Higgs: Naturalness and Some Other Issues

Anirban Kundu

University of Calcutta

November 26, 2014 Kavli IPMU, Japan

Plan of the talk

- Naturalness, bottom-up
- Extended scalar sectors and naturalness

Plan of the talk

- Naturalness, bottom-up
- Extended scalar sectors and naturalness
- Effective operators and scattering unitarity

Plan of the talk

- Naturalness, bottom-up
- Extended scalar sectors and naturalness
- Effective operators and scattering unitarity

The Standard Model, based on the spontaneous breaking of $SU(2) \times U(1)$ by a complex scalar doublet, is now complete

 $m_h = 125.3 \pm 0.6 \; \text{GeV}$

Q: Why the Higgs is here and not at the Planck scale?

CounterQ: Why should it be when all the other particles are at the EW

scale or below?

The naturalness problem

Definition:

$$A = B + C$$
, $B \rightarrow B + \delta B \Rightarrow A \rightarrow A + \delta A$
If $|\delta A/A| \gg |\delta B/B|$, fine-tuning

EFT

The naturalness problem

Definition:

$$A = B + C$$
, $B \rightarrow B + \delta B \Rightarrow A \rightarrow A + \delta A$
If $|\delta A/A| \gg |\delta B/B|$, fine-tuning

- Fermion and gauge masses are protected by chiral and gauge symmetries
 - Radiative correction $\sim \ln(\Lambda^2/m^2)$, Λ is the cut-off scale, $\sim 10^{19}$ GeV

$$\underbrace{m_{\rm physical}^2}_{10^4} = m_{\rm bare}^2 + \underbrace{a\Lambda^2}_{10^{38}}$$

The naturalness problem

Definition:

Plan

$$A = B + C$$
, $B \rightarrow B + \delta B \Rightarrow A \rightarrow A + \delta A$
If $|\delta A/A| \gg |\delta B/B|$, fine-tuning

symmetries Radiative correction $\sim \ln(\Lambda^2/m^2)$, Λ is the cut-off scale, $\sim 10^{19}$ GeV

Fermion and gauge masses are protected by chiral and gauge

 m²Φ[†]Φ does not break any symmetry of the action Scalar mass not protected by any symmetry Quadratically divergent corrections

$$\underbrace{m_{\rm physical}^2}_{10^4} = m_{\rm bare}^2 + \underbrace{a\Lambda^2}_{10^{38}}$$

The naturalness problem

$$\delta m_h^2 = \frac{\Lambda^2}{16\pi^2} \left(6\lambda + \frac{3}{4}g_1^2 + \frac{9}{4}g_2^2 - 6g_t^2 \right) \equiv \frac{\Lambda^2}{16\pi^2} f_h \,,$$

Veltman Condition (Veltman 1981)

$$f_h = 0 \implies 2\lambda + \frac{1}{4}g_1^2 + \frac{3}{4}g_2^2 - 2g_t^2 = 0.$$

$$m_h^2 + 2m_W^2 + m_Z^2 - 4m_t^2 = 0$$
.

 $m_h = 316$ GeV, not satisfied in SM!

Two-loop: Hamada, Kawai, Oda (2012)

The naturalness problem

Plan

Top-down approaches to naturalness:

- Supersymmetry (new d.o.f. cancelling the divergence)
- Extra dimensions (lowering Λ)

The naturalness problem

Plan

Top-down approaches to naturalness:

- Supersymmetry (new d.o.f. cancelling the divergence)
- Extra dimensions (lowering Λ)
- Technicolour and variants (Higgs not a fundamental scalar)

The naturalness problem

Plan

Top-down approaches to naturalness:

- Supersymmetry (new d.o.f. cancelling the divergence)
- Extra dimensions (lowering Λ)
- Technicolour and variants (Higgs not a fundamental scalar)
- Little Higgs (pseudo-Goldstone of a higher symmetry group)

The naturalness problem

Plan

Top-down approaches to naturalness:

- Supersymmetry (new d.o.f. cancelling the divergence)
- Extra dimensions (lowering Λ)
- Technicolour and variants (Higgs not a fundamental scalar)
- Little Higgs (pseudo-Goldstone of a higher symmetry group)
- Anthropic principle (bizarre? not more than a cancellation of 1 in 10¹⁷)

What if we do not know the beyond-SM dynamics?

EFT

The naturalness problem

Plan

Top-down approaches to naturalness:

- Supersymmetry (new d.o.f. cancelling the divergence)
- Extra dimensions (lowering Λ)
- Technicolour and variants (Higgs not a fundamental scalar)
- Little Higgs (pseudo-Goldstone of a higher symmetry group)
- Anthropic principle (bizarre? not more than a cancellation of 1 in 10^{17})

The naturalness problem

Bottom-up:

Plan

Claim that the VC is somehow satisfied and try to find the dynamics

Pre-top and Higgs days: both λ and g_t unknown. Second condition came from the stability of the cancellation.

Post-top but pre-Higgs days: only λ unknown, VC predicts $m_h\sim 316$ GeV

The naturalness problem

Bottom-up:

Plan

Claim that the VC is somehow satisfied and try to find the dynamics

Pre-top and Higgs days: both λ and g_t unknown. Second condition came from the stability of the cancellation.

