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Plan

1. Serre and Tits symmetries, and their quantization : Lusztig's
symmetries.

2. Quantum groups, factorizable sheaves, and Fourier - Sato transform.

3. Balance and BV.

§1. Braid group actions

Let M be a finite dimensional representation of a complex semisimple Lie
group G. Then two objects act on G :

a) the Lie algebra g = Lie(G); (b) (an extension of) the Weyl group W.
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These two actions can be g-deformed.

1.1. Motivation : non-deformed case. Let g be a semisimple Lie
algebra over C. The set of weights Poids(L) of a finite dimensional
g-module L = L()\) is a convex W-invariant body.

In fact, W acts on Poids(L) and almost acts on L. For
1 < i < r =rankg, define

0i1 = fie7VieXi . | S5, (1.1.1)
where {X;, Y;, H;} is the corresponding s[(2)-triple. Then
0i(L.) = L) (1.1.2)

cf. [S], Ch. VII, §4, Remarque 1.

Let G be the simply connected Lie group corresponding to g; we have
W = N(T)/T. The elements 6; considered as elements of G, generate a
subgroup W C N(T), an extended Weyl group (Tits) included into an
extension

0— (2/22) — W — W — 0,



cf. [T]. The adjoint action of G on g thus induces an action of W on g.
On the other hand, (1.1.1) gives rise to an action of W on L, and we
have

w(gx) = w(g)w(x), we W, (1.1.3)
we W, gegxel.

1.2. A g-deformation : Lusztig's action. When we replace g by Uqg,
W will be replaced by the braid group B = B(W).

Geometric definition of B. Let R C b} be the root system of g. For
each a € R consider

H, = Ker(ac) = {x € | a(x) = 0} C b := b¢;

let

reg:h\UHa-

a€R
Then PB = m1(h™8), B = m1(h™8/ W) ; we have an exact sequence

1—-PB—B—W —1.

FOURIER - SATO TRANSFORM



There is a distinguished central element ¢ € PB which corresponds to a
loop passing through the opposite Weyl chambers ("the square of the
longest element of the Weyl group wy.")

In the simply laced case B is generated by T;,1 < i < r, subject to

relations
TTT =TT,

ifaj=—1,and T;T; = T;T; if a; = 0. O

Theorem, cf. [L], Ch. 39. One can introduce an action of B on u = u,g
and on integrable u-modules M in such a way that (1.1.3) holds true.

The action of the pure braid group on M respects the homogeneous
components M,,.

Our aim will be to give a geometric interpretation of the PB action on
M

-
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§2. Factorizable sheaves and quantum groups

Quantum groups and their representations are realized in some spaces of
(generalized) vanishing cycles.

Cf. [BFS].

2.1. We fix a finite root system R C V where (V,(,)) is a Euclidean
vector space with Cartan matrix A = (a;;), a base of simple roots

{ag, ..., a,},

and g € C*. Let ug4 denote the Lusztig's small quantum group.

Q+ = @;:1 NOC,' C Q — @,(:1 ZO(,'

For A € A = Homy(Q,Z) (the weight lattice), L(\) will denote the
irreducible u,-module of highest weight A.

L()‘) = Duecq, L()‘)/\—u



2.2. Configurational spaces, local systems. For
W= Zn,-oz,- € Qq, n= Zni
we define the spaces
X, = Div,(C) =C"/ [ =i = {(t))}
and Xp,, (one point is fixed at 0).
These spaces are naturally stratified ; we denote by
Ju: le — Xy Jap X(;u — Xo,u

the respective open strata.

Brading local system : £, over X? has monodromy —q((D:20)) when
t; turns around t;;

en plus, £y, has monodromy —q~(*2()) when ¢; turns around 0.
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2.3. From perverse sheaves to quantum groups and their
representations.

Middle extension. We set
Pu=JulLy € Perv(X,); Pay = jrusLony € Perv(Xy,)
Consider a function "the sum of coordinates"
f: Xy — C (2.3.1)

The complex of vanishing cycles ®¢(P, ,) is supported at the origin 0;
denote

O(Prp)) = (P )o- (2.3.2)

Theorem, cf. [BFS]. The complex ®(P, ,)) may have only one, the
zeroth, cohomology. We have natural isomorphisms

O(Pry) = LA)r-p.



