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Integrability in 2D

2D R-matrix

R:Ve@V = V®V ie RcEnd(V*?)

space of 1-particle states
V =@®,C|n) = { P P

space of local spin states

R(Iiy @ 1) =Y R’la) ® |b)

ab

R— 2 particle scattering amplitude in (1+1)D
local Boltzmann weight of the vertex in 2D
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Yang-Baxter equation
Ri2R13R23 = RasRizRi2 € End(V®?),
where Rj; acts on the jth and jth components:

Ro:VeVeV, Rs3:VaVeV, Rz:VeaVeV

Yang-Baxter equation implies
e Factorization of 3 particle scattering amplitude into 2 body ones
e Commutativity of row transfer matrices in lattice models

Key to quantum integrability in 2D
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Integrability in the presence of boundary reflections

K= : V. — V' (reflection amplitude matrix)

Reflection equation

Ry1KoR1pK1 = K1Ro1 KoRio € End( \/®2)
(Ki=K®1, K»=12K)

Factorization condition at the boundary
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What about 3D?

Tetrahedron equation (A.B. Zamolodchikov, 1980)

R:VaVaVsVaVeV (3D R)
R123 R145 Ro46 R356 = R356 Roa6 R145R123
2 2
4 3 1
4
5 /
3 1 =
5
e
6

R 3 string scattering amplitude in (2+1)D
| local Boltzmann weight of the vertex in 3D
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Status of finding solutions and relevant maths

2D R

@ Infinitely many solutions have been constructed systematically.
@ Algebraic background quite well understood.
@ Solutions are “almost classified” according to the representations of

the quantum group Ug(g) called quantized enveloping algebra of g
(g = Lie algebra).

3DR

@ A few classes of solutions are known.

@ Systematic framework yet to be developed.

@ One such approach is provided by A,(G) (G = Lie group) called
quantized algebra of functions on G.

o What is Ag(G) ? It is another class of quantum group studied by
Drinfeld (87), Vaksman-Soibelman (89,91),
Reshetikhin-Takhtajan-Faddeev (90), Noumi-Yamada-Mimachi (92),
Kashiwara (93), Geiss-Leclerc-Schréer (2011-) etc.
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o Simplest example:

t11  ti2
Recall SL, = | [tij, t] =0, tiiton — tiotor =1 .
tr1 t2

Aq(SLp) is generated by ti1, t12, to1, top with the relations
tirto; = qtortyy, tiatoo = qtootin, tirtiz = qtintir, tortoo = qtontog,

[tio, 1] =0, [t11,t0] = (g — q_l)t21t127 ti1to — qtiotr; = 1.

o Fock representation 71 : Aq(SL2) — End(Fy)

Fq = ®m>0C|m) : g-oscillator Fock space

ti1 tio a  k
T - —
! <t21 f22) (—qk a+>

kim) = g™|m), a*|m) = |m+1), a~|m) = (1 - ¢*™)|m — 1).
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Theorem (Classification of irreducible representations. Soibelman 1991)

© Irreducible reps. <~ elements of the Weyl group W(G)
(up to a “torus degree of freedom” ).
@ 7 := the irreducible rep. for the simple reflection s; € W(G)
(i : a vertex of the Dynkin diagram of G).
© The irreducible rep. corresponding to the reduced expression
si, -+ si, € W(G) is realized as the tensor product 7j, ® - -+ @ ;.

Crucial Corollary

If s;---s;, =sj ---s; are 2 different reduced expressions, then

r

TR R, 2T Q-+ Q.

—> Exists the unique map @ called intertwiner such that
(M @ - @m)od=do(m @ Q)
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Example

1 2

Aq(SL3) = <tij>?d':1 Oo—=0O

Fock representations ™ T
t11 tip 113 a k O 1 0 0
thr1 tn tz ]| — | —qk at 0 R 0 a- k
t31 t3» 133 0 0 1 0 —qk at
W(SL3) = (s1, ). 25152 = s15251 (Coxeter relation)

— mMROMT QM 2T ® T @ T as representations on (Fq)®3

Exists the intertwiner & : (F,)®3 — (F;)®* such that
(Ma@m ®@m)od =do(m ®m ).
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Explicit form
R:=®P13, P3(x®y®z)=z0yQXx,
R(Ii) @ |j) ® k) =Y Ri<la) ® |b) @ |c).

abc

lell(ac = Sitjiar b0k bic Z (_1)/\qi(c—j)+(k+1)>\+u(,u—k)
Ap>0,A+p=b
I,J,c+p
X X ) .
/'L7)\7/ — M, _)\7C

| =at

= Jiseeods
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Theorem (Kapranov-Voevodsky 1994)

R satisfies the tetrahedron eq. Ri23R145R246R356 = R356Roa6 R145R123.

