Toward 3D integrability from quantum groups

Atsuo Kuniba
University of Tokyo, Komaba

10 February 2015

Integrability in 2D

2D R-matrix

$$
\begin{gathered}
R: V \otimes V \rightarrow V \otimes V \quad \text { i.e. } R \in \operatorname{End}\left(V^{\otimes 2}\right) \\
V=\oplus_{n} \mathbb{C}|n\rangle=\left\{\begin{array}{l}
\text { space of 1-particle states } \\
\text { space of local spin states }
\end{array}\right. \\
R(|i\rangle \otimes|j\rangle)=\sum_{a b} R_{i j}^{a b}|a\rangle \otimes|b\rangle
\end{gathered}
$$

Yang-Baxter equation

$$
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} \in \operatorname{End}\left(V^{\otimes 3}\right)
$$

where $R_{i j}$ acts on the i th and j th components:

$$
R_{12}: V \otimes V \otimes V, \quad R_{23}: V \otimes V \otimes V, \quad R_{13}: V \otimes V \otimes V
$$

Yang-Baxter equation implies

- Factorization of 3 particle scattering amplitude into 2 body ones
- Commutativity of row transfer matrices in lattice models

Key to quantum integrability in 2D

Integrability in the presence of boundary reflections

Reflection equation

$$
\begin{aligned}
& R_{21} K_{2} R_{12} K_{1}=K_{1} R_{21} K_{2} R_{12} \in \operatorname{End}\left(V^{\otimes 2}\right) \\
& \left(K_{1}=K \otimes 1, \quad K_{2}=1 \otimes K\right)
\end{aligned}
$$

... Factorization condition at the boundary

What about 3D?

Tetrahedron equation (A.B. Zamolodchikov, 1980)

Status of finding solutions and relevant maths

2D R

- Infinitely many solutions have been constructed systematically.
- Algebraic background quite well understood.
- Solutions are "almost classified" according to the representations of the quantum group $U_{q}(g)$ called quantized enveloping algebra of g ($g=$ Lie algebra).

3D R

- A few classes of solutions are known.
- Systematic framework yet to be developed.
- One such approach is provided by $A_{q}(G)(G=$ Lie group) called quantized algebra of functions on G.
- What is $A_{q}(G)$? It is another class of quantum group studied by Drinfeld (87), Vaksman-Soibelman (89,91), Reshetikhin-Takhtajan-Faddeev (90), Noumi-Yamada-Mimachi (92), Kashiwara (93), Geiss-Leclerc-Schröer (2011-) etc.
- Simplest example:

Recall $\quad \mathrm{SL}_{2}=\left\{\left.\left(\begin{array}{cc}t_{11} & t_{12} \\ t_{21} & t_{22}\end{array}\right) \right\rvert\,\left[t_{i j}, t_{k}\right]=0, t_{11} t_{22}-t_{12} t_{21}=1\right\}$.
$A_{q}\left(\mathrm{SL}_{2}\right)$ is generated by $t_{11}, t_{12}, t_{21}, t_{22}$ with the relations
$t_{11} t_{21}=q t_{21} t_{11}, t_{12} t_{22}=q t_{22} t_{12}, t_{11} t_{12}=q t_{12} t_{11}, t_{21} t_{22}=q t_{22} t_{21}$,
$\left[t_{12}, t_{21}\right]=0, \quad\left[t_{11}, t_{22}\right]=\left(q-q^{-1}\right) t_{21} t_{12}, \quad t_{11} t_{22}-q t_{12} t_{21}=1$.

- Fock representation $\quad \pi_{1}: \mathrm{A}_{\mathrm{q}}\left(\mathrm{SL}_{2}\right) \rightarrow \operatorname{End}\left(\mathrm{F}_{\mathrm{q}}\right)$
$F_{q}=\oplus_{m \geq 0} \mathbb{C}|m\rangle: q$-oscillator Fock space

$$
\begin{aligned}
& \pi_{1}:\left(\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right) \longmapsto\left(\begin{array}{cc}
\mathbf{a}^{-} & \mathbf{k} \\
-q \mathbf{k} & \mathbf{a}^{+}
\end{array}\right) \\
& \mathbf{k}|m\rangle=q^{m}|m\rangle, \mathbf{a}^{+}|m\rangle=|m+1\rangle, \mathbf{a}^{-}|m\rangle=\left(1-q^{2 m}\right)|m-1\rangle
\end{aligned}
$$

Theorem (Classification of irreducible representations. Soibelman 1991)

(1) Irreducible reps. $\stackrel{1: 1}{\longleftrightarrow}$ elements of the Weyl group $W(G)$ (up to a "torus degree of freedom").
(2) $\pi_{i}:=$ the irreducible rep. for the simple reflection $s_{i} \in W(G)$ (i : a vertex of the Dynkin diagram of G).
(3) The irreducible rep. corresponding to the reduced expression $s_{i_{1}} \cdots s_{i_{r}} \in W(G)$ is realized as the tensor product $\pi_{i_{1}} \otimes \cdots \otimes \pi_{i_{r}}$.