Post-top but pre-Higgs days: only λ unknown, VC predicts $m_h \sim 316$ GeV.

Even appealing to unknown symmetries needs new d.o.f. SUSY is the prime example of VC satisfaction with extra d.o.f.

The naturalness problem

Bottom-up:

Plan

Claim that the VC is somehow satisfied and try to find the dynamics

Pre-top and Higgs days: both λ and g_t unknown. Second condition came from the stability of the cancellation.

Post-top but pre-Higgs days: only λ unknown, VC predicts $m_h \sim 316$ GeV.

Even appealing to unknown symmetries needs new d.o.f.

SUSY is the prime example of VC satisfaction with extra d.o.f.

The naturalness problem

Plan

Does dimensional regularisation help?

Does not differentiate between log and quadratic divergences

$$\delta m_h^2 \propto rac{1}{\epsilon} \left(6\lambda + rac{1}{4}g_1^2 + rac{3}{4}g_2^2 - 6g_t^2
ight) \,.$$

Again, not satisfied in the SM — but the log-divergences have gone into this!

The naturalness problem

Plan

- Q. Is a strict implementation of VC necessary as a guiding principle?
 - Higher loop effects: suppressed by further powers of $\log(\Lambda^2/m^2)/16\pi^2$, subleading but definitely at the level of a few per cent.
 - Can always accommodate some fine-tuning: 0.1%? 1%? 10%? Without any fine-tuning : $|\delta m_h^2| \le m_h^2$

$$\left| m_h^2 + 2m_W^2 + m_Z^2 - 4m_t^2 \right| \le \frac{16\pi^2}{3} \frac{v^2}{\Lambda^2} m_h^2$$

Not satisfied in the SM for $v^2/\Lambda^2 \le 0.1 \Rightarrow \Lambda \ge 760$ GeV FT of 1 in N: scale goes up by \sqrt{N}

EFT

The naturalness problem

- Q. Is a strict implementation of VC necessary as a guiding principle?
 - Higher loop effects: suppressed by further powers of $\log(\Lambda^2/m^2)/16\pi^2$, subleading but definitely at the level of a few per cent.
 - Can always accommodate some fine-tuning: 0.1%? 1%? 10%? Without any fine-tuning : $|\delta m_h^2| \le m_h^2$

$$\left| m_h^2 + 2m_W^2 + m_Z^2 - 4m_t^2 \right| \le \frac{16\pi^2}{3} \frac{v^2}{\Lambda^2} m_h^2$$

Not satisfied in the SM for $v^2/\Lambda^2 \le 0.1 \Rightarrow \Lambda \ge 760$ GeV. FT of 1 in N: scale goes up by \sqrt{N}

The naturalness problem

Q: Where should the VC be valid? Ideally, at all scales below the cut-off

$$rac{d}{dt}\left(2\lambda + rac{1}{4}g_1^2 + rac{3}{4}g_2^2 - 2g_t^2
ight) \sim rac{v^2}{\Lambda^2}, \ \ t = \log(Q^2/\mu^2)$$

$$\begin{split} 1 - \mathrm{loop}: & \ 288\lambda^2 + 144g_t^2\lambda - 180g_t^4 - 36\lambda\left(g_1^2 + 3g_2^2\right) \\ + 25g_1^4 - 15g_2^4 + 9g_1^2g_2^2 + g_t^2\left(192g_3^2 + 34g_1^2 + 54g_2^2\right) & \sim \frac{v^2}{\Lambda^2} \,. \end{split}$$

The naturalness problem

Q: Where should the VC be valid? Ideally, at all scales below the cut-off

$$rac{d}{dt}\left(2\lambda + rac{1}{4}g_1^2 + rac{3}{4}g_2^2 - 2g_t^2
ight) \sim rac{v^2}{\Lambda^2}, \ \ t = \log(Q^2/\mu^2)$$

$$\begin{split} &1 - \mathrm{loop}: & 288\lambda^2 + 144g_t^2\lambda - 180g_t^4 - 36\lambda\left(g_1^2 + 3g_2^2\right) \\ & + 25g_1^4 - 15g_2^4 + 9g_1^2g_2^2 + g_t^2\left(192g_3^2 + 34g_1^2 + 54g_2^2\right) \sim \frac{v^2}{\Lambda^2} \,. \end{split}$$

Two-loop?

In any generic Yukawa theory, $f_h = 0$, $df_h/dt = 0$ using 1-loop β -fns imply precisely the same condition as quadratic divergences at 2-loop to (Einhorn and Jones 1992, Al-sarhi, Jack, and Jones 1992, vanish

The naturalness problem

- There must be new bosonic d.o.f that couple to Φ All scalars do that through $S^{\dagger}S\Phi^{\dagger}\Phi$
- The scalar potential must be stable

The naturalness problem

- There must be new bosonic d.o.f that couple to Φ All scalars do that through $S^{\dagger}S\Phi^{\dagger}\Phi$
- The scalar potential must be stable
- The new scalars must also have their own VC satisfied
 ⇒ Must have fermionic couplings

The naturalness problem

- There must be new bosonic d.o.f that couple to Φ All scalars do that through $S^{\dagger}S\Phi^{\dagger}\Phi$
- The scalar potential must be stable
- The new scalars must also have their own VC satisfied
 - ⇒ Must have fermionic couplings

