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Motivation

+ Holography via the AdS/CFT correspondence gives us a map between QFT
and dynamics of gravity.

+ The dictionary between the bulk and boundary observables should be
tightly constrained by the consistency conditions of relativistic QFT.

+ For eg., a pre-requisite for a sensible bulk-boundary map is that bulk
dynamics respect boundary causality; this is true for sensible matter theories

in the bulk.

+ More generally relations/constraints satisfied by field theory quantities must
be demonstrable from the bulk.

+ We shall explore three such features for entanglement entropy.



Motivation

+ In recent years we have come to appreciate that fundamental quantum
concepts have a geometric avatar, e.g., entanglement.

+ While entanglement is not a true observable in QFT, it nevertheless obeys
some non-trivial consistency requirements, especially vis a vis causality.

+ Holographically information about quantum entanglement information is
encoded in a codimension-2 extremal surface in the bulk spacetime.

Ryu & Takayanagi (2006): RT Hubeny, MR & Takayanagi (2007): HRT

+ The static prescription of RT is by now well understood and can be derived by a
path integral argument and satisfies various consistency conditions.

Casini, Heurta & Myers (2011): CHM Lewkowycz & Maldacena (2013): LM

+ Restriction to static situations however does not lend itself to analysis of causality
conditions; one has to therefore test the covariant holographic prescription of HRT.



Motivation

+ We shall ask three different questions about holographic entanglement
entropy and find some interesting surprises in how the field theory
expectations are upheld.

+ Part |: Holographic entanglement entropy satisfies field theory causality.

+ Part Il: The homology constraint on holographic entanglement follows from
a Euclidean quantum gravity path integral.

+ Part lll: Constraints from strong-subadditivity suggest connections with the
laws of gravitational thermodynamics.



Causality of Holographic Entanglement

Matt Headrick, Veronika Hubeny, Albion Lawrence, MR 1408.6300

Wall 1211.3494



Motivation

+ No short-cuts through the bulk.

e For bulk matter obeying null energy condition, signals propagating
through an asymptotically AdS bulk spacetime are time-delayed relative
to signals propagating through the boundary. Gao & Wald (2000)

e Fastest propagation between boundary points is along the boundary.

+ Note that this statement relies on the bulk spacetime being smooth.
+ Timelike singularities in the bulk can indeed result in time advance.
e Obvious eg., negative mass AdS-Schwarzschild

o Less obvious: charged scalar solitons with positive boundary energy.
Gentle & MR (2013)



—ntanglement in QFT

+ Consider a QFT in a density matrix, living on a background B which is
globally hyperbolic spacetime with a nice time foliation (Cauchy slices X2).

+ Ais a subregion of the Cauchy slice, with an entangling surface 0.A.

reduced density
matrix

AC

0A Sa=—Tr(palogpa)




Causality and Entanglement

+ Entanglement entropy in QFT is a wedge observable.

D[A] = D*[A]U D~ [A] /

+ The entanglement entropy can only be influenced by changing conditions
in the past domain J~[0A].




Covariant Holographic Entanglement Entropy

+ Given the boundary region A the prescription to compute entanglement
holographically involves finding a bulk extremal surface €4 which is anchored
on J.A and is homologous to A.

~ Area(&y)

4Gy

SA

+ The extremal surface £ 4 is a codimension-2 surface in the bulk
asymptotically AdS spacetime M (nb: O M = B)

+ The proposal has passed some basic consistency checks and gives
reasonable results in many settings, but unlike the static case we don't yet
have a proof.

+ Progress has been made in proving various entropy inequalities (strong
subadditivity), but lacking a general proof tests of consistency with QFT are
desirable.



Why causality for HRT?

+ To appreciate the problem, recall that a-priori causal domains seem not be
a barrier to extremal surfaces. In dynamical spacetimes the extremal
surface can (and often does) go behind event and apparent horizons.

+ More generally, associated with a region on the boundary, we can define a
corresponding bulk causal wedge.

+ Extremal surfaces can be shown to lie
outside the causal wedge in e 4
asymptotically AdS spacetimes.

+ This is in fact a consequence of the time-

delay result discussed earlier. = =

Hubeny, MR (2012)  Wall (2012)
Hubeny, MR & Tonni (2013)



A gedanken experiment

Eternal BH in AdS = Entangled state in 2 CFTs
Perturb the two boundaries



A gedanken experiment

CFT; o) CFTp
We A Wel Al

The extremal surface lies in the causal shadow.



The argument

+ The extremal surface is by definition a codimension-2 bulk surface whose
null expansions are vanishing.

+ The congruence emanating from this surface will start converging & it
cannot make it out to the boundary without encountering caustics/
crossover points.

+ |f the extremal surface lies in the forbidden regions where it can be
influenced by perturbations in the causal wedge of the region or its
complement, then the null congruence can make it out to the boundary
within the domain of dependence D[A].