Crucial Corollary

If $s_{i_{1}} \cdots s_{i_{r}}=s_{j_{1}} \cdots s_{j_{r}}$ are 2 different reduced expressions, then

$$
\pi_{i_{1}} \otimes \cdots \otimes \pi_{i_{r}} \simeq \pi_{j_{1}} \otimes \cdots \otimes \pi_{j_{r}}
$$

\Longrightarrow Exists the unique map Φ called intertwiner such that

$$
\left(\pi_{i_{1}} \otimes \cdots \otimes \pi_{i_{r}}\right) \circ \Phi=\Phi \circ\left(\pi_{j_{1}} \otimes \cdots \otimes \pi_{j_{r}}\right)
$$

Example

$$
A_{q}\left(\mathrm{SL}_{3}\right)=\left\langle t_{i j}\right\rangle_{i, j=1}^{3}
$$

Fock representations
π_{1}
π_{2}

$$
\left(\begin{array}{ccc}
t_{11} & t_{12} & t_{13} \\
t_{21} & t_{22} & t_{23} \\
t_{31} & t_{32} & t_{33}
\end{array}\right) \longmapsto\left(\begin{array}{ccc}
\mathbf{a}^{-} & \mathbf{k} & 0 \\
-q \mathbf{k} & \mathbf{a}^{+} & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathbf{a}^{-} & \mathbf{k} \\
0 & -q \mathbf{k} & \mathbf{a}^{+}
\end{array}\right)
$$

$W\left(\mathrm{SL}_{3}\right)=\left\langle s_{1}, s_{2}\right\rangle . \quad s_{2} s_{1} s_{2}=s_{1} s_{2} s_{1}$ (Coxeter relation)
$\Longrightarrow \pi_{2} \otimes \pi_{1} \otimes \pi_{2} \simeq \pi_{1} \otimes \pi_{2} \otimes \pi_{1}$ as representations on $\left(F_{q}\right)^{\otimes 3}$
Exists the intertwiner $\Phi:\left(F_{q}\right)^{\otimes 3} \rightarrow\left(F_{q}\right)^{\otimes 3}$ such that $\left(\pi_{2} \otimes \pi_{1} \otimes \pi_{2}\right) \circ \Phi=\Phi \circ\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{1}\right)$.

Explicit form

$$
\begin{gathered}
R:=\Phi P_{13}, \quad P_{13}(x \otimes y \otimes z)=z \otimes y \otimes x, \\
R(|i\rangle \otimes|j\rangle \otimes|k\rangle)=\sum_{a b c} R_{i j k}^{a b c}|a\rangle \otimes|b\rangle \otimes|c\rangle . \\
R_{i j k}^{a b c}=\delta_{i+j, a+b} \delta_{j+k, b+c} \sum_{\lambda, \mu \geq 0, \lambda+\mu=b}(-1)^{\lambda} q^{i(c-j)+(k+1) \lambda+\mu(\mu-k)} \\
\times\left[\begin{array}{c}
i, j, c+\mu \\
\mu, \lambda, i-\mu, j-\lambda, c
\end{array}\right] \\
(q)_{m}=\prod_{j=1}^{m}\left(1-q^{j}\right), \quad\left[\begin{array}{l}
i_{1}, \ldots, i_{r} \\
j_{1}, \ldots, j_{s}
\end{array}\right]=\frac{\prod_{m=1}^{r}\left(q^{2}\right)_{i_{m}}}{\prod_{m=1}^{s}\left(q^{2}\right)_{j_{m}}}
\end{gathered}
$$

Theorem (Kapranov-Voevodsky 1994)

R satisfies the tetrahedron eq. $R_{123} R_{145} R_{246} R_{356}=R_{356} R_{246} R_{145} R_{123}$.
Essence of proof. Consider $A_{q}\left(\mathrm{SL}_{4}\right)$ and $W\left(\mathrm{SL}_{4}\right)=\left\langle s_{1}, s_{2}, s_{3}\right\rangle$. $s_{2} s_{1} s_{2}=s_{1} s_{2} s_{1}, \quad s_{3} s_{2} s_{3}=s_{2} s_{3} s_{2}, \quad s_{1} s_{2} s_{3} s_{1} s_{2} s_{1}=s_{3} s_{2} s_{3} s_{1} s_{2} s_{3}$ (longest el.)

