Precision Cosmology with SNe la

Reynald Pain Laboratoire de Physique Nucléaire et de Hautes Energies Université Pierre et Marie Curie, Paris, France

1998 : the systematic floor is reached?

Oct 20, 2014

Systematic floor reached ?

Oct 20, 2014

Systematic floor reached ?

Precision Cosmology with SNe Ia

- Using SNe Ia to measure cosmology
- The Supernova Legacy Survey
- Recent SDSS-SNLS JLA results
- Ongoing and future SN Cosmology programs

Experimental Principle

Use Supernovae as distance indicators to measure the Luminosity distance d_L

d_L is sensitive to the expansion rate and to the Energy content of the Universe

The Luminosity Distance

Assuming the Universe is composed of 2 « fluids » : Masse and X of density ρ_X

$$d_L(z) = (1+z)\frac{c}{H_0} \int dz' \left(\Omega_M (1+z')^{-3} + (1-\Omega_M)\frac{\rho_X(z')}{\rho_X(0)}\right)^{-1/2}$$

Union sample Suzuki et al, 2012

What is dark energy ?

$$\rho(z) = \rho_0 \exp\left(\int 3\frac{w(z)+1}{1+z}dz\right)$$

Equ. of State $w = \frac{p}{\rho}$
 $\delta w (w=-1) \sim 2.5 \,\delta m$

Measurement ingredients:

- (High) redshift Type Ia Supernovae (SN Ia)
- additional constraint on Ω_{M} -> increase precision

A word on H₀

Cosmological constraints on Ω_m , Ω_Λ and w come from a comparison of distant and nearby SN brightness

SN alone do not constrain H₀

One needs to start with an absolute distance scale e.g. distance to NGC 4258 and propagate it to galaxies hosting SNe (using cepheids for example)

=> Additional (non SN) systematic uncertainties may affect this measurement

SNe la are NOT standard candles

Very Luminous events ⇒ visible at cosmological distances

Or is the progenitor a double degenerate system ?

Supernovae la light curves

Show little luminosity dispersion

(inter)-calibrating Supernovae la

SNe Ia show Light Curve shape-luminosity relationships (similar to Cepheids P-L relation)

They also exhibit color luminosity relation (brighterbluer)

 ⇒Allows us to measure
after empirical corrections distances to ~5% precision

Modelling SNe Ia LC and spectra

Not (yet) accurate enough to measure distances

=> Treat SNe Ia empirically

Kavli-IPMU Tokyo

Kasen et al, 0907.0708

Extracting mb, s and c from observations

SN restframe fluxes at different redshifts

- → empirical model to interpolate between photometric measurements
- → Trained on sets of nearby & distant SNe

Several LC fitters : SALT2 (Guy et al, 2007), SIfTO (Conley et al, 2008), MLCS2k2 (Jha et al, 2007), CMAGIC (Wang et al, 2003), ...

Cosmology with SNe Ia

An empirical approach

Oct 20, 2014

Hubble residuals versus host mass

SNe Ia appear brighter (4σ) in massive galaxies after lightcurve shape and color correction

Subtle effect – 0.08mag – smaller than stretch and color corrections

Oct 20, 2014

SN la brightness vs Host type

- No detailed understanding of SN Ia progenitors
- Are M_B , α and β "universal" parameters? Any age or metallicity (environmental) dependence?
- ugrizJHK host data allows estimations of:
 - Host star formation rate
 - Host stellar mass content

Oct 20, 2014

Improved Cosmological analysis

Two possible simplest ways to proceed:

1) Add a further linear host term, H, to the analysis:

$$m_B = m_B - M_B + a(s - 1) - bc + gH$$

- Requires very precise measure of H, and robust errors

2) Use two M_B – one for high-mass galaxies and one for low-mass

$$m_B = m_B - M_B^1 + a (s - 1) - bc$$
 when $H < H_{split}$
 $m_B = m_B - M_B^2 + a (s - 1) - bc$ when $H > H_{split}$

Oct 20, 2014

SNLS - The SuperNova Legacy Survey

http://www.cfht.hawaii.edu/SNLS

SNLS : a "Rolling Search" survey with MegaCam

Each lunation (~18 nights) : repeated observations (every 3-4 night) of 2 fields in four bands (griz)+u for as long as the fields stay visible (~6 months)

=> ~500 SN Ia identified (+ ~300 « photometric ») observed between 2003 and 2008

using ~1500h of 4m for imaging and ~1500 h of 8m for spectroscopy

SNLS 3-yr analysis and combined constraints

- ~250 Supernovae at 0.3 <z < 1.1
- Two independent analyses (SN photometry, photometric calibration, light curve fitters)
- precise photometric calibration
- Improved supernova LC modeling (models trained on the SNLS data → bluer part of the restframe spectrum constrained without using observer frame U)
- Include host mass term
- Systematics included in the cosmology fit

Include systematics in the cosmological fit

- Peculiar velocities for low-z SNe
- Contamination by Core collapse SNe for high-z SNe
- Evolution of color-luminosity relation with redshift
- Evolution of SNe with z : age of stellar population or metallicity
- Gravitational magnification
- about 200 different systematics (S_k) identified.