+ One can in fact show that the congruence from & 4 intersects the
boundary precisely on D[A].



—ntanglement wedges

Natural decomposition of the bulk spacetime in distinct domains.

entanglement
wedge

CFT; 0 CFTx
We [.AC] We [A]

M = We Al U We | Al U j+[(€A] U j_[EA]



Precls

Part |

+ The extremal surface computing the holographic entanglement entropy

lies in the causal shadow in the bulk.

+ The decomposition of the bulk spacetime into four casual domains,

determined by the codimension-2 extremal surface, is the holographic

image of the boundary causal domain decomposition.

+ It is natural to conjecture that the entanglement wedge which is a bulk

codimension-0 region is dual to the density matrix.

+ Consequences for holographic subregion duality arising from the presence

of casual shadows remain to be explored in greater detail.



Topology & Generalized Gravitational Entropy

Felix Haehl, Tom Hartman, Don Marolf, Henry Maxfield, MR  1412.7561



Motivation

+ The RT/HRT constructions requires a homology constraint.
Fursaev (2007); Headrick & Takayanagi (2007)
+ Basically the extremal surface £ 4 is required to be smoothly contractible

onto the region 4. More precisely, we require the existence of a
codimension-1 (spacelike) bulk region

R4 CM: ORy4=EUA

+ This condition was motivated in the context of proving strong-subadditivity
of holographic entanglement.

+ The strongest motivation for it comes from requiring that the entanglement
entropy for a subregion tend to the von Neumann entropy of the total
density matrix when the region becomes the entire Cauchy slice.

cf., Headrick (2013); Hubeny, Maxfield, MR & Tonni (2013)
Headrick, Hubeny, Lawrence & MR (2014)



Wherefrom homology*?

+ This condition was motivated in the context of proving strong-subadditivity
of holographic entanglement.

+ The strongest motivation for it comes from requiring that the entanglement
entropy for a subregion tend to the von Neumann entropy of the total
density matrix when the region becomes the entire Cauchy slice.

+ Whilst the constraint seems necessary to ensure that the holographic

prescriptions is consistent with the features of quantum entanglement, its
origins are murky.

+ |s this automatic or should it be imposed simply to ensure consistency?

+ Instructive to examine this in the case of the RT proposal using the
generalized gravitational entropy prescription of LM.



Replicas in QFT and gravity

+ The replica method is a useful technical tool for computing powers of the
reduced density matrix and can be naturally be motivated not only in the
boundary QFT, but also in the bulk gravitational theory.



Rényi entropy in QFT

+ The Rényi entropy in QFT is obtained from the powers of the reduced

density matrix

1 1 Zg

S(Q) - log Tr(p?y) = - log Zq

+ This quantity can be obtained by considering the partition function Z, of
the QFT on a new background geometry [;’q.

~

+ B, is a singular manifold obtained by taking the g-fold branched cover
over B\0A (cut-out the entangling surface and cyclically sew g-copies).

+ Note that there is a natural replica symmetry (cyclic Z, symmetry) on B,
with the fundamental domain being a copy of the original spacetime.

B,/Z, ~ B



Rényi entropy In gravity

+ The usual rules of AdS/CFT say that the partition function Z, is obtained
as the on-shell action of gravity on the bulk geometry M, whose boundary
is the replica geometry oM, = B,.

+ In fact, if we assume that the bulk gravity theory continues to respect the
replica symmetry then we can consider the quotient spacetime:

Mq — Mq/Zq

+ We expect M, has a codimension-2 singular surface e, whichin ¢ — 1
limit becomes the RT surface (extension to HRT seems possible).

+ This singular surface which is anchored on the entangling surface is usually
referred to as the conical defect or cosmic brane in the literature.

Lewkowycz & Maldacena (2013)



Rényi and homology

+ Naively one expects a (two-sided) codimension-1 interpolating surface that
connects the cosmic brane and the entangling surface.

+ Assuming the codimension-1 surface exists it then follows that the quotient

geometry M, lifts to a branched cover M. Roughly think of all fields

having 2 monodromy about the branching surface e,

q

+ Rather surprisingly the converse statement can fail (for some values of q):

* the quotient geometry does not admit an interpolating surface, or

* the fixed point set is something other than the conical defect of interest.

+ Both of these scenarios can be realized by explicit counter-examples.

+ Homology is not guaranteed in the LM construction trivially at the level of
topology; a precise criterion can be given, but first...



When homology fails...

+ Topological example: three scenarios for computing thermal entropy using
replica method. CFT on spatial circle (suppressed) with the period of
Euclidean time direction setting the temperature.



And when it works...

gle)

+ Homology respecting extremal surfaces in the solid torus geometry (BTZ).