The intertwiner for the last one is constructed in 2 different ways as

123121	Φ_{456}	123121	P_{34}
$\underline{23212}$	Φ_{234}	$\underline{121321}$	Φ_{123}
$\underline{132312}$	$P_{12} P_{45}$	$2 \underline{21221}$	Φ_{345}
$3 \underline{212132}$	Φ_{234}	$2 \underline{13231}$	$P_{23} P_{56}$
321232	Φ_{456}	$23 \underline{1213}$	Φ_{345}
$32 \underline{1323}$	P_{34}	$\underline{232123}$	Φ_{123}
323123		323123	

Equate the 2 sides, substitute $\Phi_{i j k}=R_{i j k} P_{i k}$ and cancel $P_{i j}$'s.

Summary so far (type SL case)

Weyl group elements \longleftrightarrow "Multi-string states" Cubic Coxeter relation $\longleftrightarrow 3 \mathrm{D} R$ matrix Transformation of longest element \longleftrightarrow Tetrahedron equation

$$
\begin{aligned}
\text { Remark. } \quad \text { 3D } R \text { here }= & \text { Quantization of Miquel's theorem (1838) } \\
& \text { (Bazhanov-Sergeev-Mangazeev 2008). }
\end{aligned}
$$

Recent developments
(1) Type SO, Sp, F_{4} cases: 3D analogue of reflection equation.
(2) Connection to Poincaré-Birkhoff-Witt basis of $U_{q}^{+}(g)$.
(3) Reduction of 3D R to infinitely many 2D R's.
$A_{q}\left(\mathrm{Sp}_{6}\right)=\left\langle t_{i j}\right\rangle_{i, j=1}^{6}:($ Reshetikhin-Takhtajan-Faddeev 1990)
Representations $\pi_{1}\left(t_{i j}\right), \pi_{2}\left(t_{i j}\right), \pi_{3}\left(t_{i j}\right)$.
$\pi_{1}:\left(\begin{array}{cccccc}\mathbf{a}^{-} & \mathbf{k} & 0 & 0 & 0 & 0 \\ -q \mathbf{k} & \mathbf{a}^{+} & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{a}^{-} & -\mathbf{k} \\ 0 & 0 & 0 & 0 & \mathbf{q} \mathbf{k} & \mathbf{a}^{+}\end{array}\right), \pi_{2}:\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{a}^{-} & \mathbf{k} & 0 & 0 & 0 \\ 0 & -q \mathbf{k} & \mathbf{a}^{+} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{a}^{-} & -\mathbf{k} & 0 \\ 0 & 0 & 0 & q \mathbf{k} & \mathbf{a}^{+} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

$$
\pi_{3}:\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \mathbf{A}^{-} & \mathbf{K} & 0 & 0 \\
0 & 0 & -q^{2} \mathbf{K} & \mathbf{A}^{+} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \quad\left\langle\mathbf{A}^{ \pm}, \mathbf{K}\right\rangle=\left.\left\langle\mathbf{a}^{ \pm}, \mathbf{k}\right\rangle\right|_{q \rightarrow q^{2}} .
$$

$$
\begin{aligned}
W\left(\mathrm{Sp}_{6}\right)= & \left\langle s_{1}, s_{2}, s_{3}\right\rangle \\
& s_{1} s_{3}=s_{3} s_{1}, \quad s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}, \quad s_{2} s_{3} s_{2} s_{3}=s_{3} s_{2} s_{3} s_{2}
\end{aligned}
$$

Write $\pi_{i_{1}, \ldots, i_{r}}$ to mean $\pi_{i_{1}} \otimes \cdots \otimes \pi_{i_{r}}$ to save space.

Equivalence Intertwiner

$$
\begin{array}{rlrl}
\pi_{13} & \simeq \pi_{31}, & P_{12}(x \otimes y)=y \otimes x, \\
\pi_{121} & \simeq \pi_{212}, & \Phi=R P_{13} & (\text { same as type } A) \\
\pi_{2323} & \simeq \pi_{3232}, & \Psi=K P_{14} P_{23} & \\
& & \\
K \in \operatorname{End}\left(F_{q^{2}} \otimes\right. & \left.F_{q} \otimes F_{q^{2}} \otimes F_{q}\right), & & R \in \operatorname{End}\left(\left(F_{q}\right)^{\otimes 3}\right) .
\end{array}
$$

