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1998 : the systematic floor is reached?

1998
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Systematic floor reached ?

1998
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2011

Systematic floor reached ?
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- Using SNe Ia to measure cosmology

- The Supernova Legacy Survey

- Recent SDSS-SNLS JLA results 

- Ongoing and future SN Cosmology programs 

Precision Cosmology with SNe Ia
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Experimental Principle

dL
2 = L/4πf

Use Supernovae as distance indicators to measure the 
Luminosity distance dL

dL is sensitive to the expansion rate and to the Energy 
content of the Universe

2 observables :
flux: f

Redshift: z
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Assuming the Universe is composed of 2 « fluids » : Masse and X of density ρX

The Luminosity Distance 

Union sample
Suzuki et al, 2012
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What is dark energy ?

Measurement ingredients:  
• (High) redshift Type Ia Supernovae (SN Ia)
• additional constraint on  ΩΜ-> increase precision 

δw (w=-1) ~ 2.5 δm

Equ. of State

w = -1.1

w = -0.9
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A word on H0

Cosmological constraints on Ωm, ΩΛ and w come from a 
comparison of distant and nearby SN brightness

SN alone do not constrain H0

One needs to start with an absolute distance scale
e.g. distance to NGC 4258 and propagate it to galaxies 

hosting SNe (using cepheids for example) 

=> Additional (non SN) systematic uncertainties may 
affect this measurement
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SNe Ia are NOT standard candles

Very Luminous events
⇒ visible at cosmological 

distances

Show little luminosity dispersion

Supernovae Ia light curves
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Or is the progenitor a double 
degenerate system ?
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SNe Ia show Light Curve 
shape-luminosity relationships 

(similar to Cepheids P-L 
relation)

They also exhibit color 
luminosity relation (brighter-

bluer) 

⇒Allows us to measure 
- after empirical corrections -
distances to ~5% precision

(inter)-calibrating Supernovae Ia
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Modelling SNe Ia LC and spectra
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Not (yet) accurate enough to measure distances

=>  Treat SNe Ia empirically
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Extracting mb, s and c from observations

SN restframe fluxes at 
different redshifts

→ empirical model to 
interpolate between 
photometric 
measurements

→ Trained on sets of nearby 
& distant SNe

Several LC fitters : SALT2 (Guy et al, 2007), SIfTO (Conley et al, 
2008), MLCS2k2 (Jha et al, 2007), CMAGIC (Wang et al, 2003), ...
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Cosmology with SNe Ia

An empirical approach

Resframe apparent magnitude 
at maximum

Absolute magnitude 
at maximum

Light curve shape
correction

Color correction. Accounts for 
- extinction by dust
- intrinsic color variations
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Hubble residuals versus host mass

SNe Ia appear brighter (4σ) in massive galaxies after 
lightcurve shape and color correction

Subtle effect – 0.08mag – smaller than stretch and color
corrections
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SN Ia brightness vs Host type  
• No detailed understanding of SN Ia progenitors

• Are MB, α and β “universal” parameters? Any age or 
metallicity (environmental) dependence?

• ugrizJHK host data allows estimations of:
– Host star formation rate
– Host stellar mass content
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Improved Cosmological analysis

Two possible simplest ways to proceed:

1) Add a further linear host term, H, to the analysis:

– Requires very precise measure of H, and robust errors

2) Use two MB – one for high-mass galaxies and one for low-mass  

mB = mB - MB + a (s - 1) - bc + gH

  

mB = mB - MB
1 + a (s - 1) - bc   when H < Hsplit

mB = mB - MB
2 + a (s - 1) - bc   when H і Hsplit
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SNLS -The SuperNova Legacy Survey

http://www.cfht.hawaii.edu/SNLS
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SNLS : a “Rolling Search” survey with MegaCam

Each lunation (~18 nights) :
repeated observations

(every 3-4 night) of
2 fields in four bands (griz)+u
for as long as the fields stay

visible (~6 months) 