- Conversion of those systematics into a covariance matrix of SNe distance moduli $(\mu_i) C_{sys,ij} = \sum_k \frac{\partial \mu_i}{\partial S_k} \frac{\partial \mu_j}{\partial S_k} (\Delta S_k)^2$

Combined SN Hubble diagram

Oct 20, 2014

SN only constraints on w

SN only constraints on w

Which systematics are dominant (SN only)?

Description	Ω_m	w	Rel. Area ^a
Stat only	$0.19\substack{+0.08 \\ -0.10}$	$-0.90\substack{+0.16\\-0.20}$	1
All systematics	0.18 ± 0.10	$-0.91\substack{+0.17\\-0.24}$	1.85
Calibration	$0.191\substack{+0.095\\-0.104}$	$-0.92^{+0.17}_{-0.23}$	1.79
SN model	$0.195\substack{+0.086\\-0.101}$	$-0.90\substack{+0.16\\-0.20}$	1.02
Peculiar velocities	$0.197\substack{+0.084\\-0.100}$	$-0.91\substack{+0.16\\-0.20}$	1.03
Malmquist bias	$0.198\substack{+0.084\\-0.100}$	$-0.91\substack{+0.16 \\ -0.20}$	1.07
non-Ia contamination	$0.19\substack{+0.08\\-0.10}$	$-0.90\substack{+0.16\\-0.20}$	1
MW extinction correction	$0.196\substack{+0.084\\-0.100}$	$-0.90\substack{+0.16\\-0.20}$	1.05
SN evolution	$0.185\substack{+0.088\\-0.099}$	$-0.88\substack{+0.15\\-0.20}$	1.02
Host relation	$0.198^{+0.085}_{-0.102}$	$-0.91\substack{+0.16 \\ -0.21}$	1.08

Oct 20, 2014

SNLS3+WMAP7+BAO/DR7+H₀

Consistent with cosmological constant Error in w (flat): ~7% w/ systematics Error is <9% (total) when $\Omega_{k}=0$ relaxed

Flat: $w = -1.061 \pm 0.069$ $\Omega_{M} = 0.269 \pm 0.015$ Non-Flat: $w = -1.069 \pm 0.091$ $\Omega_{M} = 0.271 \pm 0.015$ $\Omega_k = -0.002 \pm 0.006$ Minus BAO: $w = -1.018 \pm 0.111$ $\Omega_{M} = 0.259 \pm 0.049$ $\Omega_k = 0.001 \pm 0.015$ Minus SNe: $w = -1.412 \pm 0.333$ $\Omega_{M} = 0.259 \pm 0.030$ $\Omega_k = -0.009 \pm 0.008$

Adding BAO/DR7 reduces w error from 11% to 9%

Oct 20, 2014

Recent results results from the SNLS-SDSS joint analysis

SNLS-SDSS joint Analysis

SDSS/SNLS JOINT LIGHT CIR

SNLS SN data sample 5 yr rolling search ~500 SNe Ia + ~300 "photometric" Ia => 3 yr "spectroscopic" sample : ~250 SNe Ia SDSS SN data sample 3 yr rolling search ~ 500 SNe Ia + ~300 "photo Ia" => good quality spectrocopic sample : ~250 SNe Ia

Joint SDSS-SNLS analysis goals:

- Cross-calibrate (gain : ~2 in calib uncertainty)
- Validate LC fitter and joint LC training => reduce syst.
- => update cosmological constraint combining SNLS3+SDSS

SNLS-SDSS (photometric) cross-calibration

- direct observations of SDSS & HST stars
- several calibration paths

=> Achieve ~0.3% precision in g, r and i

SNLS-SDSS Joint Lightcurve Analysis

SDSS/SNLS JOINT LIGHT

JLA constraints in a flat wCDM model

⁽Betoule et al, 2014)

Is Dark Energy the cosmological constant ?

Ingredients

- Large SDSS dataset
- Calibration accuracy
- Better CMB + BAO

=> DETF FoM ~30

$\Omega_{\rm m}$ in a Flat $\Lambda {\rm CDM}$ model

 Ω_m measurement independent of CMB and compatible with Planck.