Matrix elements

$$
K(|a\rangle \otimes|i\rangle \otimes|b\rangle \otimes|j\rangle)=\sum_{c, m, d, n} K_{a i b j}^{c m d n}|c\rangle \otimes|m\rangle \otimes|d\rangle \otimes|n\rangle .
$$

$$
K_{a i b j}^{c m d n}=0 \text { unless } c+m+d=a+i+b, \quad d+n-c=b+j-a .
$$

Theorem (A more structural formula is in K-Maruyama arXiv:1411.7763)

$$
\begin{aligned}
& K_{a, i, 0, j}^{c, m, 0, n}=\sum_{\lambda \geq 0}(-1)^{m+\lambda} \frac{\left(q^{4}\right)_{c+\lambda}}{\left(q^{4}\right)_{c}} q^{\phi_{2}}\left[\begin{array}{c}
i, j \\
\lambda, j-\lambda, m-\lambda, i-m+\lambda
\end{array}\right] \\
& \phi_{2}=(a+c+1)(m+j-2 \lambda)+m-j . \\
& K_{a i b j}^{c m d n}=\frac{\left(q^{4}\right)_{a}}{\left(q^{4}\right)_{c}} \sum_{\alpha, \beta, \gamma \geq 0} \frac{(-1)^{\alpha+\gamma}}{\left(q^{4}\right)_{d-\beta}} q^{\phi_{1}} K_{c, m+d-\alpha-\beta-\gamma, 0, n+d-\alpha-\beta-\gamma}^{a, i+b-\alpha-\beta-\gamma, j+b-\alpha-\beta-\gamma} \\
& \quad \times\left[\begin{array}{c}
b, d-\beta, i+b-\alpha-\beta, j+b-\alpha-\beta \\
\alpha, \beta, \gamma, m-\alpha, n-\alpha, b-\alpha-\beta, d-\beta-\gamma
\end{array}\right] \\
& \phi_{1}=\alpha(\alpha+2 d-2 \beta-1)+(2 \beta-d)(m+n+d)+\gamma(\gamma-1)-b(i+j+b) .
\end{aligned}
$$

Theorem (K-Okado 2012)

R and K yield the first nontrivial solution to the 3D reflection equation proposed by Isaev-Kulish in 1997:
$R_{489} K_{3579} R_{269} R_{258} K_{1678} K_{1234} R_{654}=R_{654} K_{1234} K_{1678} R_{258} R_{269} K_{3579} R_{489}$.

- The proof is parallel with type A.
- Uses the reduced expressions of the longest element $s_{1} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2} s_{3}=s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2} s_{1} \in W\left(\mathrm{Sp}_{6}\right)$.
- The two sides come from the 2 ways of constructing the intertwiners for $\pi_{123212323} \simeq \pi_{323212321}$ out of R and K.

Physical and geometric interpretation of the 3D reflection eq.
$R_{489} K_{3579} R_{269} R_{258} K_{1678} K_{1234} R_{654}=R_{654} K_{1234} K_{1678} R_{258} R_{269} K_{3579} R_{489}$. is a "factorization" of 3 string scattering with boundary reflections.
R : Scattering amplitude of 3 strings.
K : Reflection amplitude with boundary freedom signified by spaces $1,3,7$.

B, F_{4} cases

$$
\begin{aligned}
& C_{3} \\
& B_{3} \\
& F_{4} \\
& R: 121=212 \\
& S: 121=212 \\
& R: 121=212 \\
& K: 2323=3232 \\
& J: 2323=3232 \\
& K: 2323=3232 \\
& S: 434=343 \\
& R \in \operatorname{End}\left(F_{q} \otimes F_{q} \otimes F_{q}\right), \quad K \in \operatorname{End}\left(F_{q^{2}} \otimes F_{q} \otimes F_{q^{2}} \otimes F_{q}\right) \\
& S=\left.R\right|_{q \rightarrow q^{2}} \in \operatorname{End}\left(F_{q^{2}} \otimes F_{q^{2}} \otimes F_{q^{2}}\right) \\
& J=P_{14} P_{23} K P_{23} P_{14} \in \operatorname{End}\left(F_{q} \otimes F_{q^{2}} \otimes F_{q} \otimes F_{q^{2}}\right) .
\end{aligned}
$$

Both (R, K) and (S, J) satisfy the 3D reflection equation.

A reduced expression of the longest element of $W\left(F_{4}\right)$ is

$$
s_{4} s_{3} s_{4} s_{2} s_{3} s_{4} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{4} s_{2} s_{3} s_{1} s_{2} s_{3} s_{4} s_{1} s_{2} s_{3} s_{2} s_{1} \quad(\text { length } 24)
$$

