Last Bets for Higgs & Supersymmetry @ the LHC

John ELLIS, CERN, Geneva, Switzerland

Status of the Standard Model

- Perfect agreement with all *confirmed* accelerator data
- Consistency with precision electroweak data (LEP et al) *only if there is a Higgs boson*
- Agreement seems to require a relatively light Higgs boson weighing < ~ 180 GeV
- Raises many unanswered questions: mass? flavour? unification?

Precision Tests of the Standard Model

Lepton couplings

Pulls in global fit

Open Questions beyond the Standard Model

- What is the origin of particle masses? due to a Higgs boson?
- Why so many types of matter particles?
- What is the dark matter in the Universe? LHC

LHC

- Unification of fundamental forces?
- Quantum theory of gravity?

To answer these questions:

The Large Hadron Collider (LHC)

Primary targets:
Origin of mass
Nature of Dark Matter
Primordial Plasma
Matter vs Antimatter

Temporary Halt since Sept. 19th

- Electrical fault in connection between two magnets
- Ohmic heating broke cryostat, vacuum pipe
- Repairs ongoing during shutdown
- Precursor diagnostic identified

• Relief valves being installed

Last repaired Magnet being lowered

Allowed additional Resistances

LHC Schedule announced Aug. 6th

- Start run November 2009
- Continue until late 2010
 - First pp collisions, heavy-ion collisions at end
- Initially some collisions at injection energy
- Collisions at 3.5 TeV/beam within few weeks
- 5 TeV/beam after operational experience
- Work in 2010/2011 shutdown towards collisions at 7 TeV/beam

When will the LHC discover the Higgs boson?

The State of the Higgs: May 2009

- Direct search limit from LEP: $m_{\rm H} > 114.4 \text{ GeV}$
- Electroweak fit sensitive to m_t (Now $m_t = 173.1 \pm 1.3$ GeV)
- Best-fit value for Higgs mass: $m_{\rm H} = 84^{+34}_{-26} \text{ GeV}$

• Tevatron exclusion:

 $m_{\rm H} < 160 \text{ GeV or} > 170 \text{ GeV}$

Higgs Search @ Tevatron

Tevatron excludes Higgs between 160 & 170 GeV

Combining the Higgs Information

Theoretical Constraints on Higgs Mass

- Large \rightarrow large self-coupling \rightarrow blow up at low energy scale Λ due to renormalization
- Small: renormalization due to t quark drives quartic coupling < 0 at some scale Λ
 → vacuum unstable

- Bounds on Higgs mass depend on Λ

Vacuum Stability vs Metastability

- Dependence on scale up to which Standard Model remains
 - Stable
 - Metastable at non-zero temperature
 - Metastable at zero temperature

What is the probable fate of the SM?

The LHC will Tell the Fate of the SM

Examples with LHC measurement of $m_H = 120$ or 115 GeV

Espinosa, JE, Giudice, Hoecker, Riotto

The Stakes in the Higgs Search

- How is particle symmetry broken?
- Is there an elementary scalar field?
- What is the fate of the **Standard Model**?
- Did mass appear when the Universe was a picosecond old?
- Did Higgs help create the matter in the Universe?
- Did a related inflaton make the Universe so big and old?
- Why is there so little dark energy?

Theorists getting Cold Feet

• Composite Higgs model? conflicts with precision electroweak data Interpretation of EW data? consistency of measurements? Discard some? • Higgs + higher-dimensional operators? corridors to higher Higgs masses? • Little Higgs models? extra 'Top', gauge bosons, 'Higgses' Higgsless models? strong WW scattering, extra D?

The LHC Roulette Wheel

Higgsless model

... or not to Higgs?

- Higgs must discriminate between different types of particles:
 - Some have masses, some do not
 - Masses of different particles are different
- In mathematical jargon, symmetry must be broken: how?
 - Break symmetry in equations?
 - Or in solutions to symmetric equations?
- Route proposed by Higgs
 - Is there another way?

Where to Break the Symmetry?