In the same manner, the space ®(P,) of vanishing cycles on the main
diagonal of X), is identified with the homogeneous component 1 .

This theorem is a part of equivalence of ribbon (= braided balanced)
categories
¢: F§ — u— mod

Objects of F§ are certain special "factorizable" perverse sheaves on the
spaces Xy,

2.4. Microlocalization (Fourier - Sato transform) and the braid
group action. We may vary a function f (2.3.1) and get a local system
of spaces of vanishing cycles

&)Mt = {(Dy(ipk,u)O}

where y = dg runs through a complement to a finite collection of

hyperplanes in the cotangent space T§(Xo.,,).



On the other hand we have natural maps
Pu: b — TJ(XO;u)a

whence a local system
Vo k&
q))vu - gbuq)AvM
over some complement of hyperplanes in b.

Theorem, [FS]. Let g = e where v is a formal parmeter. (a) The local
system ¢X’” is smooth on h'8 (i.e. it has no monodromy around the
"superfluous" hyperplanes).

This way we get an action of PB on a fiber
((D}\/,u)e = q)(:PA:u)

(b) The isomorphism from [BFS]

q)(:PA;u) — L(A)A—u



is PB-equivariant, where on the rhs we consider the Lusztig's action of
PB.

83. Ribbon, Casimir (Laplacian), and BV

3.1. Let C be a braided tensor category, i.e. a tensor category equipped
with natural isomorphisms

RX7yZ X®Y;>Y®X, X, Yecl

satisfying Yang - Baxter equations.

A balance, aka ribbon structure on € is an automorphism of the
identity functor Ide, i.e. a collection of automorphisms

Ox : X — X

such that

9X®y(ex X ey)_l = RX7yRy7X. (3.1.1)



Thus "the square of R-matrix is a coboundary".

Example. € = u; — Mod. For each M € € we have the action of the
braid group B on M, and a central element ¢ € PB C B. The action of
c on M gives rise to a balance 6.

In other words, the action of the braid group may be considered as a
generalization of a balanced structure.

As was remarked by M.Kapranov, the formula (3.1.1) is analogous to the
classical relation bertween the resultant and the discriminants of two
polynomials

= R(f,g)?

cf. [Kap].
3.2. Explicit formula and Casimir. Cf. [CP]. Consider a C[h]]-Hopf
algebra U = U,g, with the antipode S and the R-matrix

ReU®U, R=1®1(h).



Set
u= ,U,(S (024 |d)R21 € U,

Then
z=uS(u) =S(v)ue Z(U).

One has a canonical isomorphism

Z(Ung) = Z(Ug). (3.2.1)
The image of z under (3.2.1) is more or less e where ¢ € U ~ is the
usual quadratic Casimir element.
Note that ¢ is geometrically a Laplace operator.

3.3. Batalin - Vilkovisky structures : another appearance of a
Laplacian. Recall that a Gerstenhaber algebra is a commutative dg
algebra C', so that we have a multiplication xy € C', x € C', y € C/,

equipped with a (shifted) Lie bracket

[x,y] € CW !t xe (', yed



such that two operations xy, [x, y] form a (—1)-shifted Z-graded Poisson
algebra.

Example. If X is a variety, A Tx, with the Schouten bracket.

A BV-algebra is a Gerstenhaber algebra C- equpped with an operator
A : C'—s C'— such that A?> =0 and

A(xy) — A(x)y — (—1)'xA(y) = (-1)'[x,y], x € C".

A is an odd differential operator of the second order with respect to the
multiplication, "an odd Laplacian".

Example. A" Tx if we have an integrable connection on wy, for example
if X is Calabi - Yau.

Hopf algebras are Koszul dual to Gerstenhaber algebras, cf. [K].

Under this duality the even Laplacian from 3.1, 3.2 corresponds to the
odd Laplacian from 3.3.
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