=>  ~500 SN Ia identified
(+ ~300 « photometric »)

observed between 2003 and 2008 
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using ~1500h of 4m for imaging
and ~1500 h of 8m for spectroscopy
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 ~250 Supernovae at 0.3 <z < 1.1 
 Two independent analyses (SN photometry, 

photometric calibration, light curve fitters)
 precise photometric calibration
 Improved supernova LC modeling (models trained on 

the SNLS data → bluer part of the restframe spectrum 
constrained without using observer frame U)

 Include host mass term
 Systematics included in the cosmology fit
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SNLS 3-yr analysis and combined constraints
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Statistics and Systematics
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Include systematics in the cosmological fit 
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242 SNLS SNe Ia, 123 Low-z SNe Ia
93 SDSS SNe Ia, 14 HST SNe Ia
472 SNe Ia total

Combined SN Hubble diagram
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SN only constraints on w 
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SN only constraints on w 
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Which systematics are dominant (SN only) ?
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SNLS3+WMAP7+BAO/DR7+H0

Consistent with cosmological constant
Error in w (flat): ~7% w/ systematics
Error is <9% (total) when Ωk=0 relaxed
Adding BAO/DR7 reduces w error from 11% to 9%

Flat:

Non-Flat:

Minus BAO:

Minus SNe:
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Recent results results from the 
SNLS-SDSS joint analysis 
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SNLS-SDSS joint Analysis
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Joint SDSS-SNLS analysis

SNLS SN data sample 
5 yr rolling search ~500 SNe Ia + ~300 “photometric” Ia
=> 3 yr “spectroscopic” sample : ~250 SNe Ia

SDSS SN data sample
3 yr rolling search ~ 500 SNe Ia + ~300 “photo Ia”
=> good quality spectrocopic sample : ~250 SNe Ia

Joint SDSS-SNLS analysis goals:
– Cross-calibrate (gain : ~2 in calib uncertainty)
– Validate LC fitter and joint LC training => reduce syst.
=> update cosmological constraint combining SNLS3+SDSS
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SNLS-SDSS (photometric) cross-calibration
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- direct observations of SDSS & HST stars
- several calibration paths

=> Achieve ~0.3% precision in g, r and i
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SDSS SN LC @ Z ~0.2 

SNLS SN LC @ Z ~0.5 
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SNLS-SDSS Joint Lightcurve Analysis
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JLA constraints in a flat wCDM model

Planck + BAO
w = -1.01 ± 0.08

Planck + SNe
w = -1.018 ± 0.057

(Betoule et al, 2014)
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Is Dark Energy the cosmological constant ?

Ingredients
− Large SDSS 

dataset
− Calibration 

accuracy
− Better CMB + 

BAO

=> DETF FoM ~30
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Ωm in a Flat ΛCDM model

Ωm measurement 
independent of CMB
and compatible with 
Planck.

Changes vs. SNLS3 driven by recalibration
(+ LC fitters)Oct 20, 2014 Kavli-IPMU Tokyo 36
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Ongoing and future SN programs 
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DICE: Direct Imaging Calibration Experiment
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LED base light source for a direct 
illumination of the primary mirror
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DICE : Model building and validation (alignment
exposures)
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DICE : Use for calibration and photometry 

Observed r band LED image Simulated Image (incl. ghosts)

Diffraction patterns
(dust + imperfections) Ghosts
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Ongoing SN Ia Cosmology programs  
Z<0.8 : 
SNF (200 z~0.05 SN with multi-epoch spectrophotometry  
PTF/LSQ : similar z, rolling trigger search+ follow-up 
CSP : VIS follow-up + NIR follow-up 
Pan Starrs/PS1 : target  several 100 SNe up to z0.6 
SNLS 5-yr : ~450 “specstrocopic” Ia + ~200 “photometric” Ia

z>1 :
HST measurement of o(10) SN to study specific issues (cluster selected 

SN, …) and constrain wa

Aim : robust combined statistic+systematic uncertainty on constant w and 
attempt at (precisely) measuring wa
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New (starting) DETF « STAGE III » SN programs  