- Throughout all space?
 - Route proposed by Higgs
 - Universal Higgs (snow)field breaks symmetry
- Or at the edge of space?
 - Break symmetry at the boundary?
- Not possible in 3-dimensional space
 - No boundaries
 - Postulate extra dimensions of space
- Different particles behave differently in the extra dimension(s)

The LHC Roulette Wheel Supersymmetry

How to Stabilize a Light Higgs Boson?

- Top quark destabilizes potential: introduce stop-like scalar: $\mathcal{L} \supset M^2 |\phi|^2 + \frac{M_0}{v^2} |H|^2 |\phi|^2$
- Can delay collapse of potential:
- But new coupling must be fine-tuned to avoid blow-up:
- Stabilize with new fermions:
 just like Higgsinos
- Very like Supersymmetry!

Loop Corrections to Higgs Mass²

• Consider generic fermion and boson loops:

• Each is quadratically divergent: $\int d^4k/k^2$

$$\Delta m_H^2 = -\frac{y_f^2}{16\pi^2} [2\Lambda^2 + 6m_f^2 \ln(\Lambda/m_f) + ...]$$
$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} [\Lambda^2 - 2m_S^2 \ln(\Lambda/m_S) + ...]$$

• Leading divergence cancelled if $\lambda_S = y_f^2 \ge 2$ Supersymmetry!

Other Reasons to like Susy

Lightest Supersymmetric Particle

Stable in many models because of conservation of R parity:
 R = (-1)^{2S-L+3B}

where S = spin, L = lepton #, B = baryon #

- Particles have R = +1, sparticles R = -1: Sparticles produced in pairs Heavier sparticles → lighter sparticles
- Lightest supersymmetric particle (LSP) stable

Possible Nature of LSP

• No strong or electromagnetic interactions Otherwise would bind to matter Detectable as anomalous heavy nucleus • Possible weakly-interacting scandidates Sneutrino (Excluded by LEP, direct searches) Lightest neutralino χ (partner of Z, H, γ) Gravitino (nightmare for astrophysical detection)

Constraints on Supersymmetry

- Absence of sparticles at LEP, Tevatron selectron, chargino > 100 GeV
 squarks, gluino > 300 GeV
- Indirect constraints Higgs > 114 GeV, $b \rightarrow s \gamma$
- Density of dark matter
 lightest sparticle χ:
 0.094 < Ω_γh² < 0.124

179.4+9.3 (preliminar

TY 04 (e⁺e⁻-based)

BNI - E821 04

180.6±5.9 (preliminary) DEHZ ICHEP 2006 (e⁺e[−]-base

 3.3σ

effect in

Quo Vadis g_µ - 2?

- Older e⁺e⁻ data show discrepancy
 - now 3.4 σ
- Disagreement with τdecay data
 - discrepancy ~ 2 σ
- Look for new data from BABAR experiment

Minimal Supersymmetric Extension of Standard Model (MSSM)

• Particles + spartners

$$\begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} e.g., \ \begin{pmatrix} \ell \ (lepton) \\ \tilde{\ell} \ (slepton) \end{pmatrix} or \begin{pmatrix} q \ (quark) \\ \tilde{q} \ (squark) \end{pmatrix} \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix} e.g., \ \begin{pmatrix} \gamma \ (photon) \\ \tilde{\gamma} \ (photino) \end{pmatrix} or \begin{pmatrix} g \ (gluon) \\ \tilde{g} \ (gluino) \end{pmatrix}$$

- 2 Higgs doublets, coupling μ , ratio of v.e.v.'s = tan β
- Unknown supersymmetry-breaking parameters: Scalar masses m₀, gaugino masses m_{1/2}, trilinear soft couplings A_λ bilinear soft coupling B_µ
- Assume universality? constrained MSSM = CMSSM Single m₀, single m_{1/2}, single A_λ, B_μ: not string?
- Not the same as minimal supergravity (mSUGRA)
- Gravitino mass, additional relations

 $m_{3/2} = m_0, B_{\mu} = A_{\lambda} - m_0$

Non-Universal Scalar Masses

- Different sfermions with same quantum #s?
 e.g., d, s squarks?
 - disfavoured by upper limits on flavourchanging neutral interactions
- Squarks with different #s, squarks and sleptons? disfavoured in various GUT models e.g., d_R = e_L, d_L = u_L = u_R = e_R in SU(5), all in SO(10)
 Non-universal susy-breaking masses for Higgses? Why not! 1 or 2 extra parameters in NUHM1,2

