Moonshine and String Theory

Timm Wrase

IPMU

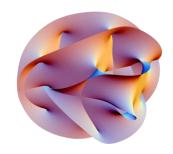
August 7, 2014

Based on: N. Paquette, TW to appear M. Cheng, X. Dong, J. Duncan, S. Harrison, S. Kachru, TW 1406.5502 TW 1402.2973 M. Cheng, X. Dong, J. Duncan, J. Harvey, S. Kachru, TW 1306.4981

Outline

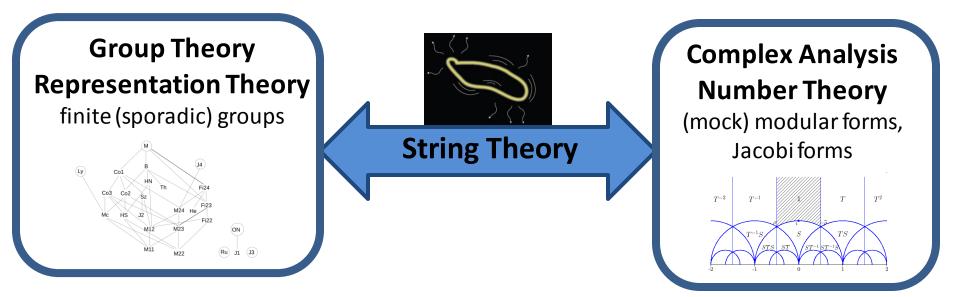
Introduction to moonshine

 Mathieu Moonshine and string compactifications



• New moonshine phenomena

Moonshine



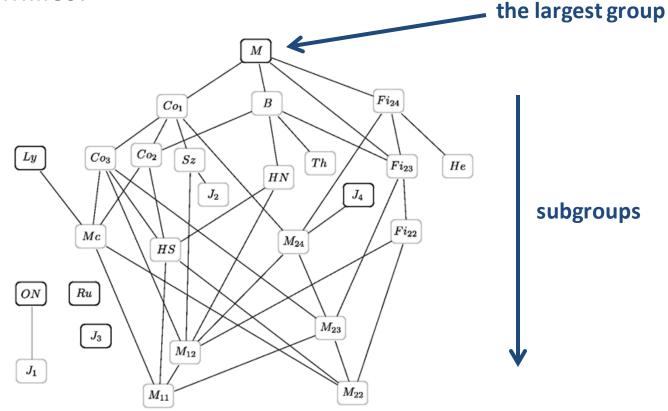
There are 18 infinite families, e.g.

• Alternating group of n elements A_n e.g. A_3 : (123) \leftrightarrow (231) \leftrightarrow (312)

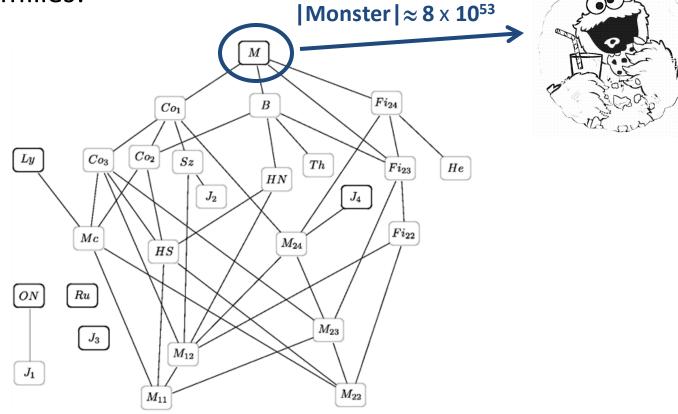
- Cyclic groups of prime order $\rm C_p$

e.g.:
$$C_p = \mathbb{Z}_p = \langle e^{2\pi i/p} \rangle$$

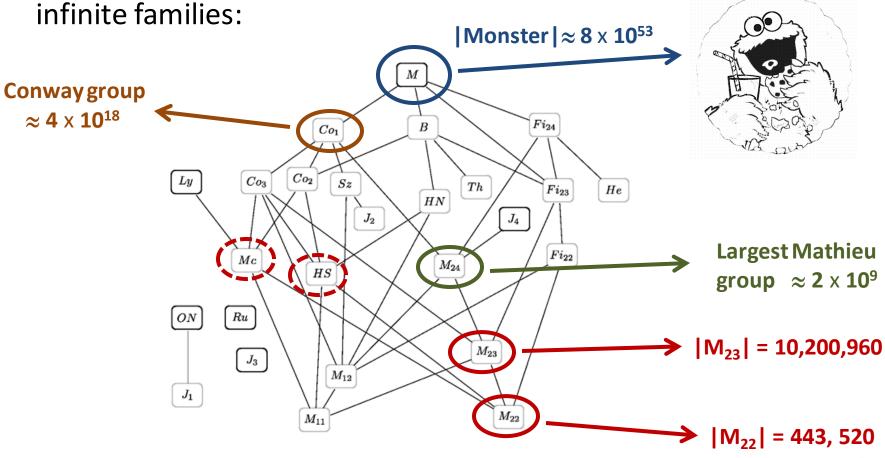
There are also 26 so called **sporadic groups** that do not come in infinite families:



There are also 26 so called **sporadic groups** that do not come in infinite families:



There are also 26 so called sporadic groups that do not come in



Modular Forms

Modular function of weight k

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau), \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z})$$

Modular Forms

Modular function of weight *k*

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau), \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z})$$

Jacobi form of weight k and index m

$$f\left(\frac{a\tau+b}{c\tau+d},\frac{z}{c\tau+d}\right) = (c\tau+d)^{k} e^{\frac{2\pi i m c z^{2}}{c\tau+d}} f(\tau,z)$$
$$f(\tau,z+\lambda\tau+\mu) = e^{-2\pi i m (\lambda^{2}\tau+\lambda z)} f(\tau,z), \qquad \lambda,\mu \in \mathbb{Z}$$

Modular Forms

Modular function of weight k

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau), \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z})$$

Jacobi form of weight k and index m

$$f\left(\frac{a\tau+b}{c\tau+d},\frac{z}{c\tau+d}\right) = (c\tau+d)^{k} e^{\frac{2\pi i m c z^{2}}{c\tau+d}} f(\tau,z)$$
$$f(\tau,z+\lambda\tau+\mu) = e^{-2\pi i m (\lambda^{2}\tau+\lambda z)} f(\tau,z), \qquad \lambda,\mu \in \mathbb{Z}$$

Can Fourier expand

$$f(\tau, z) = f(q = \exp[2\pi i \tau], y = \exp[2\pi i z]) = \sum_{n \ge 0} \sum_{r^2 \le 4mn} c(n, r) q^n y^r$$

