$

Finite simple groups

There are also 26 so called sporadic groups that do not come in infinite families:
the largest group

Finite simple groups

There are also 26 so called sporadic groups that do not come in infinite families:

Finite simple groups

There are also 26 so called sporadic groups that do not come in infinite families:

Modular Forms

Modular function of weight k

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z})
$$

Modular Forms

Modular function of weight k

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z})
$$

Jacobi form of weight k and index m

$$
\begin{aligned}
f\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right) & =(c \tau+d)^{k} e^{\frac{2 \pi i m c z^{2}}{c \tau+d}} f(\tau, z) \\
f(\tau, z+\lambda \tau+\mu) & =e^{-2 \pi i m\left(\lambda^{2} \tau+\lambda z\right)} f(\tau, z), \quad \lambda, \mu \in \mathbb{Z}
\end{aligned}
$$

Modular Forms

Modular function of weight k

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z})
$$

Jacobi form of weight k and index m

$$
\begin{aligned}
f\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right) & =(c \tau+d)^{k} e^{\frac{2 \pi i m c z^{2}}{c \tau+d}} f(\tau, z) \\
f(\tau, z+\lambda \tau+\mu) & =e^{-2 \pi i m\left(\lambda^{2} \tau+\lambda z\right)} f(\tau, z), \quad \lambda, \mu \in \mathbb{Z}
\end{aligned}
$$

Can Fourier expand

$$
f(\tau, z)=f(q=\exp [2 \pi i \tau], y=\exp [2 \pi i z])=\sum_{n \geq 0} \sum_{r^{2} \leq 4 m n} c(n, r) q^{n} y^{r}
$$

Monstrous Moonshine

- The irreducible representations of the Monster group have dimensions 1, 196 883, 21296 876, ...
- The J-function, that appears in many places in string theory, enjoys the expansion

$$
J(q)=\frac{1}{q}+196884 q+21493760 q^{2}+\ldots
$$

Monstrous Moonshine

- The irreducible representations of the Monster group have dimensions 1, 196 883, 21296 876, ...
- The J-function, that appears in many places in string theory, enjoys the expansion

$$
J(q)=\frac{1}{q}+196884 q+21493760 q^{2}+\ldots
$$

- as observed by John McKay in the late 70's

Monstrous Moonshine

moon-shine
'mōon, SHīn/ 4)
noun informal
noun: moonshine

1. foolish talk or ideas.

Monstrous Moonshine

moon-shine

moon, SHīn/ 4)

noun informal
noun: moonshine

1. foolish talk or ideas.
2. NORTH AMERICAN
illicitly distilled or smuggled liquor.

Monstrous Moonshine

This surprising connection can be explained by string theory:
Frenkel, Lepowsky, Meurman 1988

- The (left-moving) bosonic string compactified on a \mathbb{Z}_{2} orbifold of $\mathbb{R}^{24} / \Lambda$ with Λ the Leech lattice has as its 1 -loop partition function the $J(q)$-function

$$
Z(q)=\operatorname{Tr}_{\mathrm{H}} q^{L_{0}-\frac{c}{24}}=J(q)=\frac{1}{q}+196884 q+21493760 q^{2}+\ldots
$$

Monstrous Moonshine

This surprising connection can be explained by string theory:
Frenkel, Lepowsky, Meurman 1988

- The (left-moving) bosonic string compactified on a \mathbb{Z}_{2} orbifold of $\mathbb{R}^{24} / \Lambda$ with Λ the Leech lattice has as its 1 -loop partition function the $J(q)$-function

$$
Z(q)=\operatorname{Tr}_{\mathrm{H}} q^{L_{0}-\frac{c}{24}}=J(q)=\frac{1}{q}+\underbrace{196884 q+21493760 q^{2}+\ldots}_{\substack{\text { tachyon of the } \\ \text { bosonic string }}}
$$

Monstrous Moonshine

This surprising connection can be explained by string theory:
Frenkel, Lepowsky, Meurman 1988

- The (left-moving) bosonic string compactified on a \mathbb{Z}_{2} orbifold of $\mathbb{R}^{24} / \Lambda$ with Λ the Leech lattice has as its 1 -loop partition function the $J(q)$-function

$$
Z(q)=\operatorname{Tr}_{\mathrm{H}} q^{L_{0}-\frac{c}{24}}=J(q)=\frac{1}{q}+196884 q+21493760 q^{2}+\ldots
$$

- The symmetry group of the compactification space $\mathbb{R}^{24} / \Lambda / \mathbb{Z}_{2}$ is the Monster group.

Monstrous Moonshine

Since we have a Virasoro algebra we can expand the $J(q)$-function in terms of Virasoro characters (traces of Verma modules)

$$
\begin{aligned}
& \operatorname{ch}_{\mathrm{h}=0}(q)=\frac{q^{-c / 24}}{\prod_{n=2}^{\infty}\left(1-q^{n}\right)}, \quad \operatorname{ch}_{h}(q)=\frac{q^{h-c / 24}}{\prod_{n=1}^{\infty}\left(1-q^{n}\right)} \\
& J(q)=\frac{1}{q}+196884 q+21493760 q^{2}+\ldots \\
& \quad=1 \operatorname{ch}_{0}(q)+196883 \operatorname{ch}_{2}(q)+21296876 \operatorname{ch}_{3}(q)+\ldots
\end{aligned}
$$

Monstrous Moonshine

Monstrous Moonshine

Very interesting for mathematicians!

Monstrous Moonshine

Compactification of the bosonic string:
\Longrightarrow we have a tachyon (instability)
\Longrightarrow spacetime theory has no fermions

Additionally

- Only two spacetime dimensions are non-compact

Monstrous Moonshine

Compactification of the bosonic string:
\Longrightarrow we have a tachyon (instability)
\Longrightarrow spacetime theory has no fermions

Additionally

- Only two spacetime dimensions are non-compact

Not so interesting for physicists!

