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Random tilings

Random tilings are simple models whose main purpose is to
describe quasi-crystals.

They typically correspond to a high-temperate limit where
entropy considerations dominate.

All (known) random tiling models can be thought of as
fluctuating surfaces (i.e. bosonic fields) in a
higher-dimensional space.

Typical configurations may have “forbidden” symmetries. For
example, the square/triangle model has 12-fold symmetry!
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Schur functions and Littlewood–Richardson coefficients

Schur functions are the most important family (basis) of
symmetric functions in algebraic combinatorics.

They are also characters of GL(N).

They form bases of the cohomology ring of Grassmannians.
(related to Schubert varieties)

Littlewood–Richardson coefficients are structure constants of
the algebra of Schur functions.

Geometrically, they correspond to intersection theory on
Grassmannians.
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Fermionic states and Young diagrams

Define a partition to be a weakly decreasing finite sequence of
non-negative integers: λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. We usually
represent partitions as Young diagrams: for example λ = (5, 2, 1, 1)
is depicted as

λ =
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To each partition λ = (λ1, . . . , λn) one associates a fermionic state
|λ〉 so that the black (resp. red) sites correspond to vertical (resp.
horizontal) edges: . . .

...

t

t

t

t

t

t

ttt

ttt

t

t

ddd

ddd

d

d

F =
⊕

λ C |λ〉 is the fermionic Fock space (with charge 0).
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Definition of Schur polynomials

To a pair of Young diagrams λ, µ one associates the skew Schur
polynomial sλ/µ(x1, . . . , xn):

x 2
1

x 3
2

x 2
3

λ =

µ =

The (usual) Schur polynomial is sλ = sλ/∅.

Remark: the number of plane partitions in a × b × c is
s[a×c](x1 = · · · = xa+b = 1).
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Example

s (x1, x2) = x2
1

+ x1x2

+ x2
2
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Transfer matrix formulation

Consider the operator T (x) on F with matrix elements

〈µ|T (x) |λ〉 = sλ/µ(x)

It corresponds to the addition of one row of the tiling.
In particular

sλ/µ(x1, . . . , xn) = 〈µ|T (x1) . . .T (xn) |λ〉
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Properties

“Integrability” property:

[T (x), T (x ′)] = 0 ⇒ sλ/µ symmetric polynomial

Stability property:

T (0) = I ⇒ sλ/µ(x1, . . . , xn, xn+1 = 0) = sλ/µ(x1, . . . , xn)

Thus, the sλ/µ are symmetric functions (symmetric polynomials in
an infinite number of variables).
In fact, the sλ are known to be a basis of the space of symmetric
functions (which is thus isomorphic to F).
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Some identities

An identity that can be derived using the formalism above:

∑

µ

sλ/µ(x1, . . . , xn)sµ/ρ(y1, . . . , ym) = sλ/ρ(x1, . . . , xn, y1, . . . , ym)

Identities which remain mysterious:

sλ/µ(x1, . . . , xn) =
∑

ν

cλ
µ,νsν(x1, . . . , xn)

sλ(x1, . . . , xn)sµ(x1, . . . , xn) =
∑

ν

cν
λ,µsν(x1, . . . , xn)

sλ(x1, . . . , xn, y1, . . . , yn) =
∑

µ,ν

cλ
µ,νsµ(x1, . . . , xn)sν(y1, . . . , yn)
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Yang–Baxter equation

Theorem

If x + y + z = 0, then

= zz
y

y x

x

for any fixed boundaries and where tile x (resp. y , z) is only
allowed where marked.
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Puzzles

Remove all tiles x , y , z :

λ

µ ν
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Some history. . .

1993: M. Widom introduces
the square-triangle model,
deforms it into a regular
triangular lattice (∼ puzzles)
and proves integrability.

1994: P. Kalugin (partially)
solves the Coordinate Bethe
Ansatz equations (size→ ∞).

1997–2006: B. Nienhuis et al
reinvestigate it: underlying
algebra, commuting transfer
matrices, force networks
(∼ honeycombs).

1992: Berenstein,
Zelevinsky introduce a new
Littlewood–Richardson
rule (honeycombs).

2003-2004: A. Knutson,
T. Tao and C. Woodward
reexpress it in terms of
puzzles.

2008: K. Purbhoo
reformulates puzzles as
mosaics (∼ square-triangle
tilings).
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Cohomology of Grassmannians

The cohomology ring of Gr(n, k) = {V ⊂ C
n, dimV = k} is the

quotient of the ring of symmetric functions by the span of the sλ,
λ 6⊂ [k × (n − k)].
Given a fixed flag, one can build Schubert varieties indexed by
λ ⊂ [k × (n − k)] such that the sλ are their cohomology classes.
There is a torus T = (C×)n acting on Gr(n, k) and a
corresponding equivariant cohomology ring. It is a module over
Z[y1, . . . , yn], with basis the s̃λ, λ ⊂ [k × (n − k)].
If flag and torus are compatible (so that the Schubert varieties are
T -invariant), the s̃λ are the equivariant cohomology classes of the
Schubert varieties.
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Double Schur functions

The s̃λ can be represented as polynomials sλ(x1, . . . , xn|y1, . . . , yn).
(such that sλ(x1, . . . , xn|0, . . . , 0) = sλ(x1, . . . , xn)).

λ

k
︷ ︸︸ ︷

︸

︷
︷

︸

n

y1

y2

y3

y4

y5

y6

y7

y8
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Product formulae

Knutson–Tao problem:

sλ(x1, . . . , xk |z1, . . . , zn)sµ(x1, . . . , xk |z1, . . . , zn)

=
∑

ν

cν
µ,λ(z1, . . . , zn)sν(x1, . . . , xk |z1, . . . , zn)

Molev–Sagan problem:

sλ(x1, . . . , xk |z1, . . . , zn)sµ(x1, . . . , xk |y1, . . . , yn)

=
∑

ν

eν
λ,µ(y1, . . . , yn; z1, . . . , zn)sν(x1, . . . , xk |y1, . . . , yn)

Unifying solution of these two problems!
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sλ(x |z)sµ(x |y) =
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ν

eν
λ,µ(y ; z)sν(x |y)
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“Integrable” proofs of combinatorial identities?

Coproduct formula for double Schur functions?

Use of Bethe Ansatz?

Connection to work of Gleizer and Postnikov?

Generalization to other families of symmetric polynomials?
(Jack, Hall–Littlewood, Macdonald)

Generalization to other families of polynomials of geometric
origin? (Schubert, Grothendieck)
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