Ongoing and future SN programs

DICE: Direct Imaging Calibration Experiment

LED base light source for a direct illumination of the primary mirror

Oct 20, 2014

DICE : Model building and validation (alignment exposures)

DICE : Use for calibration and photometry

Diffraction patterns (dust + imperfections)

Ghosts

Observed r band LED image

Simulated Image (incl. ghosts)

Oct 20, 2014

Ongoing SN Ia Cosmology programs

Z<0.8 : SNF (200 z~0.05 SN with multi-epoch spectrophotometry PTF/LSQ : similar z, rolling trigger search+ follow-up CSP : VIS follow-up + NIR follow-up Pan Starrs/PS1 : target several 100 SNe up to z0.6 SNLS 5-yr : ~450 "specstrocopic" Ia + ~200 "photometric" Ia

z>1 :

HST measurement of o(10) SN to study specific issues (cluster selected SN, ...) and constrain wa

Aim : robust combined statistic+systematic uncertainty on constant w and attempt at (precisely) measuring wa

New (starting) DETF « STAGE III » SN programs

Pan-starrs PS1+2 : 1.8m + 7 deg2, goal : o(1000) up to z=0.8 ZPTF (starts in 2015?) z~0.1

DES : CTIO 4m + new 3deg2 mosaic camera 2012-2018 (primarily weak lensing) goal: 4000 SNe up to z=1

Skymapper : 1.35m MSSO (Australia) 2015-2019 Rolling nearby (z~0.1) - yield ~100 SN la /yr

Z =0.8-1.3 :

Subaru : 8.4m with HSC (1.5 deg FoV) : several 100 SNe per seasons and up to z~1.6 when/if combined with HST

A SN Ia Rolling Search with Subaru

- 8-meters, 1.8 deg²
- Excellent Image Quality
- red sensitive sensors \rightarrow good distances to higher-z SNe Ideal to measure SNe Ia at z = 0.8-1.3 and up

Next decade: DETF « Stage IV » ground based SN projects

The Large Synoptic Survey Telescope (LSST)

8m telescope with 9 deg2 fov

First light expected in ~2020

Wide Deep and Fast

=> will yield 250000 SN/yr !

Low AND high-z SN from the same instrument ... Repeat imaging (calibration <0.5%) + « sky » calibration

LSST : DE science with high statistics SN Ia

The large SN Ia statistic will allow to build SN Ia Hubble diagram for different directions in the sky. Will provide time-dependent imaging of an unprecedented sample of rare strong gravitational lensing events.

Space based cosmology with SN Ia

Detect/follow distant SN Ia from Space

First proposed in 1999 (SNAP) ϕ ~2m telescope 0.6 deg. carrés -Vis+NIR 0.4->1.7 µ 2000 SNe 0.2<z<1.7 in 3 yrs

+ Several incarnations : DESTINY, JEDI, JDEM, DUNE(+), EUCLID, ... now WFIRST, most aiming at weak lensing and/or BAO

2011 study based on a modified EUCLID concept (+filter wheel) All space SNe, no onboard spectroscopy 13000 SN up to z~1.5 with rest-frame NIR for a subsample $\sigma(W_p) = 0.03$ incl. systematics

A combined ground+EUCLID SN survey?

Euclid observation program : 20 deg2 \rightarrow 40 pointings, 4-day cadence visit : 1200(y) + 2100 (J) + 2100 (H)= 1.5 h

Over 6 months : 45 visits in total (2 mags deeper than one visit)

LSST deep drilling fields : Current baseline : 4-day cadence g:300 s, r:600s, i:600s, z : 780s, y4 : 600s

Total area ~ 4 fields over 10 seasons

Expected precision on w : ~2000 « well measured » SNe Lightcurves in z=(0.7-1.5) => δw ~0.03 (foM = 80)

Combined with lowz : foM~300

Oct 20, 2014

Summary

- SNe Ia distances combined with CMB and/or BAO remain the best probe to constraint the DE equation of state :
 - a 5% measure of a constant DE EoS, w, is achievable
 - currently little sensitivity to w(z)
- Including systematics and combined with BAO and CMB : w (cte) = 1.018 \pm 0.057 (~6%) compatible with a cosmological constant
- Photometric calibration is (by far) the dominant (known) systematics today. Good prospects to improve precision in the near future
- Expect further improvements with upcoming SN programs at Subaru and future large scale projects.

Oct 20, 2014

06D2ez	06D2fb	05D1hn	04D3bf	05D3ne	06D1ab	05D2ah	04D1dc
04D4ht	04D2bt	06D3cn	06D1du	03D3bb	05D3mq	05D1ly	03D3bh
06D3gn	04D3ez	06D3fp	hank	YOU	05D1by	05D2ja	06D1In
	0		•	-			
05D1ej	05D2ab	06D1hj	03D1fc	04D3kr	05D3hq	06D1hf	06D2ff
•					•		
03D1bp	04D2ac	06D1fd	05D2mp	03D3Ы	06D3dl	04D3fk	05D2el
Oct 20), 2014	0ED 4hrs	Kavli-IPMU	Tokyo	02D1ar	050244	50