Scalar extensions

Plan

Singlet

With or without Z_2 , can be a DM candidate with Z_2 if does not mix with Φ . Need new fermions though

2HDIV

With or without Z_2 , no extra fermions needed

Scalar extensions

Plan

Singlet

With or without Z_2 , can be a DM candidate with Z_2 if does not mix with Φ . Need new fermions though

- 2HDM
 - With or without Z_2 , no extra fermions needed
- Triplet
 Neutrino mass generation, VC for triplets with $\Delta L = 2$

Scalar extensions

Plan

Singlet

With or without Z_2 , can be a DM candidate with Z_2 if does not mix with Φ . Need new fermions though

2HDM

With or without Z_2 , no extra fermions needed

Triplet

Neutrino mass generation, VC for triplets with $\Delta L=2$

• Higher-dimensional operators e.g. $(a/\Lambda^2)(\Phi^{\dagger}\Phi)^3$ leads to quadratic divergences

Scalar extensions

Plan

Singlet

With or without Z_2 , can be a DM candidate with Z_2 if does not mix with Φ. Need new fermions though

2HDM

With or without Z_2 , no extra fermions needed

Triplet

Neutrino mass generation, VC for triplets with $\Delta L = 2$

Higher-dimensional operators

e.g. $(a/\Lambda^2)(\Phi^{\dagger}\Phi)^3$ leads to quadratic divergences

Plan

Minimal extension, DM, solution to FT (AK and Raychaudhuri 1996, Drozd, Grzadkowski, Wudka 2012, Chakraborty and AK 2013, Bazzocchi and Fabbrichesi 2013)

$$V(\Phi,S) = V_{\rm SM} + V_{\rm singlet} = -\mu^2 \Phi^\dagger \Phi + \lambda (\Phi^\dagger \Phi)^2 - M^2 S^2 + \tilde{\lambda} S^4 + a S^2 (\Phi^\dagger \Phi).$$

 $Z_2: S \rightarrow -S. \ \mu^2, M^2 > 0$ to start with.

 $\lambda, \tilde{\lambda} > 0$ for stability

Extra terms without Z_2

$$V_{Z_2} = cS^3 + \underbrace{\alpha_1 S + \alpha_2 \Phi^{\dagger} \Phi S}_{\text{tadpole}}$$

Minimal extension, DM, solution to FT (AK and Raychaudhuri 1996, Drozd, Grzadkowski, Wudka 2012, Chakraborty and AK 2013, Bazzocchi and Fabbrichesi 2013)

$$V(\Phi,S) = V_{\rm SM} + V_{\rm singlet} = -\mu^2 \Phi^\dagger \Phi + \lambda (\Phi^\dagger \Phi)^2 - M^2 S^2 + \tilde{\lambda} S^4 + a S^2 (\Phi^\dagger \Phi).$$

 $Z_2: S \rightarrow -S. \ \mu^2, M^2 > 0$ to start with.

 $\lambda, \tilde{\lambda} > 0$ for stability

Extra terms without Z_2 :

$$V_{Z_2} = cS^3 + \underbrace{\alpha_1 S + \alpha_2 \Phi^{\dagger} \Phi S}_{\text{tadpole}}$$

For N singlets with an O(N) symmetry

$$V(\Phi,S_i) = V_{\mathrm{SM}} - M^2 \sum_i S_i^2 + ilde{\lambda} \left(\sum_i S_i^2
ight)^2 + a(\Phi^\dagger \Phi) \sum_i S_i^2$$

Minimal extension, DM, solution to FT (AK and Raychaudhuri 1996, Drozd, Grzadkowski, Wudka 2012, Chakraborty and AK 2013, Bazzocchi and Fabbrichesi 2013)

$$V(\Phi,S) = V_{\rm SM} + V_{\rm singlet} = -\mu^2 \Phi^\dagger \Phi + \lambda (\Phi^\dagger \Phi)^2 - M^2 S^2 + \tilde{\lambda} S^4 + a S^2 (\Phi^\dagger \Phi).$$

 $Z_2:S\to -S.~\mu^2,M^2>0$ to start with.

 $\lambda, \tilde{\lambda} > 0$ for stability

Extra terms without Z_2 :

$$V_{Z_2} = cS^3 + \underbrace{\alpha_1 S + \alpha_2 \Phi^{\dagger} \Phi S}_{\text{tadpole}}$$

For N singlets with an O(N) symmetry

$$V(\Phi, S_i) = V_{\mathrm{SM}} - M^2 \sum_i S_i^2 + \tilde{\lambda} \left(\sum_i S_i^2\right)^2 + a(\Phi^{\dagger}\Phi) \sum_i S_i^2$$
.

Doublet VC with one singlet

$$\delta m_h^2 = \frac{\Lambda^2}{16\pi^2} \left(6\lambda + \frac{3}{4}g_1^2 + \frac{9}{4}g_2^2 - 6g_t^2 + a \right) = \frac{\Lambda^2}{16\pi^2} f_h \,.$$

N identical singlets : $a \rightarrow Na$.

 $a=4.17/\sqrt{N}$

Risk of hitting the Landau pole at a low energy!