- The irreducible representations of the Monster group have dimensions 1, 196 883, 21 296 876, ...
- The J-function, that appears in many places in string theory, enjoys the expansion

$$J(q) = \frac{1}{q} + 196884q + 21493760q^2 + \dots$$

- The irreducible representations of the Monster group have dimensions 1, 196 883, 21 296 876, ...
- The J-function, that appears in many places in string theory, enjoys the expansion

$$J(q) = \frac{1}{q} + 196884 q + 21493760 q^{2} + \dots$$

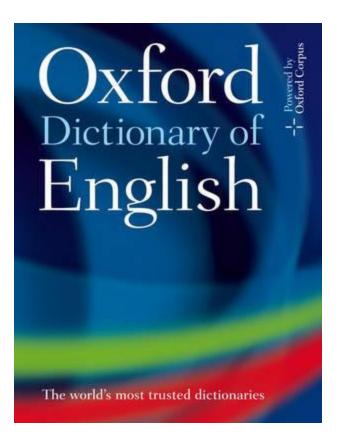
$$\boxed{1 + 196883} \qquad \boxed{1 + 196883} + 21296876$$

• as observed by John McKay in the late 70's

moon SHīn/ 10

noun informal noun: **moonshine**

1. foolish talk or ideas.



moon SHīn/ 10

noun informal noun: **moonshine**

1. foolish talk or ideas.

2. NORTH AMERICAN illicitly distilled or smuggled liquor.

This surprising connection can be explained by string theory: Frenkel, Lepowsky, Meurman 1988

 The (left-moving) bosonic string compactified on a Z₂ orbifold of ℝ²⁴/Λ with Λ the Leech lattice has as its 1-loop partition function the J(q)-function

$$Z(q) = \operatorname{Tr}_{\mathrm{H}} q^{L_0 - \frac{c}{24}} = J(q) = \frac{1}{q} + 196884q + 21493760q^2 + \dots$$

This surprising connection can be explained by string theory: Frenkel, Lepowsky, Meurman 1988

• The (left-moving) bosonic string compactified on a \mathbb{Z}_2 orbifold of \mathbb{R}^{24}/Λ with Λ the Leech lattice has as its 1-loop partition function the J(q)-function

$$Z(q) = \operatorname{Tr}_{H} q^{L_{0} - \frac{c}{24}} = J(q) = \frac{1}{q} + \underbrace{196884 \, q + 21493760 \, q^{2} + \dots}_{\text{supermassive string states}}$$

This surprising connection can be explained by string theory: Frenkel, Lepowsky, Meurman 1988

• The (left-moving) bosonic string compactified on a \mathbb{Z}_2 orbifold of \mathbb{R}^{24}/Λ with Λ the Leech lattice has as its 1-loop partition function the J(q)-function

$$Z(q) = \operatorname{Tr}_{H} q^{L_{0} - \frac{c}{24}} = J(q) = \frac{1}{q} + 196884q + 21493760q^{2} + \dots$$

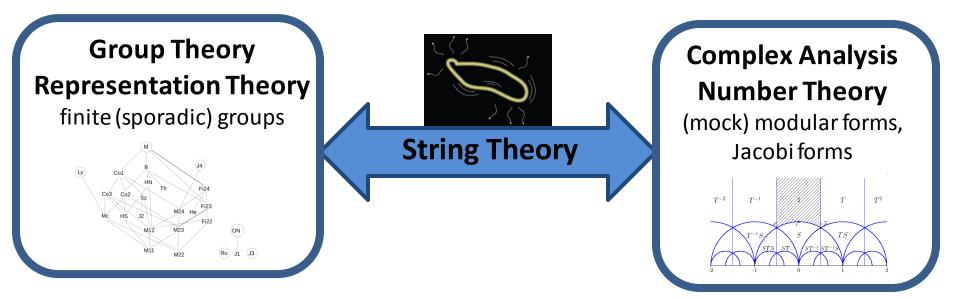
• The symmetry group of the compactification space $\mathbb{R}^{24}/\Lambda/\mathbb{Z}_2$ is the Monster group.

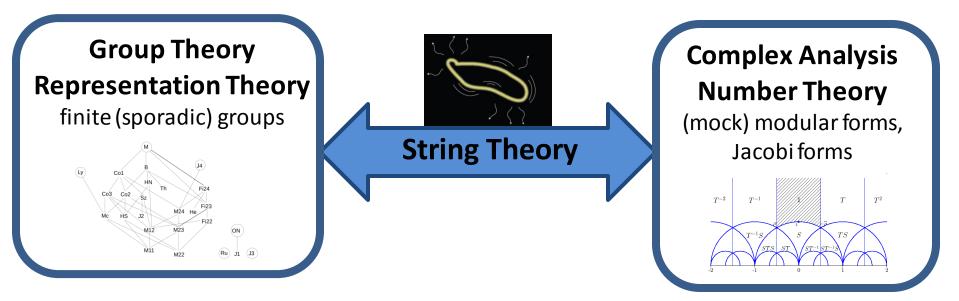
Since we have a Virasoro algebra we can expand the J(q)-function in terms of Virasoro characters (traces of Verma modules)

$$\operatorname{ch}_{h=0}(q) = \frac{q^{-c/24}}{\prod_{n=2}^{\infty}(1-q^n)}, \qquad \operatorname{ch}_h(q) = \frac{q^{h-c/24}}{\prod_{n=1}^{\infty}(1-q^n)}$$

$$J(q) = \frac{1}{q} + 196884 q + 21493760 q^{2} + \dots$$

= 1 ch₀(q) + 196883 ch₂(q) + 21296876 ch₃(q) + \dots





Very interesting for mathematicians!

Compactification of the bosonic string:

- \implies we have a tachyon (instability)
- \implies spacetime theory has no fermions

Additionally

• Only two spacetime dimensions are non-compact

Compactification of the bosonic string:

- \implies we have a tachyon (instability)
- \implies spacetime theory has no fermions

Additionally

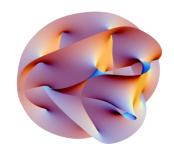
• Only two spacetime dimensions are non-compact

Not so interesting for physicists!