Current Constraints on CMSSM

The $(m_0, m_{1/2})$ Planes in the CMSSM and the NUHM1

Contributions to the Global χ^2

Observable	Best CMSSM fit	Best NUHM1 fit	Best CMSSM FP fit
$(g-2)_{\mu}$	0.44	0.002	8.4
$BR(B_u \to \tau \nu_{\tau})$	0.20	0.41	0.85
M_W	0.53	0.08	1.5
$A_\ell(\mathrm{SLD})$	2.84	3.22	3.56
$A_{ m fb}(b)({ m LEP})$	7.61	7.08	6.74
R_ℓ	0.96	1.01	1.05
$\mathrm{BR}^{\mathrm{SUSY}}_{\mathrm{b} ightarrow \mathrm{s} \gamma} / \mathrm{BR}^{\mathrm{SM}}_{\mathrm{b} ightarrow \mathrm{s} \gamma}$	1.16	0.001	0.95
M_h	0.17	0	0
$\chi^2_{ m tot}$	20.6	18.5	29.8

Highlighted observables prefer stau coannihilation region over focus-point region, e.g., m_w

O.Buchmueller, JE et al: arXiv:0907.5568

How Soon Might the CMSSM be Detected?

CMSSM with 1/fb of LHC Data

How Soon Might the NUHM1 be Detected?

NUHM1 with 1/fb of LHC Data

Likelihood Function for Higgs Mass

Can the LHC find heavier Higgs Bosons?

Strategies for Detecting Supersymmetric Dark Matter

- Annihilation in galactic halo χ - χ → antiprotons, positrons, ...?
 Annihilation in galactic centre χ - χ → γ + ...?
- Annihilation in core of Sun or Earth

 $\chi - \chi \rightarrow \nu + \dots \rightarrow \mu + \dots$

• Scattering on nucleus in laboratory $\chi + A \rightarrow \chi + A$

The LHC Roulette Wheel

Extra dimensions

The LHC is not only the World's most powerful microscope, but also a telescope ...

... able to cast light on the dark corners of the Universe

Long-lived Supersymmetric Particle

- Inevitable in many models
 - because gravitino has gravitation-strength interactions $\sim 1/M_{\rm P}$
- If neutralino is LSP:
 - Gravitino is long-lived
- If gravitino is LSP
 - Next-to-lightest sparticle (NLSP) is long-lived
- Constrained by possible effects on lightelement abundances

Making Elements in the Early Universe

- Universe contains about 24% Helium 4 and less Deuterium, Helium 3, Lithium 7
- Could only have been cooked by nuclear reactions in dense early Universe

when Universe billion times smaller, hotter than today

- Dependent on amount of matter in Universe not enough to stop expansion, explain galaxies
- Dependent on number of particle types number of different neutrinos measured at accelerators

Abundances of light elements in the Universe

Gravitino Lifetime in CMSSM

• Lifetimes along WMAP strip for different $m_{3/2}$

Hadronic Components of Showers Produced by Decays

• Electromagnetic and hadronic components of showers affect light-element abundances

Light-Element Abundances

- Deuterium abundance agrees with calculations: $\left(\frac{D}{H}\right)_{n} = (2.82 \pm 0.21) \times 10^{-5}$
- Upper limit on primordial ³He abundance: $\left(\frac{{}^{3}\text{He}}{D}\right)_{p} < 1.0$
- ⁴He abundance agrees with calculations:

 $Y_p = 0.249 \pm 0.009$

• ⁷Li abundance less than predicted: $\left(\frac{\text{Li}}{\text{H}}\right)_{\text{gc}} = (2.19 \pm 0.28) \times 10^{-10} \quad \frac{^{6}\text{Li}}{^{7}\text{Li}} \approx 0.05$

Constraints from Light-Element Abundances

Constraints from Light-Element Abundances

Constraints from Light-Element Abundances