Singlet VC

$$\delta m_S^2 = \frac{\Lambda^2}{16\pi^2} [(8+4N)\tilde{\lambda} + 4a]$$

 $\tilde{\lambda} < 0$, unstable potential, ruled out !

Doublet VC with one singlet

$$\delta m_h^2 = \frac{\Lambda^2}{16\pi^2} \left(6\lambda + \frac{3}{4}g_1^2 + \frac{9}{4}g_2^2 - 6g_t^2 + a \right) = \frac{\Lambda^2}{16\pi^2} f_h.$$

N identical singlets : $a \rightarrow Na$.

 $a=4.17/\sqrt{N}$

Risk of hitting the Landau pole at a low energy!

Singlet VC

$$\delta m_{\rm S}^2 = \frac{\Lambda^2}{16\pi^2} [(8+4N)\tilde{\lambda} + 4a].$$

 $\tilde{\lambda} <$ 0, unstable potential, ruled out !

Singlet scalar extension

Introduce fermions vectorial under SU(2)

$$\mathcal{L}_{VF} = -m_F \bar{F} F - \zeta_F \bar{F} F S \,,$$

 \Rightarrow Does not couple with Φ : SM VC unaffected

 $\Rightarrow M_{VF} = m_F + \zeta_F \langle S \rangle, S \rightarrow -S \Longrightarrow F \rightarrow i \gamma_5 F$, no bare mass term

 \Rightarrow For $\langle S \rangle = 0$, $M_{VF} = m_F$, expt: $m_F \geq 500$ GeV

Singlet VC

$$\delta m_S^2 = \frac{\Lambda^2}{16\pi^2} [(8+4N)\tilde{\lambda} + 4a - 4Z^2],$$

$$Z^2 = \sum_i N_c \zeta_i^2 = \zeta_E^2 + \zeta_N^2 + 3(\zeta_U^2 + \zeta_D^2) = 8\zeta^2,$$

Degenerate VF generation: no extra contribution to S and T

Singlet-doublet mixing

$$V\supset -M^2S^2+\tilde{\lambda}S^4+aS^2(\Phi^\dagger\Phi),\ M^2>0\Rightarrow \langle S
angle
eq 0$$

Minimization

$$-\mu^2 + \lambda v^2 + a{v'}^2 = 0$$
, $-M^2 + 2\tilde{\lambda}{v'}^2 + \frac{1}{2}av^2 = 0$,

Mass matrix

$$\begin{pmatrix} h & S \end{pmatrix} \mathcal{M} \begin{pmatrix} h \\ S \end{pmatrix} = \begin{pmatrix} h & S \end{pmatrix} \begin{pmatrix} \lambda v^2 & avv' \\ avv' & 4\tilde{\lambda}v'^2 \end{pmatrix} \begin{pmatrix} h \\ S \end{pmatrix}.$$

Real masses: $4\lambda \tilde{\lambda} \geq a^2$

Too large $\tilde{\lambda}$, nonperturbative, hits Landau pole quickly

Singlet-doublet mixing

$$V\supset -M^2S^2+\tilde{\lambda}S^4+aS^2(\Phi^\dagger\Phi),\ M^2>0\Rightarrow \langle S
angle
eq 0$$

Minimization

$$-\mu^2 + \lambda v^2 + a v'^2 = 0$$
, $-M^2 + 2\tilde{\lambda} v'^2 + \frac{1}{2} a v^2 = 0$,

Mass matrix

$$\begin{pmatrix} h & S \end{pmatrix} \mathcal{M} \begin{pmatrix} h \\ S \end{pmatrix} = \begin{pmatrix} h & S \end{pmatrix} \begin{pmatrix} \lambda v^2 & avv' \\ avv' & 4\tilde{\lambda}v'^2 \end{pmatrix} \begin{pmatrix} h \\ S \end{pmatrix}.$$

Real masses: $4\lambda\tilde{\lambda} \geq a^2$

Too large $\tilde{\lambda}$, nonperturbative, hits Landau pole quickly

More than one singlet? $O(N) \rightarrow N-1$ Goldstones \Rightarrow large Γ_{invis}

Singlet-doublet mixing

$$V\supset -M^2S^2+\tilde{\lambda}S^4+aS^2(\Phi^\dagger\Phi),\ M^2>0\Rightarrow \langle S
angle
eq 0$$

Minimization

$$-\mu^2 + \lambda v^2 + a v'^2 = 0$$
, $-M^2 + 2\tilde{\lambda} v'^2 + \frac{1}{2} a v^2 = 0$,

Mass matrix

$$\begin{pmatrix} h & S \end{pmatrix} \mathcal{M} \begin{pmatrix} h \\ S \end{pmatrix} = \begin{pmatrix} h & S \end{pmatrix} \begin{pmatrix} \lambda v^2 & avv' \\ avv' & 4\tilde{\lambda}v'^2 \end{pmatrix} \begin{pmatrix} h \\ S \end{pmatrix}.$$

Real masses: $4\lambda\tilde{\lambda} \geq a^2$

Too large $\tilde{\lambda}$, nonperturbative, hits Landau pole quickly More than one singlet? $O(N) \to N-1$ Goldstones \Rightarrow large Γ_{invis}