Essence of proof. Consider A;(SLs) and W(SLs) = (s1, 5, 53).
505152 = 515251, S352S53 — S$2S352, 515253515251 — 535253515253 (Iongest eI.)

The intertwiner for the last one is constructed in 2 different ways as

123121 D456 123121 P34
123212 ®y34 121321 &3
132312 P12Pys 212321 B35
312132 o34 213231  Pa3Pse
321232  ®ysg 231213  ®3us
321323 Psq4 232123 D103
323123 323123

Equate the 2 sides, substitute ®;; = RjjPjx and cancel Pj's. U]
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Summary so far (type SL case)

Weyl group elements <— “Multi-string states”
Cubic Coxeter relation +— 3D R matrix
Transformation of longest element «— Tetrahedron equation

Remark. 3D R here = Quantization of Miquel's theorem (1838)
(Bazhanov-Sergeev-Mangazeev 2008).

Recent developments

@ Type SO, Sp, F4 cases: 3D analogue of reflection equation.
@ Connection to Poincaré-Birkhoff-Witt basis of U; (g).
© Reduction of 3D R to infinitely many 2D R’s.
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Aq(Spe) = (t;)%,_;: (Reshetikhin-Takhtajan-Faddeev 1990)

Representations m1(t;;), m2(tjj), m3(tij).

a= k 00 0 0 1 0 0 0 0 0
—gk at 00 0 0 00 aa k 0 0 0
o o100 of Jo-gka 0 0 0
10 0010 o™ o 0 0 a -k o0
0 0 00 a —k 0 0 0 gk at 0
0 0 00 gk a* 0 0 0 0 0 1
10 0 0 00
01 0 0 00
00 A~ K 00
73 00 _qZK At 0 ol <Ai,K>:<ai,k>|q_)q2
00 0 0 10
00 0 0 01

Atsuo Kuniba (University of Tokyo, Komaba)Toward 3D integrability from quantum groups 10 February 2015 13 /33



W(Spg) = (s1, 52, 53)

5153 = 5351, 515251 = 525152, 52535253 = 53525352.
Write Ti,....i, To mean m; @ --- Q 7, to save space.

Equivalence Intertwiner

m3 ~ w31, Pp(x®y)=y®x,

T1 =~ 212, P = RPi3 (same as type A),
To323 =~ 3232, W = KP1aPp3  (New object).

K € End(Fp @ Fa® Fp ® Fy), R € End((Fy)®3).
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Matrix elements
K(laye @by lj))= > KTEc) @ |m)@|d) @ |n).

c,m,d,n

ch”ifj”—o unless c+m+d = a+i+b, d+n—c=b+j—a.

a

Theorem (A more structural formula is in K-Maruyama arXiv:1411.7763)

Kcvfnvoa_n — Z(_l)m+)\(q4)c+>\ q¢2 I7J
a,i,0, Z (7%)< ANj=Am=Xi—m+A|’
(a—l—c—i—l)(m—H 2\)+m—j.
cmdn __ (q )a Z ( 1)a+7 o1 Ka,i+b—a—,3—%0,j+b—a—5—7
aibj — (¢%) (6*)d c,m+d—a—pB—~,0,n+d—a—B—
€ a,8,720 —#
« bad757i+bia7ﬁaj+biaiﬁ
O‘aﬁu’}/am_aan_O[7b_a_ﬁad_ﬁ_’y
é1 = a(a+2d—28—1)+(28—d)(m+n+d)+~v(y—1)—b(i-+j+b).
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Theorem (K-Okado 2012)

R and K yield the first nontrivial solution to the 3D reflection equation
proposed by Isaev-Kulish in 1997:

Ragg K3579 Ro6o Rosg K1678 K1234 Res4 = Resa K1234 K1678 Ros58 Ro69 K3579 Ragg.

@ The proof is parallel with type A.

@ Uses the reduced expressions of the longest element
515253525152535253 = 535253525152535251 € W(Sp6).

@ The two sides come from the 2 ways of constructing the intertwiners
for 7123212323 = T323212321 out of R and K.
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Physical and geometric interpretation of the 3D reflection eq.

Ragg K3579 Rogo Rosg K1678 K1234 Res4 = Resa K1234 K1678 Ros8 Rogo K3579 Ragg.

is a “factorization” of 3 string scattering with boundary reflections.

R : Scattering amplitude of 3 strings.
K: Reflection amplitude with boundary freedom signified by spaces 1,3, 7.
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B, F,; cases

G Bs Fa
1 2 3 1 2 3 1 2 3 4
O—O&—0 O—CO—0 O O ——0
Fob Fy Fp Fp Fp Fo Fy Fq Fp Fe
R:121 =212 S:121 =212 R:121 =212
K : 2323 = 3232 J: 2323 = 3232 K : 2323 = 3232
S5 :434 =343

ReEnd(Fu®Fa®Fy), K eEnd(Fp® Fy® Fp® Fy)

S = R’qﬁqz S End(qu &® qu X qu)
J = P14P>3sKP>3 P14 € End(Fq X qu ® Fq ® qu).