Outline

Introduction to moonshine

 Mathieu Moonshine and string compactifications



• New moonshine phenomena

 In 2010 Eguchi, Ooguri and Tachikawa discovered a new moonshine phenomenon that connects K3 to the largest Mathieu group M₂₄

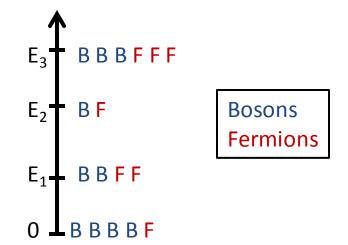
Eguchi, Ooguri, Tachikawa 1004.0956

• They considered a N=(4,4) SCFT with K3 target and calculate an index that is called elliptic genus

• The Witten index

$$Z_{\text{Witten}} = \text{Tr}(-1)^F$$

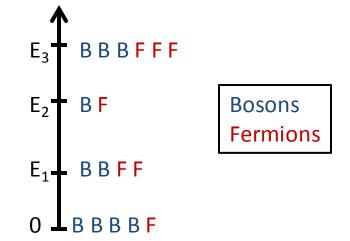
 $= n_B - n_F$

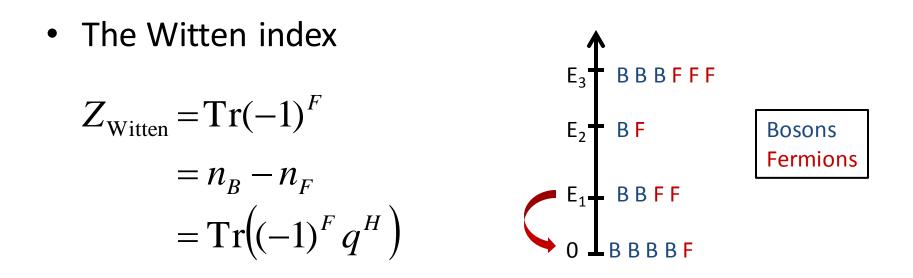


• The Witten index

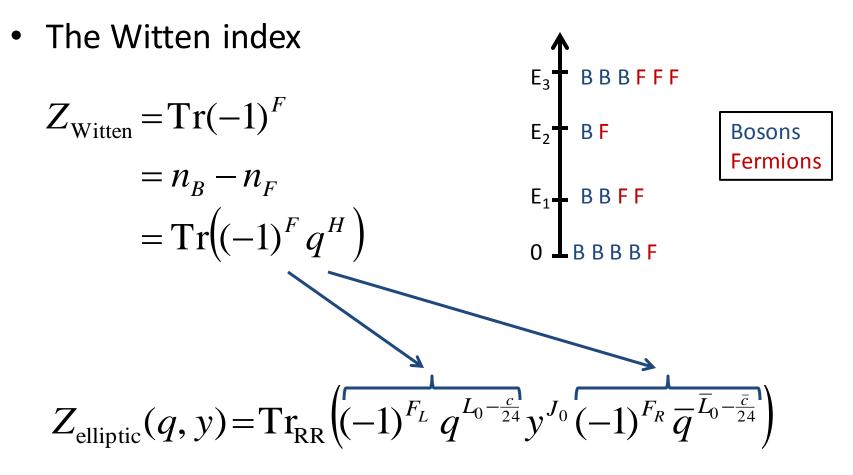
$$Z_{\text{Witten}} = \text{Tr}(-1)^F$$

$$= n_B - n_F$$
$$= \operatorname{Tr}\left((-1)^F q^H\right)$$





• An index is invariant under deformations of the theory, e.g. masses go to zero



No dependence on \overline{q} !

Chemical potential for U(1) in left-moving N=2 theory

$$Z_{\text{elliptic}}(q, y) = \operatorname{Tr}_{RR}\left((-1)^{F_L} q^{L_0 - \frac{c}{24}} y^{J_0} (-1)^{F_R} \overline{q}^{\overline{L}_0 - \frac{\overline{c}}{24}}\right)$$

Witten index: No dependence on \overline{q}

$$Z_{\text{elliptic}}^{\text{K3}}(q, y) = 8 \left(\frac{\theta_2(q, y)^2}{\theta_2(q, 1)^2} + \frac{\theta_3(q, y)^2}{\theta_3(q, 1)^2} + \frac{\theta_4(q, y)^2}{\theta_4(q, 1)^2} \right)$$

T. Eguchi, H. Ooguri, A. Taormina, S.-K. Yang Nucl. Phys. B 315, 193 (1989)

We have N=(4,4) world sheet supersymmetry

 \implies expand in N=4 Virasoro characters

$$Z_{\text{elliptic}}^{\text{K3}}(q, y) = 8 \left(\frac{\theta_2(q, y)^2}{\theta_2(q, 1)^2} + \frac{\theta_3(q, y)^2}{\theta_3(q, 1)^2} + \frac{\theta_4(q, y)^2}{\theta_4(q, 1)^2} \right)$$

T. Eguchi, H. Ooguri, A. Taormina, S.-K. Yang Nucl. Phys. B 315, 193 (1989) We have N=(4,4) world sheet supersymmetry \implies expand in N=4 Virasoro characters

N=4 Virasoro characters are defined by the trace over the highest weight state and all its descendants

$$\operatorname{ch}_{h,l}(q, y) = \operatorname{Tr}\left((-1)^{F_L} q^{L_0 - \frac{c}{24}} y^{J_0}\right)$$

For the case h=c/24 there are short BPS multiplets

$$Z_{\text{elliptic}}^{\text{K3}}(q, y) = 8 \left(\frac{\theta_2(q, y)^2}{\theta_2(q, 1)^2} + \frac{\theta_3(q, y)^2}{\theta_3(q, 1)^2} + \frac{\theta_4(q, y)^2}{\theta_4(q, 1)^2} \right)$$

T. Eguchi, H. Ooguri, A. Taormina, S.-K. Yang Nucl. Phys. B 315, 193 (1989)

We have N=(4,4) world sheet supersymmetry

 \implies expand in N=4 Virasoro characters

T. Eguchi, K. Hikami 0904.0911

$$Z_{\text{elliptic}}^{\text{K3}} = 24 \operatorname{ch}_{h=\frac{1}{4},l=0}^{\text{short}} - 2 \operatorname{ch}_{h=\frac{1}{4},l=\frac{1}{2}}^{\log} + \sum_{n=1}^{\infty} A_n \operatorname{ch}_{h=\frac{1}{4}+n,l=\frac{1}{2}}^{\log}$$

 $A_n = \{90, 462, 1440, \dots\}$

$$Z_{\text{elliptic}}^{\text{K3}}(q, y) = 8 \left(\frac{\theta_2(q, y)^2}{\theta_2(q, 1)^2} + \frac{\theta_3(q, y)^2}{\theta_3(q, 1)^2} + \frac{\theta_4(q, y)^2}{\theta_4(q, 1)^2} \right)$$

T. Eguchi, H. Ooguri, A. Taormina, S.-K. Yang Nucl. Phys. B 315, 193 (1989)

We have N=(4,4) world sheet supersymmetry

 \implies expand in N=4 Virasoro characters

T. Eguchi, K. Hikami 0904.0911

$$Z_{\text{elliptic}}^{\text{K3}} = 24 \text{ ch}_{h=\frac{1}{4},l=0}^{\text{short}} - 2 \text{ ch}_{h=\frac{1}{4},l=\frac{1}{2}}^{\log} + \sum_{n=1}^{\infty} A_n \text{ ch}_{h=\frac{1}{4}+n,l=\frac{1}{2}}^{\log}$$

$$23 + 1$$
T. Eguchi, H. Ooguri, Y. Tachikawa 1004.0956

$$A_n = \{45 + \overline{45}, 231 + \overline{231}, 770 + \overline{770}, \dots\}$$

Irreps of M₂₄

Dimensions of

Does this imply a connection between M_{24} and K3?