Singlet-doublet mixing

$$V\supset -M^2S^2+\tilde{\lambda}S^4+aS^2(\Phi^\dagger\Phi),\ M^2>0\Rightarrow \langle S
angle
eq 0$$

Minimization

$$-\mu^2 + \lambda v^2 + a {v'}^2 = 0$$
, $-M^2 + 2\tilde{\lambda} {v'}^2 + \frac{1}{2} a v^2 = 0$,

Mass matrix

$$\begin{pmatrix} h & S \end{pmatrix} \mathcal{M} \begin{pmatrix} h \\ S \end{pmatrix} = \begin{pmatrix} h & S \end{pmatrix} \begin{pmatrix} \lambda v^2 & avv' \\ avv' & 4\tilde{\lambda}v'^2 \end{pmatrix} \begin{pmatrix} h \\ S \end{pmatrix}.$$

Real masses: $4\lambda\tilde{\lambda} > a^2$

Too large $\tilde{\lambda}$, nonperturbative, hits Landau pole quickly More than one singlet? $O(N) \to N-1$ Goldstones \Rightarrow large Γ_{invis} No mixing, v'=0, h is pure doublet

Possible DM candidate

$$m_S = 200-700 \text{ GeV (top to bottom)}$$

LP (top), pert. (bottom)

 Φ_1 and Φ_2 , both with Y=1:

$$\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \rho_1 + \nu_1 \end{pmatrix} \,, \\ \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \rho_2 + \nu_2 \end{pmatrix} \,, \quad \ \, \tan\beta = \frac{\nu_2}{\nu_1} \,$$

Four types of 2HDM, based on no tree-level FCNC (Glashow and Weinberg 1977, Paschos 1977):

- \bullet Type-I : none with $\Phi_1,$ all with Φ_2
- Type-II : $T_3 = -\frac{1}{2}$ to Φ_1 , $T_3 = +\frac{1}{2}$ to Φ_2
- Flipped : d_i to Φ_1 , u_i , ℓ_i to Φ_2
- Lepton-specific : leptons to Φ_1 , quarks to Φ_2

EFT

Two-Higgs doublet models

 Φ_1 and Φ_2 , both with Y=1:

$$\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \rho_1 + \nu_1 \end{pmatrix} \,, \\ \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \rho_2 + \nu_2 \end{pmatrix} \,, \quad \ \, \tan\beta = \frac{\nu_2}{\nu_1} \,$$

Four types of 2HDM, based on no tree-level FCNC (Glashow and Weinberg 1977, Paschos 1977):

- Type-I : none with Φ_1 , all with Φ_2
- Type-II : $T_3=-\frac{1}{2}$ to Φ_1 , $T_3=+\frac{1}{2}$ to Φ_2
- Flipped : d_i to Φ_1 , u_i , ℓ_i to Φ_2
- Lepton-specific : leptons to Φ_1 , quarks to Φ_2

Can be managed with some discrete symmetry like $\Phi_1 \to -\Phi_1$, $\Phi_2 \to \Phi_2$

EFT

Two-Higgs doublet models

 Φ_1 and Φ_2 , both with Y=1:

$$\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \rho_1 + \nu_1 \end{pmatrix} \,, \\ \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \rho_2 + \nu_2 \end{pmatrix} \,, \quad \tan \beta = \frac{\nu_2}{\nu_1}$$

Four types of 2HDM, based on no tree-level FCNC (Glashow and Weinberg 1977, Paschos 1977):

- Type-I : none with Φ_1 , all with Φ_2
- Type-II : $T_3=-\frac{1}{2}$ to Φ_1 , $T_3=+\frac{1}{2}$ to Φ_2
- Flipped : d_i to Φ_1 , u_i , ℓ_i to Φ_2
- Lepton-specific : leptons to Φ_1 , quarks to Φ_2

Can be managed with some discrete symmetry like $\Phi_1 \to -\Phi_1$, $\Phi_2 \to \Phi_2$

Scalar potential

$$\begin{split} V &= m_{11}^2 \boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_1 + m_{22}^2 \boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_2 - \underbrace{m_{12}^2 \left(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_2 + \boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_1\right)}_{\mathcal{I}_2} \\ &+ \frac{1}{2} \lambda_1 \left(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_1\right)^2 + \frac{1}{2} \lambda_2 \left(\boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_2\right)^2 + \lambda_3 \left(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_1\right) \left(\boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_2\right) \\ &+ \lambda_4 \left(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_2\right) \left(\boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_1\right) + \frac{1}{2} \lambda_5 \left[\left(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_2\right)^2 + \left(\boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_1\right)^2\right] \,. \end{split}$$

Mass eigenstates

$$h = \rho_2 \cos \alpha - \rho_1 \sin \alpha$$
, $H = \rho_2 \sin \alpha + \rho_1 \cos \alpha$.