Outline

- Introduction to moonshine
- Mathieu Moonshine and string compactifications
- New moonshine phenomena

Mathieu Moonshine

- In 2010 Eguchi, Ooguri and Tachikawa discovered a new moonshine phenomenon that connects K3 to the largest Mathieu group M_{24}

Eguchi, Ooguri, Tachikawa 1004.0956

- They considered a $\mathrm{N}=(4,4)$ SCFT with K 3 target and calculate an index that is called elliptic genus

Mathieu Moonshine

- The Witten index

$$
\begin{aligned}
Z_{\text {Witten }} & =\operatorname{Tr}(-1)^{F} \\
& =n_{B}-n_{F}
\end{aligned}
$$

Mathieu Moonshine

- The Witten index

$$
\begin{aligned}
Z_{\text {Witten }} & =\operatorname{Tr}(-1)^{F} \\
& =n_{B}-n_{F} \\
& =\operatorname{Tr}\left((-1)^{F} q^{H}\right)
\end{aligned}
$$

Mathieu Moonshine

- The Witten index

$$
\begin{aligned}
Z_{\text {Witten }} & =\operatorname{Tr}(-1)^{F} \\
& =n_{B}-n_{F} \\
& =\operatorname{Tr}\left((-1)^{F} q^{H}\right)
\end{aligned}
$$

- An index is invariant under deformations of the theory, e.g. masses go to zero

Mathieu Moonshine

- The Witten index
$Z_{\text {Witten }}=\operatorname{Tr}(-1)^{F}$

$$
\begin{array}{ll}
E_{3} \neq B B B F F F & \\
E_{2} \neq B F & \begin{array}{l}
\text { Bosons } \\
\text { Fermions }
\end{array} \\
\end{array}
$$

$$
\begin{array}{ll}
\quad=n_{B}-n_{F} \\
& =\operatorname{Tr}\left((-1)^{F} q^{H}\right)
\end{array}
$$

No dependence on \bar{q} !

Mathieu Moonshine

Chemical potential for $\mathrm{U}(1)$
in left-moving $\mathrm{N}=2$ theory
$Z_{\text {elliptic }}(q, y)=\operatorname{Tr}_{\mathrm{RR}}((-1)^{F_{L}} q^{L_{0}-\frac{c}{24}} y^{\downarrow} \underbrace{(-1)^{F_{R}} \bar{q}^{\bar{L}_{0}-\frac{\bar{c}}{24}}})$
Witten index:
No dependence on \bar{q}

Mathieu Moonshine

$$
Z_{\mathrm{dlpipic}}^{\mathrm{K} 3}(q, y)=8\left(\frac{\theta_{2}(q, y)^{2}}{\theta_{2}(q, 1)^{2}}+\frac{\theta_{3}(q, y)^{2}}{\theta_{3}(q, 1)^{2}}+\frac{\theta_{4}(q, y)^{2}}{\theta_{4}(q, 1)^{2}}\right)
$$

T. Eguchi, H. Ooguri, A. Taormina, S.-K. Yang Nucl. Phys. B 315, 193 (1989)

We have $N=(4,4)$ world sheet supersymmetry
\Longrightarrow expand in $\mathrm{N}=4$ Virasoro characters

Mathieu Moonshine

$$
Z_{\text {dlipic }}^{\mathrm{K} 3}(q, y)=8\left(\frac{\theta_{2}(q, y)^{2}}{\theta_{2}(q, 1)^{2}}+\frac{\theta_{3}(q, y)^{2}}{\theta_{3}(q, 1)^{2}}+\frac{\theta_{4}(q, y)^{2}}{\theta_{4}(q, 1)^{2}}\right)
$$

T. Eguchi, H. Ooguri, A. Taormina, S.-K. Yang Nucl. Phys. B 315, 193 (1989)

We have $N=(4,4)$ world sheet supersymmetry
\Longrightarrow expand in $\mathrm{N}=4$ Virasoro characters
$\mathrm{N}=4$ Virasoro characters are defined by the trace over the highest weight state and all its descendants

$$
\operatorname{ch}_{\mathrm{h}, 1}(q, y)=\operatorname{Tr}\left((-1)^{F_{L}} q^{L_{0}-\frac{c}{24}} y^{J_{0}}\right)
$$

For the case $\mathrm{h}=\mathrm{c} / 24$ there are short BPS multiplets

Mathieu Moonshine

$$
Z_{\text {dlipic }}^{\mathrm{K} 3}(q, y)=8\left(\frac{\theta_{2}(q, y)^{2}}{\theta_{2}(q, 1)^{2}}+\frac{\theta_{3}(q, y)^{2}}{\theta_{3}(q, 1)^{2}}+\frac{\theta_{4}(q, y)^{2}}{\theta_{4}(q, 1)^{2}}\right)
$$

T. Eguchi, H. Ooguri, A. Taormina, S.-K. Yang Nucl. Phys. B 315, 193 (1989)

We have $N=(4,4)$ world sheet supersymmetry
\Longrightarrow expand in $\mathrm{N}=4$ Virasoro characters
T. Eguchi, K. Hikami 0904.0911

$$
A_{n}=\{90,462,1440, \ldots\}
$$

Mathieu Moonshine

$$
Z_{\text {dlipic }}^{\mathrm{K} 3}(q, y)=8\left(\frac{\theta_{2}(q, y)^{2}}{\theta_{2}(q, 1)^{2}}+\frac{\theta_{3}(q, y)^{2}}{\theta_{3}(q, 1)^{2}}+\frac{\theta_{4}(q, y)^{2}}{\theta_{4}(q, 1)^{2}}\right)
$$

T. Eguchi, H. Ooguri, A. Taormina, S.-K. Yang Nucl. Phys. B 315, 193 (1989)

We have $N=(4,4)$ world sheet supersymmetry
\Longrightarrow expand in $\mathrm{N}=4$ Virasoro characters
T. Eguchi, K. Hikami 0904.0911

$$
Z_{\text {elipic }}^{\mathrm{K} 3}=24 \operatorname{ch}_{h=\frac{1}{4}, l=0}^{\text {short }}-2 \operatorname{ch}_{h=\frac{1}{4} l=\frac{1}{2}}^{\text {long }}+\sum_{n=1}^{\infty} A_{n} \operatorname{ch}_{h=\frac{1}{4}+n, l=\frac{1}{2}}^{\text {long }}
$$

$$
23+1
$$

T. Eguchi, H. Ooguri, Y. Tachikawa 1004.0956
$A_{n}=\{45+\overline{45}, 231+\overline{231}, 770+\overline{770}, \ldots\}$
Dimensions of Irreps of M_{24}

Mathieu Moonshine

Does this imply a connection between M_{24} and K 3 ?