The intertwiner for $\pi_{434234232123423123412321} \simeq \pi_{\text {reverse order }}$ can be constructed by composition of R, K, S in two ways, which must coincide. This leads to the F_{4}-analogue of the tetrahedron equation:

$$
\begin{aligned}
& S_{14,15,16} S_{9,11,16} K_{16,10,8,7} K_{9,13,15,17} S_{4,5,16} R_{7,12,17} S_{1,2,16} R_{6,10,17} S_{9,14,18} K_{1,3,5,17} \\
\times & S_{11,15,18} K_{18,12,8,6} S_{1,4,18} S_{1,8,15} R_{7,13,19} K_{1,6,11,19} K_{4,12,15,19} R_{3,10,19} S_{4,8,11} K_{1,7,14,20} \\
\times & S_{2,5,18} R_{6,13,20} R_{3,12,20} S_{1,9,21} K_{2,10,15,20} S_{4,14,21} K_{21,13,8,3} S_{2,11,21} S_{2,8,14} R_{6,7,22} \\
\times & K_{2,3,4,22} S_{5,15,21} K_{11,13,14,22} R_{10,12,22} K_{2,6,9,23} R_{3,7,23} R_{19,20,22} K_{16,17,18,22} R_{10,13,23} \\
\times & K_{5,12,14,23} R_{3,6,24} K_{16,19,21,23} K_{4,7,9,24} R_{17,20,23} K_{5,10,11,24} R_{12,13,24} R_{17,19,24} \\
\times & K_{18,20,21,24} S_{5,8,9} R_{22,23,24}=\text { product in reverse order. }
\end{aligned}
$$

$16 R$'s, $16 S$'s and $18 K$'s acting on $F_{q_{i_{1}}} \otimes \cdots \otimes F_{q_{i_{24}}}$.

Another aspect: Connection with PBW basis

$$
\begin{gathered}
U_{q}^{+}\left(s /_{3}\right)=\left\langle e_{1}, e_{2}\right\rangle \text { with Serre relation }\left[\left[e_{1}, e_{2}\right]_{q}, e_{1}\right]_{q}=\left[\left[e_{2}, e_{1}\right]_{q}, e_{2}\right]_{q}=0 . \\
\left([x, y]_{q}:=x y-q y x, \quad[a]!=\prod_{m=1}^{a} \frac{q^{m}-q^{-m}}{q-q^{-1}}\right)
\end{gathered}
$$

Two PBW bases: $\left\{E^{a, b, c}\right\}_{(a, b, c) \in\left(\mathbb{Z}_{\geq 0}\right)^{3}},\left\{E^{\prime a, b, c}\right\}_{(a, b, c) \in\left(\mathbb{Z}_{\geq 0}\right)^{3}}$

$$
E^{a, b, c}=\frac{e_{1}^{a}\left(\left[e_{2}, e_{1}\right]_{q}\right)^{b} e_{2}^{c}}{[a]![b]![c]!}, \quad E^{\prime a, b, c}=\left.E^{a, b, c}\right|_{e_{1} \leftrightarrow e_{2}}
$$

Then $\quad E^{a, b, c}=\sum_{i j k} R_{i, j, k}^{a b c} E^{\prime k, j, i} \quad$ (Sergeev 2008)
3D R $=$ transition matrix of the PBW bases of $U_{q}^{+}(s / 3)$

Theorem (K-Okado-Yamada 2013)

For any simple Lie group G and $\mathfrak{g}=\operatorname{Lie}(G)$, set
$\Phi:=$ Intertwiner of Soibelman irreducible representations of $A_{q}(G)$,
$\Gamma:=$ Transition matrix of the PBW bases of $U_{q}^{+}(\mathfrak{g})$.
Then $\Phi=\Gamma$.

Now we proceed to the last topic

2D Reduction: Tetrahedron equation \rightarrow Yang-Baxter equation 3D $R \rightarrow$ Families of 2D R's

2D reduction

$R_{124} R_{135} R_{236} R_{456}=R_{456} R_{236} R_{135} R_{124}$

$$
\Downarrow 2 \mathrm{~d} \text { reduction (eliminate spaces } 4,5,6 \text {) }
$$

$S_{12}(x) S_{13}(x y) S_{23}(y)=S_{23}(y) S_{13}(x y) S_{12}(x) \quad \cdots$ Yang-Baxter equation

Prescription $\quad\left\langle\chi_{s}(x, y)\right| R_{124} R_{135} R_{236} R_{456}\left|\chi_{t}(1,1)\right\rangle$ $=\left\langle\chi_{s}(x, y)\right| R_{456} R_{236} R_{135} R_{124}\left|\chi_{t}(1,1)\right\rangle$
by the boundary vectors

$$
\begin{aligned}
& \left\langle\chi_{s}(x, y)\right|=\left\langle\chi_{s}(x)\right| \otimes\left\langle\chi_{s}(x y)\right| \otimes\left\langle\chi_{s}(y)\right| \in \stackrel{4}{F^{*}} \otimes{\stackrel{5}{F^{*}} \otimes \stackrel{6}{F^{*}}}_{\left|\chi_{t}(x, y)\right\rangle=\left|\chi_{t}(x)\right\rangle \otimes\left|\chi_{t}(x y)\right\rangle \otimes\left|\chi_{t}(y)\right\rangle \in \stackrel{4}{F} \otimes \stackrel{5}{F} \otimes \stackrel{6}{F}} .
\end{aligned}
$$

satisfying $\left\langle\chi_{s}(x, y)\right| R_{456}=\left\langle\chi_{s}(x, y)\right|, \quad R_{456}\left|\chi_{t}(x, y)\right\rangle=\left|\chi_{t}(x, y)\right\rangle$.