Pan-starrs PS1+2 : 1.8m + 7 deg2, goal : o(1000) up to z=0.8
ZPTF (starts in 2015?) z~0.1 

DES : CTIO 4m + new 3deg2 mosaic camera
2012-2018 (primarily weak lensing)
goal: 4000 SNe up to z=1

Skymapper : 1.35m MSSO (Australia)
2015-2019 Rolling nearby (z~0.1) - yield ~100 SN Ia /yr

Z =0.8-1.3 : 
Subaru : 8.4m with HSC (1.5 deg FoV) : several 100 SNe per seasons

and up to z~1.6 when/if combined with HST 
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A SN Ia Rolling Search with Subaru

− 8-meters, 1.8 deg2

− Excellent Image Quality
− red sensitive sensors → good distances to higher-z SNe
Ideal to measure SNe Ia at z = 0.8-1.3 and up
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Next decade: 
DETF « Stage IV » ground based SN projects

The Large Synoptic Survey Telescope (LSST) 

8m telescope with 9 deg2 fov

First light expected in ~2020              

Wide Deep and Fast 

=> will yield 250000 SN/yr !

Low AND high-z SN from the same instrument  …
Repeat imaging (calibration <0.5%) + « sky » calibration
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LSST : DE science with high statistics SN Ia

All  SNeAll   SN Ia

Lensed  SN Ia All Lensed SNe 

Will provide time-dependent imaging 
of an unprecedented sample of rare 
strong gravitational lensing events. 
=> sensitive to H(z) at the lens location

The large SN Ia statistic will allow to 
build SN Ia Hubble diagram for 
different directions in the sky.
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Space based cosmology with SN Ia

Detect/follow distant SN Ia from Space 

First proposed in 1999 (SNAP)
φ~2m telescope 0.6 deg. carrés  -
Vis+NIR 0.4->1.7 µ
2000 SNe 0.2<z<1.7 in  3 yrs

+ Several incarnations : DESTINY, JEDI, JDEM, DUNE(+), EUCLID, 
… now WFIRST,  most aiming at weak lensing and/or BAO

2011 study based on a modified EUCLID concept (+filter wheel)
All space SNe, no onboard spectroscopy 
13000 SN up to z~1.5 with rest-frame NIR for a subsample 
σ(wp) = 0.03 incl. systematics 
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A combined ground+EUCLID SN survey?

Oct 20, 2014

Euclid observation program : 
20 deg2 → 40 pointings, 4-day cadence
visit : 1200(y) + 2100 (J) + 2100 (H)= 1.5 h

Over 6 months : 45 visits in total (2 mags
deeper than one visit) 

LSST deep drilling fields :
Current baseline : 4-day cadence 
g:300 s, r:600s, i:600s, z : 780s, y4 : 600s

Total area  ~ 4 fields over 10 seasons

Expected precision on w : 
~2000 « well measured » SNe
Lightcurves in z=(0.7-1.5) 
=> δw ~0.03 (foM = 80) 

Combined with lowz : foM~300 
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Summary
• SNe Ia distances combined with CMB and/or BAO remain the best 

probe to constraint the DE equation of state :
- a 5% measure of a constant DE EoS, w, is achievable
- currently little sensitivity to w(z)

• Including systematics and combined with BAO and CMB : w (cte) = -
1.018 ± 0.057 (~6%)  compatible with a cosmological constant

• Photometric calibration is (by far) the dominant (known) systematics 
today. Good prospects to improve precision in the near future

• Expect further improvements with upcoming SN programs at Subaru 
and future large scale projects.
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SN Cosmology from 1998 to 2014

1998 : O(50) SNe
2006 : O(100) SNe
2014 : O(1000) SNe

A factor 20 increase in statistics 
+ greatly reduced systematics 
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4. Host galaxies : trombi 1
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