- The geometric symmetries of K3 are contained in $M_{23}{\subset}\,M_{24}$

Mukai, Kondo 1988, 1998

Does this imply a connection between M_{24} and K3?

- The geometric symmetries of K3 are contained in $M_{23}{\subset}\,M_{24}$

Mukai, Kondo 1988, 1998

• The symmetry groups of N=(4,4) SCFT with K3 target are never M_{24} and for some points in moduli space do not even fit into M_{24}

Gaberdiel, Hohenegger, Volpato 1106.4315

Does this imply a connection between M_{24} and K3?

- The geometric symmetries of K3 are contained in $M_{23}{\subset}\,M_{24}$

Mukai, Kondo 1988, 1998

• The symmetry groups of N=(4,4) SCFT with K3 target are never M_{24} and for some points in moduli space do not even fit into M_{24}

Gaberdiel, Hohenegger, Volpato 1106.4315

• However, all the A_n are sums of dimensions of irreps of M_{24} with positive coefficients

Gannon 1211.5531

Mathieu Moonshine

- K3 has played a central role in string compactifications and string dualities
- What are implications we can derive from Mathieu moonshine for string compactifications?
- Has the elliptic genus of K3 already appeared in the string theory literature?

Mathieu Moonshine

- K3 has played a central role in string compactifications and string dualities
- What are implications we can derive from Mathieu moonshine for string compactifications?
- Has the elliptic genus of K3 already appeared in the string theory literature?

- Consider the heterotic E₈ x E₈ string theory compactified on K3 x T²
- We need to embed 24 instantons into E₈ x E₈ → (12+n,12-n) n = 0,1,...,12 to satisfy the Bianchi identity for H₃

- Consider the heterotic E₈ x E₈ string theory compactified on K3 x T²
- We need to embed 24 instantons into E₈ x E₈ → (12+n,12-n) n = 0,1,...,12 to satisfy the Bianchi identity for H₃
- The resulting four dimensional theories preserves N=2 spacetime supersymmetry
- The 1-loop corrections to the prepotential are related to the new supersymmetric index Z_{new}

Dixon, Kaplunovsky, Louis, de Wit, Lüst, Stieberger, Antoniadis, Narain, Taylor, Gava, Kiritsis, Kounnas, Harvey, Moore,

$$h(S,T,U) = h^{\text{tree}} + h^{1-loop} + O(e^{-2\pi i S})$$

For K3 x T² compactifications we have for the standard embedding that preserves N=(4,4)Affine E₈ SO(12) characters $Z_{\text{new}}(q;T,U) = \frac{i}{2} \frac{\Theta_{\Gamma_{2,2}}(T,U)}{n(q)^4} \frac{E_4(q)}{n(q)^8} \left| \left(\frac{\theta_2(q)}{n(q)} \right)^6 Z_{\text{elliptic}}^{\text{K3}}(q,-1) \right|$ $+\left(\frac{\theta_3(q)}{n(q)}\right)^6 q^{\frac{1}{4}} Z_{\text{elliptic}}^{\text{K3}}(q,-q^{\frac{1}{2}}) + \left(\frac{\theta_4(q)}{n(q)}\right)^6 q^{\frac{1}{4}} Z_{\text{elliptic}}^{\text{K3}}(q,q^{\frac{1}{2}})$ SO(12) characters Harvey, Moore hep-th/9510182

T is the complexified Kähler modulus, *U* the complex structure modulus of the T²

For K3 x T² compactifications we have for the standard embedding that preserves N=(4,4)Affine E₈ SO(12) characters $Z_{\text{new}}(q;T,U) = \frac{i}{2} \frac{\Theta_{\Gamma_{2,2}}(T,U)}{n(q)^4} \frac{E_4(q)}{n(q)^8} \left[\left(\frac{\theta_2(q)}{n(q)} \right)^6 Z_{\text{elliptic}}^{\text{K3}}(q,-1) \right]$ $+\left(\frac{\theta_3(q)}{n(q)}\right)^{\circ}q^{\frac{1}{4}}Z_{\text{elliptic}}^{\text{K3}}(q,-q^{\frac{1}{2}})+\left(\frac{\theta_4(q)}{n(q)}\right)^{\circ}q^{\frac{4}{4}}Z_{\text{elliptic}}^{\text{K3}}(q,q^{\frac{1}{2}})$ SO(12) characters Harvey, Moore hep-th/9510182

So in particular the [...] part has an "SO(12)xM₂₄"-expansion: exactly the same M₂₄ as in Mathieu Moonshine due to N=(4,4)

For K3 x T² compactifications we have for the standard embedding that preserves N=(4,4) Affine E₈ \bigvee $Z_{\text{new}}(q;T,U) = \frac{i}{2} \frac{\Theta_{\Gamma_{2,2}}(T,U)}{\eta(q)^4} \frac{E_4(q)}{\eta(q)^8} \frac{E_6(q)}{\eta(q)^{12}} = \frac{i}{2} \frac{\Theta_{\Gamma_{2,2}}(T,U)E_4(q)E_6(q)}{\eta(q)^{24}}$

Harvey, Moore hep-th/9510182

So in particular the $E_6(q)$ has an "SO(12)xM₂₄"-expansion

For K3 x T² compactifications we have for the standard embedding that preserves N=(4,4)

Take away message:

 Z_{new} depends on *T* and *U* and is connected to Z_{elliptic} and therefore to M_{24}

T is the complexified Kähler modulus, *U* the complex structure modulus of the T²

The 1-loop correction to the prepotential is roughly determined by

$$\Delta(T,U) = \int \frac{d^2 \tau}{\tau_2} Z_{\text{new}}(q = e^{2\pi i \tau}; T, U) (Q^2 - \frac{1}{8\pi \tau_2})$$

and knows about M_{24} since Z_{new} does

M. Cheng, X. Dong, J. Duncan, J. Harvey, S. Kachru, TW 1306.4981

The 1-loop correction to the prepotential is roughly determined by

$$\Delta(T,U) = \int \frac{d^2 \tau}{\tau_2} Z_{\text{new}}(q = e^{2\pi i \tau}; T, U) (Q^2 - \frac{1}{8\pi \tau_2})$$

and knows about M_{24} since Z_{new} does

M. Cheng, X. Dong, J. Duncan, J. Harvey, S. Kachru, TW 1306.4981

The modular invariance of $\tau_2 Z_{\text{new}}(Q^2 - \frac{1}{8\pi_2})$ actually tells us that there is a unique solution. So for all instanton embeddings (12+n,12-n) the answer is the same.