Both (R, K) and (S, J) satisfy the 3D reflection equation.

10 February 2015
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A reduced expression of the longest element of W(F4) is
545354525354525352515253545253515253545152535251  (length 24).

The intertwiner for T434234232123423123412321 2 Treverse order CaN be
constructed by composition of R, K, S in two ways, which must coincide.
This leads to the F4-analogue of the tetrahedron equation:

S14,15,1699,11,16 K16,10,8,7K9,13,15,1754,5,16 R7,12,1751,2,16 R6,10,17 59, 14,18 K1,3,5,17
X 511,15,18K18,12,8,651,4,1851,8,15 R7,13,10K1,6,11,19K4,12,15,10 R3,10,1954.8,11 K1,7,14,20
% S2.5,18R6,13,20R3,12,2051,0,21 K2,10,15,2054,14,21 K21,13,8,352,11,21 52,8,14 R6 7,22
X K2,3,4,2255,15,21 K11,13,14,220 R10,12,20K2,6,9,23 R3,7,23 R19,20,22 K16,17,18,22 R10,13,23

X Ks,12,14,23R3,6,24 K16,10,21,23K4,7,0,24 R17,20,23 K5,10,11,24 R12,13,24 R17,19 24

X K18’20’21)24S5,8’gR22’23,24 = pI’OdUCt in reverse order.

16R’s, 165's and 18K''s acting on Fg, ® --- ® Fyq

iog "
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Another aspect: Connection with PBW basis

Uq+(s/3) = (e1, &) with Serre relation [[e1, e]q, e1]q = [[e2, €1]q, €]q = 0.
(bl =20 — e, [al! = ey =)
Two PBW bases: {Ea’b’c}(a,b,c)e(zzo)a, {E™ bc}( b,c)E(Z0)?
ef ([e2, e1]q)"es
Ea,b,c — 1 ’ q 2 E/a,b,c _ Ea,b,c
PICIGEE e

Then E®b¢ =37 RIS EN)T (Sergeev 2008)
3D R = transition matrix of the PBW bases of U, (sl3)

Theorem (K-Okado-Yamada 2013)
For any simple Lie group G and g = Lie(G), set

® := Intertwiner of Soibelman irreducible representations of Aq(G),
[ := Transition matrix of the PBW bases of U/ (g).
Then & =T.
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Now we proceed to the last topic

2D Reduction : Tetrahedron equation — Yang-Baxter equation
3D R — Families of 2D R's J
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R124 R135 R236 Ras6 = Ras6R236 R135 R124
|} 2d reduction (eliminate spaces 4,5,6)

S12(x)S13(xy)S23(y) = S23(y)S13(xy)S12(x) - - - Yang-Baxter equation

Prescription (xs(x, ¥)|R124 R135 Ra36 Rase | x+ (1, 1))
= (xs(x, y)|Ras6 Raz6 R13s R124|x(1, 1))
by the boundary vectors

(xs0y)] = ()] @ (00| @ (sl € F* ® F @ F,
e ) = Ie()) ® Ireo)) @ [xely)) € F @ F @ F

satisfying (xs(x,y)|Rass = (Xs(x;¥),  Rass|xt(x,¥)) = Ixe(x, ¥))-

Then S1a(x) = (xs(X)|R124|xt(1)) € End(F ® F). (F = F) J
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Boundary vectors

There are 2 such boundary vectors (K-Sergeev 2013):

@ =Y A(ml (@)=Y L (2m),
a@l =2 g tml 0elal = 2
halz mzo . rX2(z)>=n§W|2m>.

So far: 1-layer version of reduction

Possible to extend it to n-layer version
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n-layer version of the tetrahedron equation

— —
[li<i<n (Ri2iaRy35R2,3,6) Rase = Rase [ [12i<, (Rei3,6R1,35R1,2,:4)

19,...,150,21,...,25,31,...,34,4,5,6: copies of the Fock space F

The same reduction (xs(x, y)|(---)|x¢(1,1)) works.

— Solution of the Yang-Baxter equation constructed as

55(z) = (xs(2)|R1,214R1,2,4 - - - R1,2,4]x¢(1)) € End(F®" ® F®"). J

(The evaluation is done in the space 4.)