- The geometric symmetries of K 3 are contained in $\mathrm{M}_{23} \subset \mathrm{M}_{24}$

Mathieu Moonshine

Does this imply a connection between M_{24} and K 3 ?

- The geometric symmetries of $K 3$ are contained in $\mathrm{M}_{23} \subset \mathrm{M}_{24}$
- The symmetry groups of $\mathrm{N}=(4,4)$ SCFT with K3 target are never M_{24} and for some points in moduli space do not even fit into M_{24}

Gaberdiel, Hohenegger, Volpato 1106.4315

Mathieu Moonshine

Does this imply a connection between M_{24} and K 3 ?

- The geometric symmetries of K 3 are contained in $\mathrm{M}_{23} \subset \mathrm{M}_{24}$
- The symmetry groups of $\mathrm{N}=(4,4)$ SCFT with K3 target are never M_{24} and for some points in moduli space do not even fit into M_{24}

Gaberdiel, Hohenegger, Volpato 1106.4315

- However, all the A_{n} are sums of dimensions of irreps of M_{24} with positive coefficients

Mathieu Moonshine

- K3 has played a central role in string compactifications and string dualities
- What are implications we can derive from Mathieu moonshine for string compactifications?
- Has the elliptic genus of K3 already appeared in the string theory literature?

Mathieu Moonshine

- K3 has played a central role in string compactifications and string dualities
- What are implications we can derive from Mathieu moonshine for string compactifications?
- Has the elliptic genus of K3 already appeared in the string theory literature?

Heterotic String Theory

- Consider the heterotic $\mathrm{E}_{8} \times \mathrm{E}_{8}$ string theory compactified on $\mathrm{K} 3 \times \mathrm{T}^{2}$
- We need to embed 24 instantons into $\mathrm{E}_{8} \times \mathrm{E}_{8} \longrightarrow(12+\mathrm{n}, 12-\mathrm{n})$ $n=0,1, \ldots, 12$ to satisfy the Bianchi identity for H_{3}

Heterotic String Theory

- Consider the heterotic $\mathrm{E}_{8} \times \mathrm{E}_{8}$ string theory compactified on $\mathrm{K} 3 \times \mathrm{T}^{2}$
- We need to embed 24 instantons into $E_{8} \times E_{8} \longrightarrow(12+n, 12-n)$ $n=0,1, \ldots, 12$ to satisfy the Bianchi identity for H_{3}
- The resulting four dimensional theories preserves $\mathrm{N}=2$ spacetime supersymmetry
- The 1-loop corrections to the prepotential are related to the new supersymmetric index $Z_{\text {new }}$

Heterotic String Theory

For $K 3 \times T^{2}$ compactifications we have for the standard embedding that preserves $\mathrm{N}=(4,4) \quad$ Affine E_{8}

$$
Z_{\text {new }}(q ; T, U)=\frac{i}{2} \frac{\Theta_{\Gamma_{2,2}}(T, U)}{\eta(q)^{4}} \frac{\mathrm{E}_{4}(\mathrm{q})}{\eta(\mathrm{q})^{8}}\left[\left(\frac{\theta_{2}(q)}{\eta(q)}\right)^{6} Z_{\text {elliptic }}^{\mathrm{K3}}(q,-1)\right)
$$

$$
\left.+\left(\frac{\theta_{3}(q)}{\eta(q)}\right)^{6} q^{\frac{1}{4}} Z_{\text {Zlliptic }}^{\mathrm{K3}}\left(q,-q^{\frac{1}{2}}\right)-\left(\frac{\theta_{4}(q)}{\eta(q)}\right)^{6} q^{Z_{\text {eliptic }}^{\mathrm{K3}}\left(q, q^{\frac{1}{2}}\right)}\right]
$$

SO(12) characters
Harvey, Moore hep-th/9510182
T is the complexified Kähler modulus, U the complex structure modulus of the T^{2}

Heterotic String Theory

For $\mathrm{K} 3 \times \mathrm{T}^{2}$ compactifications we have for the standard embedding that preserves $\mathrm{N}=(4,4) \quad$ Affine E_{8}

$$
Z_{\text {new }}(q ; T, U)=\frac{i}{2} \frac{\Theta_{\Gamma_{2,2}}(T, U)}{\eta(q)^{4}} \frac{\mathrm{E}_{4}(\mathrm{q})}{\eta(\mathrm{q})^{8}}\left[\left(\frac{\theta_{2}(q)}{\eta(q)}\right)^{6} Z_{\text {elliptic }}^{\mathrm{K3}}(q,-1)\right)
$$

$$
+\left(\frac{\theta_{3}(q)}{\eta(q)}\right)^{6} q^{\frac{1}{4}} Z_{\text {Klliptic }}^{\mathrm{K} 3}\left(q,-q^{\frac{1}{2}}\right)-\left(\frac{\theta_{4}(q)}{\eta(q)}\right)^{6} q^{4} Z_{\text {eliptic }}^{\mathrm{K3}}\left(q, q^{\frac{1}{2}}\right)
$$

SO(12) characters
Harvey, Moore hep-th/9510182
So in particular the [...] part has an " $\mathrm{SO}(12) \times \mathrm{M}_{24}$ "-expansion: exactly the same M_{24} as in Mathieu Moonshine due to $N=(4,4)$