Kiritsis, Kounnas, Petropoulos, Rizos hep-th/9608034 Henningson, Moore hep-th/9608145

The 1-loop correction to the prepotential is roughly determined by

$$\Delta(T,U) = \int \frac{d^2 \tau}{\tau_2} Z_{\text{new}}(q = e^{2\pi i \tau}; T, U) (Q^2 - \frac{1}{8\pi \tau_2})$$

and knows about M_{24} since Z_{new} does

M. Cheng, X. Dong, J. Duncan, J. Harvey, S. Kachru, TW 1306.4981

We have to solve the following second order differential equation Harvey, Moore hep-th/9510182

$$-\operatorname{Re}\left(\partial_{T}\partial_{U}h^{1-loop} + \frac{1}{T_{1}U_{1}}(1 - T_{1}\partial_{T} - U_{1}\partial_{U})h^{1-loop}\right) - \frac{1}{\pi}\operatorname{Re}(\log[J(iT) - J(iU)])$$

$$= \frac{1}{2\pi}\int \frac{d^{2}\tau}{\tau_{2}} \left(-iZ_{new}(q;T,U) \cdot (Q_{E_{8}}^{2} - \frac{1}{8\pi_{2}}) - b(E_{8})\right) + \frac{b(E_{8})}{2\pi}(\log[2T_{1}U_{1}] + 4\operatorname{Re}(\log[\eta(iT)\eta(iU)]))$$

The solution is given by

$$h^{1-loop} = -\frac{1}{3}U^3 + C + \sum_{k,l} c(kl) Li_3(e^{2\pi i(kT+lU)})$$

where the polylogarithm is given by $Li_3(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^3}$

The solution is given by

$$h^{1-loop} = -\frac{1}{3}U^3 + C + \sum_{k,l} c(kl) Li_3(e^{2\pi i(kT+lU)})$$

where the polylogarithm is given by $Li_3(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^3}$

and the expansion coefficients are the same as in our index (they go along for the ride when integrating)

$$Z_{\text{new}}(q;T,U) = \frac{i}{2} \frac{\Theta_{\Gamma_{2,2}}(T,U)E_4(q)E_6(q)}{\eta(q)^{24}} = \frac{i}{2} \Theta_{\Gamma_{2,2}}(T,U) \left(\sum_{m \ge -1} c(m)q^m\right)$$

Dimensions of M₂₄ 49

The solution is given by

Dimensions of M₂₄ (appearing in a spacetime quantity)

$$h^{1-loop} = -\frac{1}{3}U^3 + C + \sum_{k,l} c(kl) Li_3(e^{2\pi i(kT+lU)})$$

where the polylogarithm is given by $Li_3(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^3}$

and the expansion coefficients are the same as in our index (they go along for the ride when integrating)

$$Z_{\text{new}}(q;T,U) = \frac{i}{2} \frac{\Theta_{\Gamma_{2,2}}(T,U)E_4(q)E_6(q)}{\eta(q)^{24}} = \frac{i}{2} \Theta_{\Gamma_{2,2}}(T,U) \left(\sum_{m \ge -1} c(m)q^m\right)$$

Dimensions of M₂₄ 50

String duality

Heterotic string on K3 x T² with instanton embedding (12+n,12-n)

Type IIA string theory on elliptic fibrations over F_n (Hirzebruch surface)

String duality

Heterotic string on K3 x T² with instanton embedding (12+n,12-n)

Type IIA string theory on elliptic fibrations over F_n (Hirzebruch surface)

Fn

dilaton S \leftarrow Size of base S²

Type IIA string theory on elliptic fibrations over $F_{n:}$

- Prepotential receives instanton corrections
- These are determined by the Gromow-Witten invariants \approx curve counting (S², T², ...)

Type IIA string theory on elliptic fibrations over F_n:

- Prepotential receives instanton corrections
- These are determined by the Gromow-Witten invariants \approx curve counting (S², T², ...) M. Cheng, X. Dong, J. Duncan, J. Harvey, S. Kachru, TW 1306.4981 $h(S,T,U) = -STU - \frac{1}{3}U^3 + C + \sum_{k,l} c(kl)Li_3(e^{2\pi i(kT+lU)}) + O(e^{-2\pi iS})$ M. Alim. F. Scheidegger 1205 1784 M. Alim, E. Scheidegger 1205.1784 A. Klemm, J. Manschot, T. Wotschke 1205.1795 Dimensions of M_{24} (appearing in a spacetime quantity) 54

String duality

Type IIA string theory on elliptic fibrations over F_n (Hirzebruch surface) Type IIB string theory

on mirror manifold

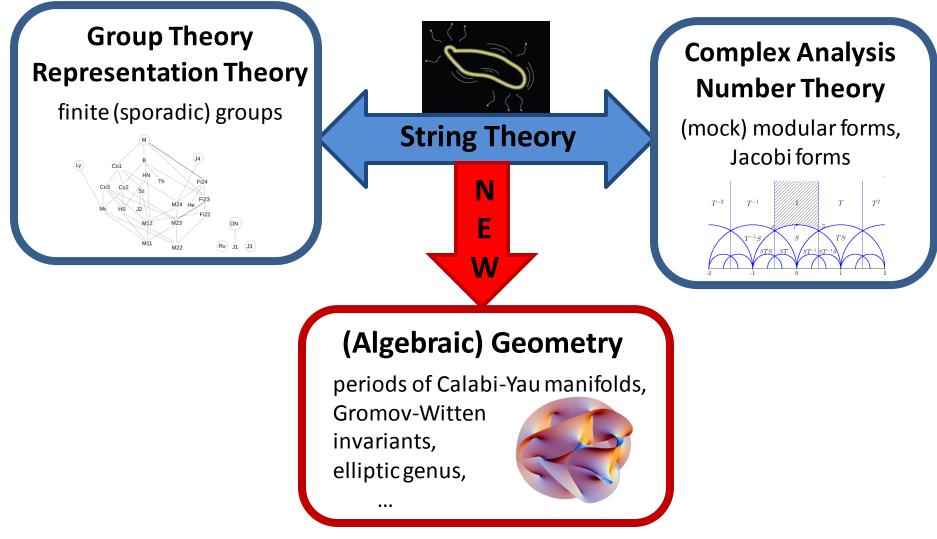
String duality

Type IIA string theory on elliptic fibrations over F_n (Hirzebruch surface) Type IIB string theory on mirror manifold