Atsuo Kuniba (University of Tokyo, Komaba)Toward 3D integrability from quantum groups 10 February 2015 24 /33



S%*(z) have matrix product construction from 3D R

Notations:
la) =|a1) ®---®]a,) € F®" for a=(a1,...,an) € (Z>0)"

S ) () @ i) =Y _ S (2)7Pla) @ |b),

a,b
3 z%(q?)
Ss,t(z)a,b _ 9" )sco RaL,busc paz,b2,er R?n,_bn,cn—l
ij ( 52) ( t2) 1,61 22,2 inyjnytcn
€0,..-,Cn>0 " Jeo\q" ey
bn

b2 In* tcy ‘Xt(1)>
b
b G an .
. 1 i C.2 Cn lj,, R-a7-b7€ _ k
n ijk
Cc1 az R fol a

(xs(2)| sco ar J2 j
J
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Substitute the matrix elements of 3D R

b, (4°)i(q*) 0,b, (4°)«
R0k = 0 et Ok R = D g B

Up to an overall factor, the following formulas are valid (t = 1, 2):

1,t a0 la| c1,t (Zt;qt)|a‘
S (Z)a,O (—q) 1S4 (z )Oa = (—th)m (la] = a1 +-- -+ an),

) e1,0 _ 7)0:2e1 (1+q)(1—z)
SBl(z)2e10 — (—g)1ShY( )61?61 (14 zq)(1 + zg2)’

€1,e1

where (z; q)m :Hj’ll(l_ij—l),
e =(0,...,0,1,0,...,0), 0=(0,0,...,0)
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Proposition (summary so far)

S(z) = $°%(z) € End(F®" ® F®") satisfies the Yang-Baxter equation
512(x)S13(xy) S23(y) = S23(y) S13(xy) S12(x)

Problem:

Find a characterization of S31(z), S%2(z), $22(z) in the framework of the
quantum group theory. (5%1(z) is simply related to S%?(z) .)

They are quantum R-matrices intertwining the g-oscillator representations
2 2 1
of Ug(DZ), Ug(AS), Ug(CiP).
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Affine Lie algebras D,(i)l, Aan), c

Dynkin diagrams

2
p®,  o=o—0——0=0

0o 1 2 n—1 n
AR OO === —O=0
0 1 2 n—1 n
¢ty OO - — =0
0o 1 2 n—1 n
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g-oscillator representations

Vi := F®"[x,x"1] (x: spectral parameter).
Let (ej, f;, k¥ Jo<j<n act on Vi by ([m] = (" —q™)/(q — %))

e|m) = x|m + e;)

folm) = vV=1s[m]x 'im—e) w=(q+1)/(qg—1)
kolm) = —v/~1g™"*|m)
glm) =[mj]lm —e; + ej11) (0<j<n)
film) = [mja]lm +e; —eji1) (0<j<n)
kjjm) = =™ ™ m) (0<j<n)
)
)
)
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Proposition

V. is an irreducible representation (g-oscillator representation) of the
Drinfeld-Jimbo quantum affine algebra U, (D,(H_)l) = & k Yo<j<n-

o U (Agi)) and U (C,Sl)) also have similar q—oscillator representations.

@ The g-oscillator representations for U, ( ) Uq(Cp) were known by
Hayashi (1990).
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Quantum R matrix for g-oscillator representation

For simplicity, consider U, = Uq(Dr(j_)l) for the time being.

R(z) € End(Vi, ® V,) (z=x/y) is characterized by
(i) Commutativity: [PR(z),A(g)] =0 Vg e Uq
(A: coproduct of Ug, P(u® v)=v® u)

(ii) Normalization: R(2)(|0) ® [0)) = (Z42)=|0) © |0)

Introduce a gauge transformed R(z)
R(z) = (K'®1)R(z)(1®K)
K|m) = (—y/=1g2)m+ M| m)
Both R(z) and R(z) satisfy the Yang-Baxter equation.
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S (z) = Rye (2), SY%(2) = Ry(2), $*%(2) = R (2).

n+1

Proof: Can check the commutativity of $*f(z) with Ug and
the irreducibility of V, ® V,. 0O

Remark: Boundary vector <= End shape of the Dynkin diagram of g

ot b e % > <
@l @ a@l ) e@l e
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Related results

e Bazhanov-Sergeev (2006) (L = 3D L-operator satisfying RLLL = LLLR)
Tr(R---R), Tr(L---L) = @& (R for type A sym or anti-sym tensor rep.)
o K-Sergeev (2013)
(xs(z)|L- - L|x¢(1)) = R-matrix for spin rep. of Uq(B,(,l)), Uq(Dﬁ,l)) etc.
e K-Okado-Sergeev (in preparation)

Mixed products of R and L like Tr(RLRLLR), (x1(z)|LLRLRLR|x1(1))

= R-matrix for Generalized quantum groups.
(Lusztig, Heckenberger, Batra-Yamane, etc.)
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