Then $S_{12}(x)=\left\langle\chi_{s}(x)\right| R_{124}\left|\chi_{t}(1)\right\rangle \in \operatorname{End}(F \otimes F) .\left(F=F_{q}\right)$

Boundary vectors

There are 2 such boundary vectors (K-Sergeev 2013):

$$
\begin{aligned}
& \left\langle\chi_{1}(z)\right|=\sum_{m \geq 0} \frac{z^{m}}{(q)_{m}}\langle m| \quad\left\langle\chi_{2}(z)\right|=\sum_{m \geq 0} \frac{z^{m}}{\left(q^{4}\right)_{m}}\langle 2 m|, \\
& \left|\chi_{1}(z)\right\rangle=\sum_{m \geq 0} \frac{z^{m}}{(q)_{m}}|m\rangle, \quad\left|\chi_{2}(z)\right\rangle=\sum_{m \geq 0} \frac{z^{m}}{\left(q^{4}\right)_{m}}|2 m\rangle .
\end{aligned}
$$

So far: 1-layer version of reduction
Possible to extend it to n-layer version

n-layer version of the tetrahedron equation

$$
\begin{aligned}
& \prod_{1 \leq i \leq n}\left(R_{1_{i} 2_{i} 4} R_{1_{i} 3_{i} 5} R_{2_{i} 3_{i} 6}\right) R_{456}=R_{456} \prod_{1 \leq i \leq n}\left(R_{2 ; 3_{i} 6} R_{1_{i} 3_{i} 5} R_{1_{i} i_{i} 4}\right) \\
& 1_{1}, \ldots, 1_{n}, 2_{1}, \ldots, 2_{n}, 3_{1}, \ldots, 3_{n}, 4,5,6: \text { copies of the Fock space } F
\end{aligned}
$$

The same reduction $\left\langle\chi_{s}(x, y)\right|(\cdots)\left|\chi_{t}(1,1)\right\rangle$ works.
\Longrightarrow Solution of the Yang-Baxter equation constructed as

$$
S^{s, t}(z)=\left\langle\chi_{s}(z)\right| R_{1_{1} 2_{1} 4} R_{1_{2} 2_{2} 4} \cdots R_{1_{n} 2_{n} 4}\left|\chi_{t}(1)\right\rangle \in \operatorname{End}\left(F^{\otimes n} \otimes F^{\otimes n}\right)
$$

(The evaluation is done in the space 4.)

$S^{s, t}(z)$ have matrix product construction from 3D R

Notations:

$$
|\mathbf{a}\rangle=\left|a_{1}\right\rangle \otimes \cdots \otimes\left|a_{n}\right\rangle \in F^{\otimes n} \quad \text { for } \quad \mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{n}
$$

$$
\begin{aligned}
& S^{s, t}(z)(|\mathbf{i}\rangle \otimes|\mathbf{j}\rangle)=\sum_{\mathbf{a}, \mathbf{b}} S^{s, t}(z)_{i, j}^{\mathbf{a}, \mathbf{b}}|\mathbf{a}\rangle \otimes|\mathbf{b}\rangle, \\
& S^{s, t}(z)_{i, j}^{\mathbf{a}, \mathbf{b}}=\sum_{c_{0}, \ldots, c_{n} \geq 0} \frac{z^{c_{0}}\left(q^{2}\right)_{s c_{0}}}{\left(q^{s^{2}}\right)_{c_{0}}\left(q^{t^{2}}\right)_{c_{n}}} R_{i_{1}, j_{1}, c_{1}}^{a_{1}, b_{1}, s c_{0}} R_{i_{2}, j_{2}, c_{2}}^{a_{2}, b_{2}, c_{1}} \cdots R_{i_{n}, j_{n}, t c_{n}}^{a_{n}, b_{n}, c_{n-1}}
\end{aligned}
$$

Examples

Substitute the matrix elements of 3D R
$R_{i, 0, k}^{a, b, c}=q^{a c} \frac{\left(q^{2}\right)_{i}\left(q^{2}\right)_{k}}{\left(q^{2}\right)_{a}\left(q^{2}\right)_{b}\left(q^{2}\right)_{c}} \delta_{i}^{a+b} \delta_{k}^{b+c}, R_{i, j, k}^{0, b, c}=(-1)^{j} q^{j(c+1)} \frac{\left(q^{2}\right)_{k}}{\left(q^{2}\right)_{c}} \delta_{i+j}^{b} \delta_{j+k}^{b+c}$.