 CY_3 manifold $X_n \leftarrow P CY_3$ manifold Y_n

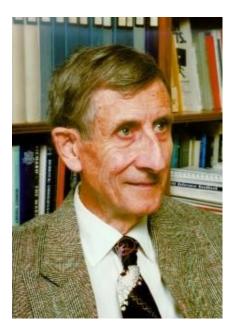
Gromov-Witten invariants Periods of the holomorphic 3-form Ω

New math connections



"I have a sneaking hope, a hope unsupported by any facts or any evidence, that sometime in the twenty-first century physicists will stumble upon the Monster group, built in some unsuspected way into the structure of the Universe."

– Freeman Dyson (1983)



For the K3xT² compactifications, the 1-loop prepotential controls the 1-loop corrections to the gauge couplings in the N=2 spacetime theory

For the K3xT² compactifications, the 1-loop prepotential controls the 1-loop corrections to the gauge couplings in the N=2 spacetime theory

For four dimensional N=1 models obtained from orbifold compactifications of the heterotic $E_8 \times E_8$ string theory:

$$f_{\alpha}(S,T,U) = S + f_{\alpha}^{1-\text{loop}}(T,U) + O(e^{-2\pi i S})$$

For the K3xT² compactifications, the 1-loop prepotential controls the 1-loop corrections to the gauge couplings in the N=2 spacetime theory

For four dimensional N=1 models obtained from orbifold compactifications of the heterotic $E_8 \times E_8$ string theory:

$$f_{\alpha}(S,T,U) = S + f_{\alpha}^{1-\text{loop}}(T,U) + O(e^{-2\pi i S})$$

The (bulk) moduli dependent 1-loop correction to the gauge kinetic function arises only from N=2 subsectors! Dixon, Louis, Kaplunovsky Nuclear Physics B 355 (1991)

Example $T^{6}/\mathbb{Z}_{6-11} = T^{2} \times T^{2} \times T^{2}/\mathbb{Z}_{6-11}$:

$$\mathbb{Z}_{6-II} = \langle g \rangle, \quad g: (z_1, z_2, z_3) \to (e^{\pi i/3} z_1, e^{2\pi i/3} z_2, -z_3)$$

Example $T^{6}/\mathbb{Z}_{6-11} = T^{2} \times T^{2} \times T^{2}/\mathbb{Z}_{6-11}$:

$$\mathbb{Z}_{6-II} = \langle g \rangle, \quad g: (z_1, z_2, z_3) \to (e^{\pi i/3} z_1, e^{2\pi i/3} z_2, -z_3)$$

has two N=2 subsector

$$\mathbb{Z}_{3} = \{1, g^{2}, g^{4}\}, \qquad g^{2} : (z_{1}, z_{2}, z_{3}) \to (e^{2\pi i/3} z_{1}, e^{4\pi i/3} z_{2}, z_{3})$$
$$\mathbb{Z}_{2} = \{1, g^{3}\}, \qquad g^{3} : (z_{1}, z_{2}, z_{3}) \to (-z_{1}, z_{2}, -z_{3})$$

Example $T^{6}/\mathbb{Z}_{6-11} = T^{2} \times T^{2} \times T^{2}/\mathbb{Z}_{6-11}$:

$$\mathbb{Z}_{6-II} = \langle g \rangle, \quad g: (z_1, z_2, z_3) \to (e^{\pi i/3} z_1, e^{2\pi i/3} z_2, -z_3)$$

has two N=2 subsector

$$\mathbb{Z}_{3} = \{1, g^{2}, g^{4}\}, \qquad g^{2} : (z_{1}, z_{2}, z_{3}) \to (e^{2\pi i/3} z_{1}, e^{4\pi i/3} z_{2}, z_{3})$$
$$\mathbb{Z}_{2} = \{1, g^{3}\}, \qquad g^{3} : (z_{1}, z_{2}, z_{3}) \to (-z_{1}, z_{2}, -z_{3})$$

For which the internal space is $T^4/\mathbb{Z}_3 \ge T^2$ or $T^4/\mathbb{Z}_2 \ge T^2$ respectively and therefore an orbifold limit of $T^2 \ge K3$.

N=2 sectors lead to 1-loop corrections

$$f_{\alpha}^{1-\text{loop}}(T,U) = \sum_{i=1,2,3} \frac{|G_i'|}{|G|} \left[-\frac{1}{2} \partial_{T_i} \partial_{U_i} h_i^{1-\text{loop}}(T_i, U_i) \right]$$

$$h_i^{\text{N=1 gauge}} = -\frac{1}{8\pi^2} \log[J(iT_i) - J(iU_i) - \frac{b_{\alpha,i}^{N=2}}{4\pi^2} (\log[\eta(iT_i)\eta(iU_i)]) \right]$$

N=2 sectors lead to 1-loop corrections

$$f_{\alpha}^{1-\text{loop}}(T,U) = \sum_{i=1,2,3} \frac{|G_i'|}{|G|} \left[-\frac{1}{2} \partial_{T_i} \partial_{U_i} h_i^{1-\text{loop}}(T_i, U_i) \right]$$
N=1 gauge
N=1 gauge
kinetic coupling

$$-\frac{1}{8\pi^2} \log[J(iT_i) - J(iU_i) - \frac{b_{\alpha,i}^{N=2}}{4\pi^2} (\log[\eta(iT_i)\eta(iU_i)]) \right]$$

where the prepotential was calculated above

$$h^{1-loop}(T,U) = -\frac{1}{3}U^3 + C + \sum_{k,l} c(kl)Li_3(e^{2\pi i(kT+lU)})$$