+ Thinking of the above as the fundamental domain of the branched cover
we require that the sheet counting map on the boundary agree with the
sheet counting map in the bulk.



Homology from gravity

+ Start with original bulk manifold and put in a codimension-2 conical defect.

+ We want the defect to have the correct monodromy for fields, so that going
around the defect in the bulk is tantamount to going through the region on
the boundary.

+ Formally, we need a local bulk sheet counting map (defined in the
neighbourhood of the conical defect) which lift to a global sheet counting
map and restricts on the boundary to the boundary sheet counting map.

+ This is guaranteed provided we have replica symmetric saddle points for
every integer g, i.e., we need families of Rényi saddles.

l % HY (M — &) 220 HYB - 0A) @ H2(M, M — &) =5 H2(M, B — 0.A)
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Part

+ The homology constraint follows from the LM in gravity iff the replica

symmetric bulk geometries are branched cover for every integral Rényi

index, with the branching structure commensurate with the boundary

conditions.

+ The argument can be made purely in topology and thus should hold for

any bulk gravitational theory.

+ There is an interesting challenge to extend this to the covariant case as well

as to understand relevance of complex saddles in the LM construction.



—ntanglement density & gravitational thermodynamics

T

Jyotirmoy Bhattacharya, Veronika Hubeny, MR, Tadashi Takayanagi  1412.5472

L ashkari, Rabideau, Sabella-Garnier, Van Raamsdonk  1412.3514



Strong-subadditivity of entanglement entropy

+ The von Neumann entropy satisfies a number of important constraints,
primary amongst which is strong-subadditivity (SSA).

S.AlLJ.AQ + S.Alﬂ.Ag S S.Al + S.AQ \V/Al,Q

Lieb & Ruskai (1973)

+ This is a convexity property of entanglement and has played an important
role in QFT. eg., proofs of c-theorem and F-theorem in 2,3 dimensions.

Casini & Huerta (2004, 2012)

+ The holographic entanglement entropy satisfies the SSA; the proof in the
static case is remarkably simple, but even the covariant prescription can be

shown to respect it.

Headrick & Takayanagi (2007)
Wall (2012)



Gravity and entanglement

+ Recent discussions in the AdS/CFT context have tried to make precise the
idea, that the bulk geometry is the encoder of the entanglement structure
of the QFT state.

+ If true, dynamics of gravity, ought to arise from some basic principle of
entanglement entropy. Indeed, this has been argued for using relative
entropy, and special properties of entanglement for ball-shaped regions in
the vacuum state of a CFT. Lashkari, McDermott, Van Rammsdonk(2013)

Faulkner, Guica, Hartman, Myers, Van Rammsdonk(2013)

+ In general, however, entanglement is rather non-local. Could one identify a
more local construct that distills its essence and gives us insight into gravity?



—ntanglement density

A (514, 62.A4) = 8162 S

+ Consider infinitesimal deformations
of a given region.

+ Convexity of entanglement entropy
which is encoded in the statement
of strong subadditivity can be
distilled into a statement about the
second variation.

+ Inspired by this we define a notion

of entanglement density which is
sign-definite by SSA.

n >0



—ntanglement density in 2d QFT

Ie+ = (0,0)

+ Look at regions domain of
dependence is generated by the
light cone from two points €*.

+ We can slide the region up and
down along the light-cone to

conjure a configuration where SSA

.
can be applied.
(t-ez—qgm 1 Sl-crto Sap +ScB 2 Sap + Scp
.....i.“..
'
|
DIA] = J-[e+]nJ*[e] = (—02 +82) S(t, ) > 0.



—ntanglement density in 3d QFTs

et =(0,0) + In higher dimensions we consider a
sequence of regions & iterate the
SSA to get:

Y S(Xi) > S (UilXs) + S (U (X N X))

+ S(Uir (Xi N X, N XE))+---+ 5 (N X)
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Casini & Huerta (2012)



Holographic entanglement density

+ What does this translate to in gravity?
+ First, we observe that the density vanishes in the vacuum of a CFT.

+ This allows us to talk about the density relative to the vacuum, which is also
guaranteed by SSA to be positive definite.

+ Examining perturbations around linearized AdS we find that the density
naturally relates to the bulk gravitational dynamics

1
E.,. =R, — §ng, +Agu =8nGNT,,

SSA = Ay >0, AYC =0

M 14
— EAGN(:E)N(ZE)E’“/ZO
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Part |l

+ Entanglement density distills the essence of SSA into a nice set of local

differential inequalities.

+ The positivity of the density maps holographically to the null energy

condition.

+ |t is tempting to speculate that the local convexity of the entanglement

density is related to a version of the second law of gravitational

thermodynamics.

+ Indeed when we focus on the long-wavelength fluctuations about a density

matrix in the QFT, we can use the entanglement density as a proxy for the

hydrodynamic entropy production, which satisfies the second law.