Up to an overall factor, the following formulas are valid $(t=1,2)$:

$$
\begin{aligned}
& S^{1, t}(z)_{\mathbf{a}, \mathbf{0}}^{\mathbf{a}, \mathbf{0}}=(-q)^{-|\mathbf{a}|} S^{1, t}(z)_{\mathbf{0}, \mathbf{a}}^{\mathbf{0 , a}}=\frac{\left(z^{t} ; q^{t}\right)_{|\mathbf{a}|}}{\left(-z^{t} q ; q^{t}\right)_{|\mathbf{a}|}}\left(|\mathbf{a}|=a_{1}+\cdots+a_{n}\right), \\
& S^{1,1}(z)_{\mathbf{e}_{1}, \mathbf{e}_{1}}^{2 \mathbf{e}_{1}, \mathbf{0}}=(-q)^{-1} S^{1,1}(z)_{\mathbf{e}_{1}, \mathbf{e}_{1}}^{\mathbf{0}, 2 \mathbf{e}_{1}}=\frac{(1+q)(1-z)}{(1+z q)\left(1+z q^{2}\right)}
\end{aligned}
$$

where $(z ; q)_{m}=\prod_{j=1}^{m}\left(1-z q^{j-1}\right)$,
$\mathbf{e}_{i}=(0, \ldots, 0,1,0, \ldots, 0), \quad \mathbf{0}=(0,0, \ldots, 0)$

Proposition (summary so far)

$S(z)=S^{s, t}(z) \in \operatorname{End}\left(F^{\otimes n} \otimes F^{\otimes n}\right)$ satisfies the Yang-Baxter equation $S_{12}(x) S_{13}(x y) S_{23}(y)=S_{23}(y) S_{13}(x y) S_{12}(x)$

Problem:

Find a characterization of $S^{1,1}(z), S^{1,2}(z), S^{2,2}(z)$ in the framework of the quantum group theory. $\left(S^{2,1}(z)\right.$ is simply related to $S^{1,2}(z)$.)

Result

They are quantum R-matrices intertwining the q-oscillator representations of $U_{q}\left(D_{n+1}^{(2)}\right), U_{q}\left(A_{2 n}^{(2)}\right), U_{q}\left(C_{n}^{(1)}\right)$.

Affine Lie algebras $D_{n+1}^{(2)}, A_{2 n}^{(2)}, C_{n}^{(1)}$

Dynkin diagrams

$A_{2 n}^{(2)}$

$C_{n}^{(1)}$

q-oscillator representations

$$
\left.V_{x}:=F^{\otimes n}\left[x, x^{-1}\right] \text { (} x: \text { spectral parameter }\right) .
$$

$$
\text { Let }\left\langle e_{j}, f_{j}, k_{j}^{ \pm 1}\right\rangle_{0 \leq j \leq n} \text { act on } V_{x} \text { by }\left([m]=\left(q^{m}-q^{-m}\right) /\left(q-q^{-1}\right)\right)
$$

$$
\begin{aligned}
e_{0}|\mathbf{m}\rangle & =x\left|\mathbf{m}+\mathbf{e}_{1}\right\rangle & & \\
f_{0}|\mathbf{m}\rangle & =\sqrt{-1} \kappa\left[m_{1}\right] x^{-1}\left|\mathbf{m}-\mathbf{e}_{1}\right\rangle & & \kappa=(q+1) /(q-1) \\
k_{0}|\mathbf{m}\rangle & =-\sqrt{-1} q^{m_{1}+\frac{1}{2}}|\mathbf{m}\rangle & & \\
e_{j}|\mathbf{m}\rangle & =\left[m_{j}\right]\left|\mathbf{m}-\mathbf{e}_{j}+\mathbf{e}_{j+1}\right\rangle & & (0<j<n) \\
f_{j}|\mathbf{m}\rangle & =\left[m_{j+1}\right]\left|\mathbf{m}+\mathbf{e}_{j}-\mathbf{e}_{j+1}\right\rangle & & (0<j<n) \\
k_{j}|\mathbf{m}\rangle & =q^{-m_{j}+m_{j+1}}|\mathbf{m}\rangle & & (0<j<n)
\end{aligned}
$$

$$
e_{n}|\mathbf{m}\rangle=\sqrt{-1} \kappa\left[m_{n}\right]\left|\mathbf{m}-\mathbf{e}_{n}\right\rangle
$$

$$
f_{n}|\mathbf{m}\rangle=\left|\mathbf{m}+\mathbf{e}_{n}\right\rangle
$$

$$
k_{n}|\mathbf{m}\rangle=\sqrt{-1} q^{-m_{n}-\frac{1}{2}}|\mathbf{m}\rangle .
$$

$$
\mathbf{e}_{j}=(0, \ldots, \stackrel{j}{1}, \ldots, 0), \mathbf{m}=\sum_{j=1}^{n} m_{j} \mathbf{e}_{j} \in \mathbb{Z}^{n},|\mathbf{m}\rangle=\left|m_{1}\right\rangle \otimes \cdots \otimes\left|m_{n}\right\rangle \in F^{\otimes n}
$$