Heterotic String Theory

For K3 $\times \mathrm{T}^{2}$ compactifications we have for the standard embedding that preserves $\mathrm{N}=(4,4) \quad$ Affine E_{8}

$$
Z_{\text {new }}(q ; T, U)=\frac{i}{2} \frac{\Theta_{\Gamma_{2,2}}(T, U)}{\eta(q)^{4}} \frac{\downarrow}{\eta(\mathrm{q})^{8}} \frac{\mathrm{E}_{4}}{} \frac{\mathrm{E}_{6}(\mathrm{q})}{\eta(\mathrm{q})^{12}}=\frac{i}{2} \frac{\Theta_{\Gamma_{2,2}}(T, U) \mathrm{E}_{4}(\mathrm{q}) \mathrm{E}_{6}(\mathrm{q})}{\eta(\mathrm{q})^{24}}
$$

Harvey, Moore hep-th/9510182
So in particular the $\mathrm{E}_{6}(\mathrm{q})$ has an " $\mathrm{SO}(12) \times \mathrm{M}_{24}$ "-expansion

Heterotic String Theory

For K3 $\times \mathrm{T}^{2}$ compactifications we have for the standard embedding that preserves $\mathrm{N}=(4,4)$

Take away message:
$Z_{\text {new }}$ depends on T and U and is connected to $Z_{\text {elliptic }}$ and therefore to M_{24}
T is the complexified Kähler modulus, U the complex structure modulus of the T^{2}

Heterotic String Theory

The 1-loop correction to the prepotential is roughly determined by

$$
\Delta(T, U)=\int \frac{d^{2} \tau}{\tau_{2}} Z_{\text {new }}\left(q=e^{2 \pi i \tau} ; T, U\right)\left(Q^{2}-\frac{1}{8 \pi \tau_{2}}\right)
$$

and knows about M_{24} since $Z_{\text {new }}$ does
M. Cheng, X. Dong, J. Duncan, J. Harvey, S. Kachru, TW 1306.4981

Heterotic String Theory

The 1-loop correction to the prepotential is roughly determined by

$$
\Delta(T, U)=\int \frac{d^{2} \tau}{\tau_{2}} Z_{\mathrm{new}}\left(q=e^{2 \pi i \tau} ; T, U\right)\left(Q^{2}-\frac{1}{8 \pi \tau_{2}}\right)
$$

and knows about M_{24} since $Z_{\text {new }}$ does
M. Cheng, X. Dong, J. Duncan, J. Harvey, S. Kachru, TW 1306.4981

The modular invariance of $\tau_{2} Z_{\text {new }}\left(Q^{2}-\frac{1}{8 \pi \tau_{2}}\right)$ actually tells us that there is a unique solution. So for all instanton embeddings
($12+n, 12-n$) the answer is the same.
Kiritsis, Kounnas, Petropoulos, Rizos hep-th/9608034
Henningson, Moore hep-th/9608145

Heterotic String Theory

The 1-loop correction to the prepotential is roughly determined by

$$
\Delta(T, U)=\int \frac{d^{2} \tau}{\tau_{2}} Z_{\text {new }}\left(q=e^{2 \pi i \tau} ; T, U\right)\left(Q^{2}-\frac{1}{8 \pi \tau_{2}}\right)
$$

and knows about M_{24} since $Z_{\text {new }}$ does
M. Cheng, X. Dong, J. Duncan, J. Harvey, S. Kachru, TW 1306.4981

We have to solve the following second order differential equation
Harvey, Moore hep-th/9510182
$-\operatorname{Re}\left(\partial_{T} \partial_{U} h^{1-\text { loop }}+\frac{1}{T_{1} U_{1}}\left(1-T_{1} \partial_{T}-U_{1} \partial_{U}\right) h^{1-\text { loop }}\right)-\frac{1}{\pi} \operatorname{Re}(\log [J(i T)-J(i U)])$
$=\frac{1}{2 \pi} \int \frac{d^{2} \tau}{\tau_{2}}\left(-i Z_{\text {new }}(q ; T, U) \cdot\left(Q_{E_{8}}^{2}-\frac{1}{8 \pi_{2}}\right)-b\left(E_{8}\right)\right)+\frac{b\left(E_{8}\right)}{2 \pi}\left(\log \left[2 T_{1} U_{1}\right]+4 \operatorname{Re}(\log [\eta(i T) \eta(i U)])\right.$

Heterotic String Theory

The solution is given by

$$
h^{1-l o o p}=-\frac{1}{3} U^{3}+C+\sum_{k, l} c(k l) L i_{3}\left(e^{2 \pi i(k T+l U)}\right)
$$

where the polylogarithm is given by $L i_{3}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{3}}$

Heterotic String Theory

The solution is given by

$$
h^{1-l o o p}=-\frac{1}{3} U^{3}+C+\sum_{k, l} c(k l) L i_{3}\left(e^{2 \pi i(k T+l U)}\right)
$$

where the polylogarithm is given by $L i_{3}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{3}}$
and the expansion coefficients are the same as in our index (they go along for the ride when integrating)

$$
\begin{array}{r}
Z_{\text {new }}(q ; T, U)=\frac{i}{2} \frac{\Theta_{\Gamma_{22}}(T, U) \mathrm{E}_{4}(\mathrm{q}) \mathrm{E}_{6}(\mathrm{q})}{\eta(\mathrm{q})^{24}}=\frac{i}{2} \Theta_{\Gamma_{2,2}}(T, U)\left(\sum_{m \geq-1} c(m) q^{m}\right) \\
\text { Dimensions of } \mathrm{M}_{24}
\end{array}
$$

Heterotic String Theory

The solution is given by

$$
h^{1-l o o p}=-\frac{1}{3} U^{3}+C+\sum_{k, l} c(k l) L i_{3}\left(e^{2 \pi i(k T+l U)}\right)
$$

where the polylogarithm is given by $L i_{3}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{3}}$
and the expansion coefficients are the same as in our index (they go along for the ride when integrating)

$$
\begin{array}{r}
Z_{\text {new }}(q ; T, U)=\frac{i}{2} \frac{\Theta_{\Gamma_{2,2}}(T, U) \mathrm{E}_{4}(\mathrm{q}) \mathrm{E}_{6}(\mathrm{q})}{\eta(\mathrm{q})^{24}}=\frac{i}{2} \Theta_{\Gamma_{2,2}}(T, U)\left(\sum_{m \geq-1} c(m) q^{m}\right) \\
\text { Dimensions of } \mathrm{M}_{24} 50
\end{array}
$$