$$h(H)$$
 is SM-like if $\cos(\beta - \alpha)(\sin(\beta - \alpha)) \sim 0$

Scalar potential

$$\begin{split} V &= m_{11}^2 \boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_1 + m_{22}^2 \boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_2 - \underbrace{m_{12}^2 \left(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_2 + \boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_1\right)}_{\boldsymbol{\mathcal{Z}}_2} \\ &+ \frac{1}{2} \lambda_1 \left(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_1\right)^2 + \frac{1}{2} \lambda_2 \left(\boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_2\right)^2 + \lambda_3 \left(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_1\right) \left(\boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_2\right) \\ &+ \lambda_4 \left(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_2\right) \left(\boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_1\right) + \frac{1}{2} \lambda_5 \left[\left(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_2\right)^2 + \left(\boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_1\right)^2\right]. \end{split}$$

Mass eigenstates

$$h = \rho_2 \cos \alpha - \rho_1 \sin \alpha$$
, $H = \rho_2 \sin \alpha + \rho_1 \cos \alpha$.

$$h(H)$$
 is SM-like if $\cos(\beta - \alpha)(\sin(\beta - \alpha)) \sim 0$

Stability of the potential

$$\lambda_1, \lambda_2 \geq 0, \quad \lambda_3 \geq -\sqrt{\lambda_1 \lambda_2}, \quad \lambda_3 + \lambda_4 - |\lambda_5| \geq -\sqrt{\lambda_1 \lambda_2}.$$

- λ_3 , λ_4 , and λ_5 can potentially be negative
- Can be more than one minimum, chance for false vacuum transition
- If there is a true minimum, charge or CP violating extrema can only be saddle points (Barroso et al. 2013)

Yukawa couplings

$$\mathcal{L}_{Y} = -\sum_{i=1}^{2} \left[Y_{j}^{d} \bar{Q}_{L} d_{R} \Phi_{j} + Y_{j}^{u} \bar{Q}_{L} u_{R} \tilde{\Phi}_{j} + Y_{j}^{e} \bar{L}_{L} I_{R} \Phi_{j} + \text{h.c.} \right],$$

VC without Yukawa

$$\delta' m_{\rho_1}^2 = \frac{\Lambda^2}{16\pi^2} \left[\left(\frac{9}{4} g_2^2 + \frac{3}{4} g_1^2 \right) + 2\lambda_3 + 3\lambda_1 + \lambda_4 \right] \equiv \frac{\Lambda^2}{16\pi^2} f_{\rho_1}',$$

$$\delta' m_{\rho_2}^2 = \frac{\Lambda^2}{16\pi^2} \left[\left(\frac{9}{4} g_2^2 + \frac{3}{4} g_1^2 \right) + 2\lambda_3 + 3\lambda_2 + \lambda_4 \right] \equiv \frac{\Lambda^2}{16\pi^2} f_{\rho_2}'.$$

VC without Yukawa

$$\delta' m_{\rho_1}^2 = \frac{\Lambda^2}{16\pi^2} \left[\left(\frac{9}{4} g_2^2 + \frac{3}{4} g_1^2 \right) + 2\lambda_3 + 3\lambda_1 + \lambda_4 \right] \equiv \frac{\Lambda^2}{16\pi^2} f_{\rho_1}',$$

$$\delta' m_{\rho_2}^2 = \frac{\Lambda^2}{16\pi^2} \left[\left(\frac{9}{4} g_2^2 + \frac{3}{4} g_1^2 \right) + 2\lambda_3 + 3\lambda_2 + \lambda_4 \right] \equiv \frac{\Lambda^2}{16\pi^2} f_{\rho_2}'.$$

No solution, but Yukawas are there (rules out type-I)

VC with Yukawa

• Type II:

$$f_{\rho_1} = f'_{\rho_1} - 3(Y_1^b)^2 - (Y_1^\tau)^2, \quad f_{\rho_2} = f'_{\rho_2} - 3(Y_2^t)^2.$$

• Lepton-specific:

$$f_{\rho_1} = f'_{\rho_1} - (Y_1^{\tau})^2$$
, $f_{\rho_2} = f'_{\rho_2} - 3(Y_2^b)^2 - 3(Y_2^t)^2$.

Flipped:

$$f_{\rho_1} = f'_{\rho_1} - 3(Y_1^b)^2$$
, $f_{\rho_2} = f'_{\rho_2} - 3(Y_2^t)^2 - (Y_2^\tau)^2$.

If $\lambda_1 \sim \lambda_2$, all Yukawas must be of the same order

 \Rightarrow Naturalness solution prefers large tan β

EFT

Scanned over a large range of perturbative couplings (Chakraborty and AK 2014)

$\tan \beta$ ranges

Plan

- ullet Type-II: 31 50, increases linearly with λ_1 , $Y_t \sim Y_b$
- ullet Flipped: 40 51, otherwise same as Type-II, $Y_t \sim Y_b$ but $Y_ au$ on the other side
- Lepton-specific: $\tan \beta > 140$, as $Y_t \sim Y_\tau$. Makes potential unstable at a very low energy $\sim 1 \, TeV$

Scanned over a large range of perturbative couplings (Chakraborty and AK 2014)

$\tan \beta$ ranges

Plan

- ullet Type-II: 31 50, increases linearly with $\lambda_1,\ Y_t \sim Y_b$
- ullet Flipped: 40 51, otherwise same as Type-II, $Y_t \sim Y_b$ but $Y_ au$ on the other side
- Lepton-specific: $\tan \beta >$ 140, as $Y_t \sim Y_\tau$. Makes potential unstable at a very low energy $\sim 1 \, TeV$
- Only type-II and flipped models are allowed with naturalness constraints