Dimensions of M₂₄

Group \mathbb{Z}_N	Generator $\frac{1}{N}(\varphi_1,\varphi_2,\varphi_3)$	$\mathcal{N} = 2 \mod \mathbf{u}$	
\mathbb{Z}_3	$\frac{1}{3}(1,1,1)$	-	
\mathbb{Z}_4	$\frac{1}{4}(1,1,2)$	T_{3}, U_{3}	
\mathbb{Z}_{6-I}	$\frac{1}{6}(1,1,4)$	T_3	No N=2 sectors
\mathbb{Z}_{6-II}	$rac{1}{6}(1,2,3)$	T_2, T_3, U_3	
\mathbb{Z}_7	$\frac{1}{7}(1,2,4)$	-	
\mathbb{Z}_{8-I}	$\frac{1}{8}(1,2,5)$	T_2	
\mathbb{Z}_{8-II}	$\frac{1}{8}(1,3,4)$	T_3, U_3	
\mathbb{Z}_{12-I}	$\frac{1}{12}(1,4,7)$	T_2	
\mathbb{Z}_{12-II}	$\frac{1}{12}(1,5,6)$	T_3, U_3	

$\mathbb{Z}_N \times \mathbb{Z}_M$	1 st generator $\frac{1}{N}(\varphi_1,\varphi_2,\varphi_3)$	2^{nd} generator $\frac{1}{M}(\hat{\varphi}_1, \hat{\varphi}_2, \hat{\varphi}_3)$	$\mathcal{N} = 2 \mod \mathbf{u}$
$\mathbb{Z}_2 \times \mathbb{Z}_2$	$rac{1}{2}(1,0,1)$	$\frac{1}{2}(0,1,1)$	$T_1, U_1, T_2, U_2, T_3, U_3$
$\mathbb{Z}_2 \times \mathbb{Z}_4$	$rac{1}{2}(1,0,1)$	$rac{1}{4}(0,1,3)$	T_1, U_1, T_2, T_3
$\mathbb{Z}_2 \times \mathbb{Z}_6$	$rac{1}{2}(1,0,1)$	$rac{1}{6}(0,1,5)$	T_1, U_1, T_2, T_3
$\mathbb{Z}_2 \times \mathbb{Z}_6'$	$rac{1}{2}(1,0,1)$	$rac{1}{6}(1,1,4)$	T_1, T_2, T_3
$\mathbb{Z}_3 \times \mathbb{Z}_3$	$\frac{1}{3}(1,0,2)$	$\frac{1}{3}(0,1,2)$	T_1, T_2, T_3
$\mathbb{Z}_3 \times \mathbb{Z}_6$	$\frac{1}{3}(1,0,2)$	$rac{1}{6}(0,1,5)$	T_1, T_2, T_3
$\mathbb{Z}_4 \times \mathbb{Z}_4$	$rac{1}{4}(1,0,3)$	$rac{1}{4}(0,1,3)$	T_1, T_2, T_3
$\mathbb{Z}_6 \times \mathbb{Z}_6$	$rac{1}{6}(1,0,5)$	$rac{1}{6}(0,1,5)$	T_1, T_2, T_3

Four dimensional N=1 models obtained from orbifold compactifications of the heterotic $E_8 \times E_8$ string theory receive universal 1-loop corrections to their gauge kinetic functions that are related to M₂₄

TW 1402.2973

Four dimensional N=1 models obtained from orbifold compactifications of the heterotic $E_8 \times E_8$ string theory receive universal 1-loop corrections to their gauge kinetic functions that are related to M₂₄

TW 1402.2973

For all T⁶/ \mathbb{Z}_N , N \neq 3,7, and all T⁶/ \mathbb{Z}_N x \mathbb{Z}_M

$$f(S,T,U) \approx S + \partial_T \partial_U \sum_{k,l} c(kl) Li_3(e^{2\pi i(kT+lU)}) + \dots + O(e^{-2\pi iS})$$

Dimensions of M₂₄

N. Paquette, TW work in progress:

• The holomorphic 3-form Ω plays a role in flux compactifications

Gukov, Vafa, Witten hep-th/9906070 Giddings, Kachru, Polchinski hep-th/0105097

$$W = \int H \wedge \Omega + \dots$$

N. Paquette, TW work in progress:

• The holomorphic 3-form Ω plays a role in flux compactifications

Gukov, Vafa, Witten hep-th/9906070 Giddings, Kachru, Polchinski hep-th/0105097

$$W = \int H \wedge \Omega + \dots$$

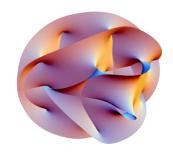
• The Yukawa couplings in heterotic models are given by the third derivative of Ω with respect to the moduli Hosono, Klemm, Theisen, Yau hep-th/9308122

$$Y_{IJK} \approx \partial_I \partial_J \partial_K h(S, T, U)$$

Outline

Introduction to moonshine

 Mathieu Moonshine and string compactifications



Consider eight (left-moving) bosons and fermions compactified on the orbifold $T^8/\mathbb{Z}_2 = \mathbb{R}^8/\Lambda_{E8}/\mathbb{Z}_2$

$$\mathbb{Z}_2: (X^I, \psi^I) \to -(X^I, \psi^I)$$

The partition function in the NS sector is

Frenkel, Lepowsky, Meurman 1985

$$Z(q) = \frac{1}{\sqrt{q}} + 276\sqrt{q} + 2048q + 11202q^{\frac{3}{2}} + \dots$$

Dimensions of representations
of Conway group

- The Conway symmetry is not manifest in this description
- The theory is equivalent to a theory of 24 chiral fermions orbifolded by a \mathbb{Z}_2 symmetry: $\psi^I \rightarrow -\psi^I$

J. Duncan math/0502267

- The Conway symmetry is not manifest in this description
- The theory is equivalent to a theory of 24 chiral fermions orbifolded by a \mathbb{Z}_2 symmetry: $\psi^I \rightarrow -\psi^I$ J. Duncan math/0502267
- One can construct an N=1 superalgebra that breaks the Spin(24) symmetry to Co₀
- This explains this Conway moonshine

- The toroidal orbifold $T^8/\mathbb{Z}_2 = \mathbb{R}^8/\Lambda_{E8}/\mathbb{Z}_2$ preserves N=4 worldsheet supersymmetry
- Calculate the partition function and expand in *N*=4 characters:

$$Z = \operatorname{Tr}\left((-1)^{F} q^{L_{0}-c/24} y^{J_{0}}\right) = 21 \operatorname{ch}_{h=\frac{1}{2},l=0}^{\operatorname{short}} + \operatorname{ch}_{h=\frac{1}{2},l=1}^{\operatorname{short}}$$

$$+560 \operatorname{ch}_{h=\frac{3}{2},l=\frac{1}{2}}^{\log} + 8470 \operatorname{ch}_{h=\frac{5}{2},l=\frac{1}{2}}^{\log} + \dots$$

$$+ 210 \operatorname{ch}_{h=\frac{3}{2},l=1}^{\log} + 4444 \operatorname{ch}_{h=\frac{5}{2},l=1}^{\log} + \dots$$