Type IIA on CY_{3}

String duality

Heterotic string
on K3 $\times \mathrm{T}^{2}$ with
instanton embedding
(12+n,12-n)
Type IIA string theory on elliptic fibrations over F_{n} (Hirzebruch surface)

Type IIA on CY_{3}

String duality

Heterotic string
on K3 $\times \mathrm{T}^{2}$ with
instanton embedding
(12+n,12-n)
Type IIA string theory on elliptic fibrations over F_{n} (Hirzebruch surface)

dilaton $\mathrm{S} \longleftrightarrow$ Size of base S^{2}

Type IIA on CY_{3}

Type IIA string theory on elliptic fibrations over F_{n} :

- Prepotential receives instanton corrections
- These are determined by the Gromow-Witten invariants \approx curve counting (S^{2}, T^{2}, \ldots)

Type IIA on CY_{3}

Type IIA string theory on elliptic fibrations over F_{n} :

- Prepotential receives instanton corrections
- These are determined by the Gromow-Witten invariants \approx curve counting (S^{2}, T^{2}, \ldots)

Dimensions of M_{24}

Type IIB on CY_{3}

String duality

Type IIA string theory on elliptic fibrations over
F_{n} (Hirzebruch surface)

Type IIB string theory on mirror manifold

Type IIB on CY_{3}

String duality

Type IIA string theory on elliptic fibrations over
F_{n} (Hirzebruch surface)

Type IIB string theory on mirror manifold
CY_{3} manifold $\mathrm{X}_{\mathrm{n}} \longleftrightarrow \mathrm{CY}_{3}$ manifold Y_{n}

Gromov-Witten invariants

Periods of the holomorphic 3-form Ω

New math connections

Moonshine and physics

"I have a sneaking hope, a hope unsupported by any facts or any evidence, that sometime in the twenty-first century physicists will stumble upon the Monster group, built in some unsuspected way into the structure of the Universe."

- Freeman Dyson (1983)

Moonshine and physics

For the $\mathrm{K} 3 x \mathrm{~T}^{2}$ compactifications, the 1-loop prepotential controls the 1-loop corrections to the gauge couplings in the $N=2$ spacetime theory

Moonshine and physics

For the $\mathrm{K} 3 \mathrm{xT}{ }^{2}$ compactifications, the 1-loop prepotential controls the 1-loop corrections to the gauge couplings in the $\mathrm{N}=2$ spacetime theory

For four dimensional $N=1$ models obtained from orbifold compactifications of the heterotic $\mathrm{E}_{8} \times \mathrm{E}_{8}$ string theory:

$$
f_{\alpha}(S, T, U)=S+f_{\alpha}^{1-\text { loop }}(T, U)+O\left(e^{-2 \pi i S}\right)
$$

Moonshine and physics

For the $\mathrm{K} 3 \mathrm{xT}{ }^{2}$ compactifications, the 1-loop prepotential controls the 1-loop corrections to the gauge couplings in the $\mathrm{N}=2$ spacetime theory

For four dimensional $N=1$ models obtained from orbifold compactifications of the heterotic $\mathrm{E}_{8} \times \mathrm{E}_{8}$ string theory:

$$
f_{\alpha}(S, T, U)=S+f_{\alpha}^{1-\text { loop }}(T, U)+O\left(e^{-2 \pi i S}\right)
$$

The (bulk) moduli dependent 1-loop correction to the gauge kinetic function arises only from $\mathrm{N}=2$ subsectors!

Dixon, Louis, Kaplunovsky Nuclear Physics B 355 (1991)

Moonshine and physics

Example $\mathrm{T}^{6} / \mathbb{Z}_{6-I I}=\mathrm{T}^{2} \times \mathrm{T}^{2} \times \mathrm{T}^{2} / \mathbb{Z}_{6-I I}$:

$$
\mathbb{Z}_{6-I I}=\langle g\rangle, \quad g:\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(e^{\pi i / 3} z_{1}, e^{2 \pi / 3} z_{2},-z_{3}\right)
$$

Moonshine and physics

Example $\mathrm{T}^{6} / \mathbb{Z}_{6-I I}=\mathrm{T}^{2} \times \mathrm{T}^{2} \times \mathrm{T}^{2} / \mathbb{Z}_{6-I I}$:

$$
\mathbb{Z}_{6-I I}=\langle g\rangle, \quad g:\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(e^{\pi i / 3} z_{1}, e^{2 \pi / 3} z_{2},-z_{3}\right)
$$

has two $\mathrm{N}=2$ subsector

$$
\begin{array}{ll}
\mathbb{Z}_{3}=\left\{1, g^{2}, g^{4}\right\}, & g^{2}:\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(e^{2 \pi i / 3} z_{1}, e^{4 \pi i / 3} z_{2}, z_{3}\right) \\
\mathbb{Z}_{2}=\left\{1, g^{3}\right\}, & g^{3}:\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(-z_{1}, z_{2},-z_{3}\right)
\end{array}
$$

Moonshine and physics

Example $\mathrm{T}^{6} / \mathbb{Z}_{6-1 I}=\mathrm{T}^{2} \times \mathrm{T}^{2} \times \mathrm{T}^{2} / \mathbb{Z}_{6-I I}$:

$$
\mathbb{Z}_{6-I I}=\langle g\rangle, \quad g:\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(e^{\pi i / 3} z_{1}, e^{2 \pi / 3} z_{2},-z_{3}\right)
$$

has two $\mathrm{N}=2$ subsector

$$
\begin{array}{ll}
\mathbb{Z}_{3}=\left\{1, g^{2}, g^{4}\right\}, & g^{2}:\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(e^{2 \pi i / 3} z_{1}, e^{4 \pi i / 3} z_{2}, z_{3}\right) \\
\mathbb{Z}_{2}=\left\{1, g^{3}\right\}, & g^{3}:\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(-z_{1}, z_{2},-z_{3}\right)
\end{array}
$$

For which the internal space is $\mathrm{T}^{4} / \mathbb{Z}_{3} \times \mathrm{T}^{2}$ or $\mathrm{T}^{4} / \mathbb{Z}_{2} \times \mathrm{T}^{2}$ respectively and therefore an orbifold limit of $\mathrm{T}^{2} \times \mathrm{K} 3$.