Scanned over a large range of perturbative couplings (Chakraborty and AK 2014)

$\tan \beta$ ranges

Plan

- ullet Type-II: 31 50, increases linearly with $\lambda_1,\ Y_t \sim Y_b$
- ullet Flipped: 40 51, otherwise same as Type-II, $Y_t \sim Y_b$ but $Y_ au$ on the other side
- Lepton-specific: $\tan \beta >$ 140, as $Y_t \sim Y_\tau$. Makes potential unstable at a very low energy $\sim 1 \, TeV$
- Only type-II and flipped models are allowed with naturalness constraints

Triplet scalars

Plan

SM + complex triplet X of scalars (Y = 2) Can generate neutrino mass through $\Delta L = 2$ terms

$$\langle \phi^0 \rangle = \frac{v_1}{\sqrt{2}}, \quad \langle X^0 \rangle = v_2, \quad X = \begin{pmatrix} X^+/\sqrt{2} & X^{++} \\ X^0 & -X^+/\sqrt{2} \end{pmatrix}$$

Triplet scalars

Plan

SM + complex triplet X of scalars (Y = 2) Can generate neutrino mass through $\Delta L = 2$ terms

$$\langle \phi^0 \rangle = \frac{v_1}{\sqrt{2}}, \quad \langle X^0 \rangle = v_2, \quad X = \begin{pmatrix} X^+/\sqrt{2} & X^{++} \\ X^0 & -X^+/\sqrt{2} \end{pmatrix}.$$

 $v_2 \ll v_1$ for $\delta \rho \sim$ 0: at most a few GeV doublet-triplet mixing is negligible

$$V_{\Delta L=2} = -if_{ab}L_a^T C^{-1}\tau_2 X L_b + \text{h.c.}$$

Take $f_{ab} = f \delta_{ab}$ for simplicity.

Plan

SM + complex triplet X of scalars (Y = 2) Can generate neutrino mass through $\Delta L = 2$ terms

$$\langle \phi^0 \rangle = \frac{v_1}{\sqrt{2}}, \quad \langle X^0 \rangle = v_2, \quad X = \begin{pmatrix} X^+/\sqrt{2} & X^{++} \\ X^0 & -X^+/\sqrt{2} \end{pmatrix}.$$

 $v_2 \ll v_1$ for $\delta \rho \sim$ 0: at most a few GeV doublet-triplet mixing is negligible

$$\Delta L = 2$$
 terms

$$V_{\Delta L=2} = -if_{ab}L_a^T C^{-1} \tau_2 X L_b + \text{h.c.}.$$

Take $f_{ab} = f \delta_{ab}$ for simplicity.

Triplet scalars

Scalar potential

$$V = -\mu_{1}^{2}(\Phi^{\dagger}\Phi) + \mu_{2}^{2}(X^{\dagger}X) + a_{0}(\Phi\Phi X^{\dagger}) + h.c. + \lambda_{1}(\Phi^{\dagger}\Phi)^{2} + \lambda_{2}(X^{\dagger}X)^{2} + \lambda_{3}(\Phi^{\dagger}\Phi)(X^{\dagger}X) + \lambda_{4}(\Phi^{\dagger}\tau_{i}\Phi)(X^{\dagger}t_{i}X) + \lambda_{5} \left| X^{T}\tilde{C}X \right|^{2},$$

$$\tilde{C} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

- Triplets can be heavy even with small v_2
- Without trilinear, global $O(2) \Rightarrow Goldstone$ in spectrum
- $X \rightarrow -X$ forbids the trilinear but also the $\Lambda I = 2$ term

Triplet scalars

Scalar potential

$$V = -\mu_{1}^{2}(\Phi^{\dagger}\Phi) + \mu_{2}^{2}(X^{\dagger}X) + a_{0}(\Phi\Phi X^{\dagger}) + h.c. + \lambda_{1}(\Phi^{\dagger}\Phi)^{2} + \lambda_{2}(X^{\dagger}X)^{2} + \lambda_{3}(\Phi^{\dagger}\Phi)(X^{\dagger}X) + \lambda_{4}(\Phi^{\dagger}\tau_{i}\Phi)(X^{\dagger}t_{i}X) + \lambda_{5} \left| X^{T}\tilde{C}X \right|^{2},$$

$$\tilde{C} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

- Triplets can be heavy even with small v_2
- Without trilinear, global $O(2) \Rightarrow Goldstone$ in spectrum
- $X \rightarrow -X$ forbids the trilinear but also the $\Delta L = 2$ term

2HDM

Stability conditions

$$\lambda_1, \lambda_2 \geq 0, \lambda_2 + 2\lambda_5 \geq 0, \lambda_3 \pm \lambda_4 \geq -2\sqrt{\lambda_1\lambda_2}$$

Doublet VC

$$6\lambda_1 + 3\lambda_3 + \frac{3}{4}g_1^2 + \frac{9}{4}g_2^2 - 6g_t^2 = 0 \implies \lambda_3 \approx 1.4$$