Proposition

V_{x} is an irreducible representation (q-oscillator representation) of the Drinfeld-Jimbo quantum affine algebra $U_{q}\left(D_{n+1}^{(2)}\right)=\left\langle e_{j}, f_{j}, k_{j}^{ \pm 1}\right\rangle_{0 \leq j \leq n}$.

- $U_{q}\left(A_{2 n}^{(2)}\right)$ and $U_{q}\left(C_{n}^{(1)}\right)$ also have similar q-oscillator representations.
- The q-oscillator representations for $U_{q}\left(A_{n}^{(1)}\right), U_{q}\left(C_{n}\right)$ were known by Hayashi (1990).

Quantum R matrix for q-oscillator representation

For simplicity, consider $U_{q}=U_{q}\left(D_{n+1}^{(2)}\right)$ for the time being.
$R(z) \in \operatorname{End}\left(V_{x} \otimes V_{y}\right)(z=x / y) \quad$ is characterized by
(i) Commutativity: $[P R(z), \Delta(g)]=0 \quad \forall g \in U_{q}$ $\left(\Delta\right.$: coproduct of $\left.U_{q}, P(u \otimes v)=v \otimes u\right)$
(ii) Normalization: $R(z)(|\mathbf{0}\rangle \otimes|\mathbf{0}\rangle)=\frac{(-z q ; q)_{\infty}}{(z ; q)_{\infty}}|\mathbf{0}\rangle \otimes|\mathbf{0}\rangle$

Introduce a gauge transformed $R(z)$

$$
\begin{aligned}
& \tilde{R}(z):=\left(K^{-1} \otimes 1\right) R(z)(1 \otimes K) \\
& K|\mathbf{m}\rangle=\left(-\sqrt{-1} q^{\frac{1}{2}}\right)^{m_{1}+\cdots+m_{n}}|\mathbf{m}\rangle
\end{aligned}
$$

Both $R(z)$ and $\tilde{R}(z)$ satisfy the Yang-Baxter equation.
$\tilde{R}_{\mathfrak{g}}(z):=\tilde{R}(z)$ of the q-oscillator representation of $U_{q}(\mathfrak{g})$

Theorem (K-Okado 2014)

$$
S^{1,1}(z)=\tilde{R}_{D_{n+1}^{(2)}}(z), \quad S^{1,2}(z)=\tilde{R}_{A_{2 n}^{(2)}}(z), \quad S^{2,2}(z)=\tilde{R}_{C_{n}^{(1)}}(z)
$$

Proof: Can check the commutativity of $S^{s, t}(z)$ with U_{q} and the irreducibility of $V_{x} \otimes V_{y} \quad \square$

Remark: Boundary vector \Longleftrightarrow End shape of the Dynkin diagram of \mathfrak{g}

$\begin{aligned} & 0 \\ & 0 \neq \end{aligned}$	- ${ }^{n}$		$\begin{gathered} n \\ \ll \end{gathered}$		$\begin{array}{r} n \\ \ll \end{array}$
$\left\langle\chi_{1}(z)\right\|$	$\left\|\chi_{1}(1)\right\rangle$	$\left\langle\chi_{1}(z)\right\|$	$\left\|\chi_{2}(1)\right\rangle$	$\left\langle\chi_{2}(z)\right\|$	$\left\|\chi_{2}(1)\right\rangle$

Related results

- Bazhanov-Sergeev (2006) ($L=$ 3D L-operator satisfying $R L L L=L L L R)$ $\operatorname{Tr}(R \cdots R), \operatorname{Tr}(L \cdots L)=\oplus(R$ for type A sym or anti-sym tensor rep. $)$
- K-Sergeev (2013)
$\left\langle\chi_{s}(z)\right| L \cdots L\left|\chi_{t}(1)\right\rangle=R$-matrix for spin rep. of $U_{q}\left(B_{n}^{(1)}\right), U_{q}\left(D_{n}^{(1)}\right)$ etc.
- K-Okado-Sergeev (in preparation)

Mixed products of R and L like $\operatorname{Tr}(R L R L L R),\left\langle\chi_{1}(z)\right| L L R L R L R\left|\chi_{1}(1)\right\rangle$
$=R$-matrix for Generalized quantum groups.
(Lusztig, Heckenberger, Batra-Yamane, etc.)