Moonshine and physics

$\mathrm{N}=2$ sectors lead to 1-loop corrections $\mathrm{N}=2$ prepotential

$$
f_{\alpha}^{1-\mathrm{loop}}(T, U)=\sum_{i=1,2,3} \frac{\left|G_{i}^{\prime}\right|}{|G|} \left\lvert\,-\frac{1}{2} \partial_{T_{i}} \partial_{U_{i}} h_{i}^{1-\text { loop }}\left(T_{i}, U_{i}\right)\right.
$$

$\mathrm{N}=1$ gauge
kinetic coupling

$$
-\frac{1}{8 \pi^{2}} \log \left[J\left(i T_{i}\right)-J\left(i U_{i}\right)-\frac{b_{\alpha, i}^{N=2}}{4 \pi^{2}}\left(\log \left[\eta\left(i T_{i}\right) \eta\left(i U_{i}\right)\right]\right)\right]
$$

Moonshine and physics

$\mathrm{N}=2$ sectors lead to 1-loop corrections
$f_{\alpha}^{1-\mathrm{loop}}(T, U)=\sum_{i=1,2,3} \frac{\left|G_{i}^{\prime}\right|}{|G|}\left[-\frac{1}{2} \partial_{T_{i}} \partial_{U_{i}} h_{i}^{1-\text { loop }}\left(T_{i}, U_{i}\right)\right.$
$N=1$ gauge
$-\frac{1}{8 \pi^{2}} \log \left[J\left(i T_{i}\right)-J\left(i U_{i}\right)-\frac{b_{\alpha, i}^{N=2}}{4 \pi^{2}}\left(\log \left[\eta\left(i T_{i}\right) \eta\left(i U_{i}\right)\right]\right)\right]$
where the prepotential was calculated above

$$
h^{1-l o o p}(T, U)=-\frac{1}{3} U^{3}+C+\sum_{k, l} c(k l) L i_{3}\left(e^{2 \pi i(k T+l U)}\right)
$$

Dimensions of M_{24}

Moonshine and physics

Group \mathbb{Z}_{N}	Generator $\frac{1}{N}\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$	$\mathcal{N}=2$ moduli
\mathbb{Z}_{3}	$\frac{1}{3}(1,1,1)$	-
\mathbb{Z}_{4}	$\frac{1}{4}(1,1,2)$	T_{3}, U_{3}
\mathbb{Z}_{6-I}	$\frac{1}{6}(1,1,4)$	T_{3}
$\mathbb{Z}_{6-I I}$	$\frac{1}{6}(1,2,3)$	T_{2}, T_{3}, U_{3}
\mathbb{Z}_{7}	$\frac{1}{7}(1,2,4)$	-
\mathbb{Z}_{8-I}	$\frac{1}{8}(1,2,5)$	T_{2}
$\mathbb{Z}_{8-I I}$	$\frac{1}{8}(1,3,4)$	T_{3}, U_{3}
\mathbb{Z}_{12-I}	$\frac{1}{12}(1,4,7)$	T_{2}
$\mathbb{Z}_{12-I I}$	$\frac{1}{12}(1,5,6)$	T_{3}, U_{3}

Moonshine and physics

$\mathbb{Z}_{N} \times \mathbb{Z}_{M}$	$1^{\text {st }}$ generator $\frac{1}{N}\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$	$2^{\text {nd }}$ generator $\frac{1}{M}\left(\hat{\varphi}_{1}, \hat{\varphi}_{2}, \hat{\varphi}_{3}\right)$	$\mathcal{N}=2$ moduli
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$\frac{1}{2}(1,0,1)$	$\frac{1}{2}(0,1,1)$	$T_{1}, U_{1}, T_{2}, U_{2}, T_{3}, U_{3}$
$\mathbb{Z}_{2} \times \mathbb{Z}_{4}$	$\frac{1}{2}(1,0,1)$	$\frac{1}{4}(0,1,3)$	$T_{1}, U_{1}, T_{2}, T_{3}$
$\mathbb{Z}_{2} \times \mathbb{Z}_{6}$	$\frac{1}{2}(1,0,1)$	$\frac{1}{6}(0,1,5)$	$T_{1}, U_{1}, T_{2}, T_{3}$
$\mathbb{Z}_{2} \times \mathbb{Z}_{6}^{\prime}$	$\frac{1}{2}(1,0,1)$	$\frac{1}{6}(1,1,4)$	T_{1}, T_{2}, T_{3}
$\mathbb{Z}_{3} \times \mathbb{Z}_{3}$	$\frac{1}{3}(1,0,2)$	$\frac{1}{3}(0,1,2)$	T_{1}, T_{2}, T_{3}
$\mathbb{Z}_{3} \times \mathbb{Z}_{6}$	$\frac{1}{3}(1,0,2)$	$\frac{1}{6}(0,1,5)$	T_{1}, T_{2}, T_{3}
$\mathbb{Z}_{4} \times \mathbb{Z}_{4}$	$\frac{1}{4}(1,0,3)$	$\frac{1}{4}(0,1,3)$	T_{1}, T_{2}, T_{3}
$\mathbb{Z}_{6} \times \mathbb{Z}_{6}$	$\frac{1}{6}(1,0,5)$	$\frac{1}{6}(0,1,5)$	T_{1}, T_{2}, T_{3}

Moonshine and physics

Four dimensional $\mathrm{N}=1$ models obtained from orbifold compactifications of the heterotic $\mathrm{E}_{8} \times \mathrm{E}_{8}$ string theory receive universal 1-loop corrections to their gauge kinetic functions that are related to M_{24}