Triplet VC

$$4\lambda_2 + \lambda_3 + 2\lambda_5 + \frac{1}{2}g_1^2 + g_2^2 - 3f^2 = 0$$

Normal hierarchy: $3f^2 \to f_{\rm normal}^2$, inv. hierarchy: $3f^2 \to f_{\rm inv}^2$ Like singlet, triplet models are also valid only up to $\sim 10^7~{\rm GeV}$

(Chakraborty and AK 2014)

Naturalness in an effective theory

Suppose all new particles are heavy and there is only an EFT

$$\mathcal{L}_{ ext{eff}} = \sum_{n=1}^{\infty} \frac{1}{\Lambda^n} \sum_i C_i \mathcal{O}_i$$

$$\delta m_h^2 = \frac{\Lambda^2}{16\pi^2} \left| F^{\text{eff}} - 8.2 \right| \,.$$

FT if $m_h^2 \ll \Lambda^2$

(Bar-shalom et al. 2014)

Plan

EET

Part II: Constraints on an Effective Theory

EFT and Scattering Unitarity

Dim-4 couplings can be modified

Effective Lagrangian

$$\mathcal{L}_{\mathrm{eff}} = g_{t} \frac{\sqrt{2m_{t}}}{v} h \bar{t} t + g_{W} \frac{2m_{W}^{2}}{v} h W_{\mu}^{+} W^{\mu-} + g_{Z} \frac{m_{Z}^{2}}{v} h Z_{\mu} Z^{\mu}$$

 $g_t, g_W, g_Z = 1$ in SM

LHC best fits are close to the SM values but $\sim 10\%$ deviations can be entertained

- Partial wave unitarity may get spoiled
- Vacuum stability may get affected

(Choudhury, Islam, AK 2014)

EFT and Scattering Unitarity

Dim-4 couplings can be modified

Effective Lagrangian

$$\mathcal{L}_{\text{eff}} = g_t \frac{\sqrt{2m_t}}{v} h \bar{t} t + g_W \frac{2m_W^2}{v} h W_{\mu}^+ W^{\mu-} + g_Z \frac{m_Z^2}{v} h Z_{\mu} Z^{\mu}$$

 $g_t, g_W, g_Z = 1$ in SM

LHC best fits are close to the SM values but $\sim 10\%$ deviations can be entertained

- Partial wave unitarity may get spoiled
- Vacuum stability may get affected

(Choudhury, Islam, AK 2014)

Plan Naturalness New scalars: singlet 2HDM Triplet EFT

EFT and Scattering Unitarity

Unpolarized $WW \rightarrow WW$ (L) and $W_LW_L \rightarrow W_LW_L$ (R) x-sec

EFT and Scattering Unitarity

$$V_i V_i \rightarrow t \bar{t}$$

$$a_\ell \equiv rac{1}{32\,\pi} \int_{-1}^1 d\cos heta \; P_\ell(\cos heta) \; \mathcal{M}(s,\cos heta;\{m_i,g_i\}) \,, \quad |Re(a_\ell)| < rac{1}{2} \,, \;\; orall \ell$$

Most sensitive $a_0(0, 0, 1, 1) \equiv a_0(W_t^+ W_t^- \to t_+ \bar{t}_+)$

EFT and Scattering Unitarity

x-sec falls if and only of $g_t g_W = 1$ ($WW o t \overline{t}$) and $g_t g_Z = 1$ ($ZZ o t \overline{t}$)

Plan Naturalness New scalars: singlet 2HDM Triplet EFT

EFT and Scattering Unitarity

If $g_t \neq 1$, the vacuum may get unstable at a much lower scale!

RG running of λ_1 (L) and top Yukawa (R)

Naturalness New scalars: singlet 2HDM

Conclusions

Plan

- The demand for naturalness can put strong constraints on any BSM theory
- As an example, we show that it leads to new bosonic d.o.f.
- Discussed consequences in three typical scalar extensions: singlet, 2HDM, complex triplet
- Singlets: More than one favoured, possible DM candidate
- 2HDM: Large tan β regions favoured

Triplet

EET

Naturalness New scalars: singlet 2HDM

Conclusions

Plan

- The demand for naturalness can put strong constraints on any BSM theory
- As an example, we show that it leads to new bosonic d.o.f.
- Discussed consequences in three typical scalar extensions: singlet, 2HDM, complex triplet
- Singlets: More than one favoured, possible DM candidate
- 2HDM: Large tan β regions favoured
- Assuming that there are some new heavy d.o.f. we show how the modifications in effective W, Z, and t couplings to h can lead to violation of unitarity in $V_L V_L$ scattering and also make the vacuum unstable at a lower scale

Triplet

EET

Naturalness New scalars: singlet 2HDM Triplet

Conclusions

Plan

- The demand for naturalness can put strong constraints on any BSM theory
- As an example, we show that it leads to new bosonic d.o.f.
- Discussed consequences in three typical scalar extensions: singlet, 2HDM, complex triplet
- Singlets: More than one favoured, possible DM candidate
- ullet 2HDM: Large tan eta regions favoured
- Assuming that there are some new heavy d.o.f. we show how the modifications in effective W, Z, and t couplings to h can lead to violation of unitarity in $V_L V_L$ scattering and also make the vacuum unstable at a lower scale

EET

Arigatou!

EFT