• Two infinite series, coefficients unrelated to Conway

- The toroidal orbifold $T^8/\mathbb{Z}_2 = \mathbb{R}^8/\Lambda_{E8}/\mathbb{Z}_2$ preserves N=4 worldsheet supersymmetry
- Calculate the partition function and expand in *N*=4 characters:

$$Z = \operatorname{Tr}\left((-1)^{F} q^{L_{0}-c/24} y^{J_{0}}\right) = 21 \operatorname{ch}_{h=\frac{1}{2},l=0}^{\operatorname{short}} + \operatorname{ch}_{h=\frac{1}{2},l=1}^{\operatorname{short}}$$

$$+560 \operatorname{ch}_{h=\frac{3}{2},l=\frac{1}{2}}^{\log} + 8470 \operatorname{ch}_{h=\frac{5}{2},l=\frac{1}{2}}^{\log} + \dots$$

$$+ 210 \operatorname{ch}_{h=\frac{3}{2},l=1}^{\log} + 4444 \operatorname{ch}_{h=\frac{5}{2},l=1}^{\log} + \dots$$

All coefficients are dimensions of the Mathieu group M₂₂!

- The toroidal orbifold $T^8/\mathbb{Z}_2 = \mathbb{R}^8/\Lambda_{E8}/\mathbb{Z}_2$ preserves *N=4* worldsheet supersymmetry
- Let us generalize the above idea and choose chiral super-Virasoro algebras with N > 1 for 24 fermions

M. Cheng, X. Dong, J. Duncan, S. Harrison, S. Kachru, TW 1406.5502

- The toroidal orbifold $T^8/\mathbb{Z}_2 = \mathbb{R}^8/\Lambda_{E8}/\mathbb{Z}_2$ preserves *N=4* worldsheet supersymmetry
- Let us generalize the above idea and choose chiral super-Virasoro algebras with N > 1 for 24 fermions M. Cheng, X. Dong, J. Duncan, S. Harrison, S. Kachru, TW 1406.5502
- We find that N=2 (N=4) super-Virasoro algebras break the symmetry group to subgroups of Co₀ that fix a 2-plane (3-plane) in the 24 dimensional representation of Co₀

- There are a variety of groups that do not act on a 2- (or 3-) plane in the 24 dimensional representation of Co₀
- For example: Stabilizers of 2-plane Stabilizers of 3-plane M_{23} M_{22} Higman-Sims $U_4(3)$ McLaughlin $U_6(2)$

- There are a variety of groups that do not act on a 2- (or 3-) plane in the 24 dimensional representation of Co₀
- For example: Stabilizers of 2-plane Stabilizers of 3-plane M_{23} M_{22} Higman-Sims $U_4(3)$ McLaughlin $U_6(2)$
- \implies Coefficient in expansion in N=2 (N=4) characters can be decomposed in irreps of these groups

- The toroidal orbifold $T^8/\mathbb{Z}_2 = \mathbb{R}^8/\Lambda_{E8}/\mathbb{Z}_2$ preserves N=2 worldsheet supersymmetry
- Calculate the partition function and expand in N=2 characters:

$$Z = \operatorname{Tr}\left((-1)^{F} q^{L_{0}-c/24} y^{J_{0}}\right) = 23 \operatorname{ch}_{h=\frac{1}{2},l=0}^{\operatorname{short}} + \operatorname{ch}_{h=\frac{1}{2},l=2}^{\operatorname{short}}$$

+ 770 ch^{long}_{$$h=\frac{3}{2},l=1$$} + 13915 ch^{long} _{$h=\frac{5}{2},l=1$} + ...

$$+231 \mathrm{ch}_{h=\frac{3}{2},l=2}^{\log}+5796 \mathrm{ch}_{h=\frac{5}{2},l=2}^{\log}+\dots$$

All coefficients are dimensions of M_{23} , HS, McL and $U_6(2)$!

- The toroidal orbifold $T^8/\mathbb{Z}_2 = \mathbb{R}^8/\Lambda_{E8}/\mathbb{Z}_2$ preserves N=4 worldsheet supersymmetry
- Calculate the partition function and expand in *N*=4 characters:

$$Z = \operatorname{Tr}\left((-1)^{F} q^{L_{0}-c/24} y^{J_{0}}\right) = 21 \operatorname{ch}_{h=\frac{1}{2},l=0}^{\operatorname{short}} + \operatorname{ch}_{h=\frac{1}{2},l=1}^{\operatorname{short}}$$

$$+560 \operatorname{ch}_{h=\frac{3}{2},l=\frac{1}{2}}^{\log} + 8470 \operatorname{ch}_{h=\frac{5}{2},l=\frac{1}{2}}^{\log} + \dots$$

$$+ 210 \operatorname{ch}_{h=\frac{3}{2},l=1}^{\log} + 4444 \operatorname{ch}_{h=\frac{5}{2},l=1}^{\log} + \dots$$

All coefficients are dimensions of M_{22} and $U_4(3)$!

• The twined partition functions

$$Z_{g} = \operatorname{Tr}\left(g\left(-1\right)^{F} q^{L_{0}-c/24} y^{J_{0}}\right)$$

have special properties only for M_{22} and M_{23} :

The Mathieu groups M_{22} and M_{23} satisfy the extra moonshine property that the mock modular forms in all twined partition functions have only poles at the cusp at $\tau = i \infty$

(They can most likely be constructed via Rademacher sums.)

Theory of 24 chiral fermions orbifolded by a Z₂ symmetry:

$$\mathbb{Z}_2: \psi^I \to -\psi^I$$

gives rise to variety of moonshine phenomena:

Symmetry group: Spin(24) \supset Co₀ \supset M₂₃ \supset M₂₂

Expansion in: N=0 \longrightarrow N=1 \longrightarrow N=2 \longrightarrow N=4

Conclusion

- Mathieu Moonshine involves K3 that has played a crucial role in superstring compactifications and string dualities
- Certain CY_3 manifolds are now also implicated in Mathieu Moonshine

Conclusion

- Mathieu Moonshine involves K3 that has played a crucial role in superstring compactifications and string dualities
- Certain CY_3 manifolds are now also implicated in Mathieu Moonshine
- We just discovered new moonshine phenomena
- Much more to come!

Conclusion

- Mathieu Moonshine involves K3 that has played a crucial role in superstring compactifications and string dualities
- Certain CY_3 manifolds are now also implicated in Mathieu Moonshine
- We just discovered new moonshine phenomena
- Much more to come!

THANK YOU!