Moonshine and physics

Four dimensional $\mathrm{N}=1$ models obtained from orbifold compactifications of the heterotic $\mathrm{E}_{8} \times \mathrm{E}_{8}$ string theory receive universal 1-loop corrections to their gauge kinetic functions that are related to M_{24}

TW 1402.2973
For all $T^{6} / \mathbb{Z}_{N}, N \neq 3,7$, and all $T^{6} / \mathbb{Z}_{N} \times \mathbb{Z}_{M}$

$$
f(S, T, U) \approx S+\partial_{T} \partial_{U} \sum_{k, l} c(k l) L i_{3}\left(e^{2 \pi i(k T+l U)}\right)+\ldots+O\left(e^{-2 \pi i S}\right)
$$

Dimensions of M_{24}

Moonshine and physics

N. Paquette, TW work in progress:

- The holomorphic 3-form Ω plays a role in flux compactifications

Gukov, Vafa, Witten hep-th/9906070
Giddings, Kachru, Polchinski hep-th/0105097

$$
W=\int H \wedge \Omega+\ldots
$$

Moonshine and physics

N. Paquette, TW work in progress:

- The holomorphic 3-form Ω plays a role in flux compactifications

Gukov, Vafa, Witten hep-th/9906070
Giddings, Kachru, Polchinski hep-th/0105097

$$
W=\int H \wedge \Omega+\ldots
$$

- The Yukawa couplings in heterotic models are given by the third derivative of Ω with respect to the moduli

Hosono, Klemm, Theisen, Yau hep-th/9308122

$$
Y_{I J K} \approx \partial_{I} \partial_{J} \partial_{K} h(S, T, U)
$$

Outline

- Introduction to moonshine
- Mathieu Moonshine and string compactifications
- New moonshine phenomena

New Moonshine phenomena

Consider eight (left-moving) bosons and fermions compactified on the orbifold $T^{8} / \mathbb{Z}_{2}=\mathbb{R}^{8} / \Lambda_{E 8} / \mathbb{Z}_{2}$

$$
\mathbb{Z}_{2}:\left(X^{I}, \psi^{I}\right) \rightarrow-\left(X^{I}, \psi^{I}\right)
$$

The partition function in the NS sector is
Frenkel, Lepowsky, Meurman 1985

$$
Z(q)=\frac{1}{\sqrt{q}}+\underset{\uparrow}{276} \sqrt{q}+2048 q+11202 q^{\frac{3}{2}}+\ldots
$$

Dimensions of representations
 of Conway group

New Moonshine phenomena

- The Conway symmetry is not manifest in this description
- The theory is equivalent to a theory of 24 chiral fermions orbifolded by a \mathbb{Z}_{2} symmetry: $\psi^{I} \rightarrow-\psi^{I}$
J. Duncan math/0502267

New Moonshine phenomena

- The Conway symmetry is not manifest in this description
- The theory is equivalent to a theory of 24 chiral fermions orbifolded by a \mathbb{Z}_{2} symmetry: $\psi^{I} \rightarrow-\psi^{I}$
J. Duncan math/0502267
- One can construct an $N=1$ superalgebra that breaks the $\operatorname{Spin}(24)$ symmetry to Co_{0}
- This explains this Conway moonshine

New Moonshine phenomena

- The toroidal orbifold $\mathrm{T}^{8} / \mathbb{Z}_{2}=\mathbb{R}^{8} / \Lambda_{\mathrm{E} 8} / \mathbb{Z}_{2}$ preserves $N=4$ worldsheet supersymmetry
- Calculate the partition function and expand in $N=4$ characters:

$$
Z=\operatorname{Tr}\left((-1)^{F} q^{L_{0}-c / 24} y^{J_{0}}\right)=21 \operatorname{ch}_{h=\frac{1}{2}, l=0}^{\text {short }}+\operatorname{ch}_{h=\frac{1}{2}, l=1}^{\text {short }}
$$

$$
\begin{aligned}
& +560 \operatorname{ch}_{h=\frac{3}{2}, l=\frac{1}{2}}^{\text {long }}+8470 \operatorname{ch}_{h=\frac{5}{2}, l=\frac{1}{2}}^{\text {long }}+\ldots \\
& +210 \mathrm{ch}_{h=\frac{3}{2}, l=1}^{\text {long }}+4444 \mathrm{ch}_{h=\frac{5}{2}, l=1}^{\text {long }}+\ldots
\end{aligned}
$$

- Two infinite series, coefficients unrelated to Conway

New Moonshine phenomena

- The toroidal orbifold $\mathrm{T}^{8} / \mathbb{Z}_{2}=\mathbb{R}^{8} / \Lambda_{\mathrm{E} 8} / \mathbb{Z}_{2}$ preserves $N=4$ worldsheet supersymmetry
- Calculate the partition function and expand in $N=4$ characters:

$$
Z=\operatorname{Tr}\left((-1)^{F} q^{L_{0}-c / 24} y^{J_{0}}\right)=21 \operatorname{ch}_{h=\frac{1}{2}, l=0}^{\text {short }}+\operatorname{ch}_{h=\frac{1}{2}, l=1}^{\text {short }}
$$

$$
\begin{aligned}
& +560 \operatorname{ch}_{h=\frac{3}{2}, l=\frac{1}{2}}^{\text {long }}+8470 \operatorname{ch}_{h=\frac{5}{2}, l=\frac{1}{2}}^{\text {long }}+\ldots \\
& +210 \mathrm{ch}_{h=\frac{3}{2}, l=1}^{\text {long }}+4444 \mathrm{ch}_{h=\frac{5}{2}, l=1}^{\text {long }}+\ldots
\end{aligned}
$$

All coefficients are dimensions of the Mathieu group \mathbf{M}_{22} !

New Moonshine phenomena

- The toroidal orbifold $\mathrm{T}^{8} / \mathbb{Z}_{2}=\mathbb{R}^{8} / \Lambda_{\mathrm{E} 8} / \mathbb{Z}_{2}$ preserves $N=4$ worldsheet supersymmetry
- Let us generalize the above idea and choose chiral super-Virasoro algebras with $N>1$ for 24 fermions
M. Cheng, X. Dong, J. Duncan, S. Harrison, S. Kachru, TW 1406.5502

New Moonshine phenomena

- The toroidal orbifold $\mathrm{T}^{8} / \mathbb{Z}_{2}=\mathbb{R}^{8} / \Lambda_{\mathrm{E} 8} / \mathbb{Z}_{2}$ preserves $N=4$ worldsheet supersymmetry
- Let us generalize the above idea and choose chiral super-Virasoro algebras with $N>1$ for 24 fermions
M. Cheng, X. Dong, J. Duncan, S. Harrison, S. Kachru, TW 1406.5502
- We find that $N=2(N=4)$ super-Virasoro algebras break the symmetry group to subgroups of Co_{0} that fix a 2-plane (3-plane) in the 24 dimensional representation of Co_{0}

New Moonshine phenomena

- There are a variety of groups that do not act on a 2- (or 3-) plane in the 24 dimensional representation of Co_{0}
- For example: Stabilizers of 2-plane Stabilizers of 3-plane

M_{23}
Higman-Sims
McLaughlin
$\mathrm{U}_{6}(2)$

New Moonshine phenomena

- There are a variety of groups that do not act on a 2- (or 3-) plane in the 24 dimensional representation of Co_{0}
- For example: Stabilizers of 2-plane Stabilizers of 3-plane

M_{23}	M_{22}
Higman-Sims	$\mathrm{U}_{4}(3)$
McLaughlin	
$\mathrm{U}_{6}(2)$	

\Longrightarrow Coefficient in expansion in $N=2(N=4)$ characters can be decomposed in irreps of these groups

New Moonshine phenomena

- The toroidal orbifold $\mathrm{T}^{8} / \mathbb{Z}_{2}=\mathbb{R}^{8} / \Lambda_{\mathrm{EB}} / \mathbb{Z}_{2}$ preserves $N=2$ worldsheet supersymmetry
- Calculate the partition function and expand in $N=2$ characters:
$Z=\operatorname{Tr}\left((-1)^{F} q^{L_{0}-c / 24} y^{J_{0}}\right)=23 \operatorname{ch}_{h=\frac{1}{2}, l=0}^{\text {short }}+\operatorname{ch}_{h=\frac{2}{2}, l=2}^{\text {short }}$

$$
\begin{aligned}
& +770 \mathrm{ch}_{h-\frac{3}{2}, l=1}^{\text {long }}+13915 \mathrm{ch}_{h=\frac{5}{2}, l=1}^{\text {long }}+\ldots \\
& +231 \mathrm{ch}_{h-\frac{3}{2}, l=2}^{\text {long }}+5796 \mathrm{ch}_{h=\frac{5}{2}, l=2}^{\text {long }}+\ldots
\end{aligned}
$$

All coefficients are dimensions of $\mathrm{M}_{23}, \mathrm{HS}, \mathrm{McL}$ and $\mathrm{U}_{6}(2)$!

New Moonshine phenomena

- The toroidal orbifold $\mathrm{T}^{8} / \mathbb{Z}_{2}=\mathbb{R}^{8} / \Lambda_{\mathrm{E} 8} / \mathbb{Z}_{2}$ preserves $N=4$ worldsheet supersymmetry
- Calculate the partition function and expand in $N=4$ characters:

$$
Z=\operatorname{Tr}\left((-1)^{F} q^{L_{0}-c / 24} y^{J_{0}}\right)=21 \operatorname{ch}_{h=\frac{1}{2}, l=0}^{\text {short }}+\operatorname{ch}_{h=\frac{1}{2}, l=1}^{\text {short }}
$$

$$
\begin{aligned}
& +560 \operatorname{ch}_{h=\frac{3}{2}, l=\frac{1}{2}}^{\text {long }}+8470 \operatorname{ch}_{h=\frac{5}{2}, l=\frac{1}{2}}^{\text {long }}+\ldots \\
& +210 \mathrm{ch}_{h=\frac{3}{2}, l=1}^{\text {long }}+4444 \mathrm{ch}_{h=\frac{5}{2}, l=1}^{\text {long }}+\ldots
\end{aligned}
$$

All coefficients are dimensions of M_{22} and $U_{4}(3)$!

New Moonshine phenomena

- The twined partition functions

$$
Z_{g}=\operatorname{Tr}\left(g(-1)^{F} q^{L_{0}-c / 24} y^{J_{0}}\right)
$$

have special properties only for M_{22} and M_{23} :
The Mathieu groups M_{22} and M_{23} satisfy the extra moonshine property that the mock modular forms in all twined partition functions have only poles at the cusp at $\tau=i \infty$
(They can most likely be constructed
via Rademacher sums.)

New Moonshine phenomena

- Theory of 24 chiral fermions orbifolded by a \mathbb{Z}_{2} symmetry:

$$
\mathbb{Z}_{2}: \psi^{I} \rightarrow-\psi^{I}
$$

gives rise to variety of moonshine phenomena:
Symmetry group: $\quad \operatorname{Spin}(24) \supset \mathrm{Co}_{0} \supset \mathrm{M}_{23} \supset \mathrm{M}_{22}$
Expansion in: $\mathrm{N}=0 \longrightarrow \mathrm{~N}=1 \longrightarrow \mathrm{~N}=2 \longrightarrow \mathrm{~N}=4$

Conclusion

- Mathieu Moonshine involves K3 that has played a crucial role in superstring compactifications and string dualities
- Certain CY_{3} manifolds are now also implicated in Mathieu Moonshine

Conclusion

- Mathieu Moonshine involves K3 that has played a crucial role in superstring compactifications and string dualities
- Certain CY_{3} manifolds are now also implicated in Mathieu Moonshine
- We just discovered new moonshine phenomena
- Much more to come!

Conclusion

- Mathieu Moonshine involves K3 that has played a crucial role in superstring compactifications and string dualities
- Certain CY_{3} manifolds are now also implicated in Mathieu Moonshine
- We just discovered new moonshine phenomena
- Much more to come!

THANK YOU!

