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Fig. 3: Example of a causally trivial spacetime and a boundary region A whose causal shadow is

a finite spacetime region. We have engineered an asymptotically AdS
3

geometry sourced

by matter satisfying the null energy condition (see footnote 14) and taken A to nearly

half the boundary, 'A = 1.503, at t = 0 (thick red curve). The shaded regions on the

boundary cylinder are D[A] and D[Ac] respectively. The extremal surface is the thick

blue curve, while the purple curves are the rims of the causal wedge (causal information

surfaces) for A and Ac respectively. A few representative generators are provided for

orientation: the blue null geodesics generate the boundary of the causal wedge for A
while the green ones do likewise for Ac. The orange generators in the middle of the

spacetime generate the boundary of the causal shadow region Q
@A.

We define this region as the set of points in the bulk M that are spacelike-related to

both D[A] and D[Ac], i.e.,

Q
@A :=

⇣
J̃+[D[A]] [ J̃�[D[A]] [ J̃+[D[Ac]] [ J̃�[D[Ac]]

⌘
c

= S̃[D[A] [D[Ac]] . (2.7)

For a generic region A in a generic asymptotically AdS spacetime, the causal shadow
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Motivation

✦ Holography via the AdS/CFT correspondence gives us a map between QFT 
and dynamics of gravity. 

✦ The dictionary between the bulk and boundary observables should be 
tightly constrained by the consistency conditions of relativistic QFT. 

✦ For eg., a pre-requisite for a sensible bulk-boundary map is that bulk 
dynamics respect boundary causality; this is true for sensible matter theories 
in the bulk. 

✦ More generally relations/constraints satisfied by field theory quantities must 
be demonstrable from the bulk. 

✦ We shall explore three such features for entanglement entropy.



Motivation
✦ In recent years we have come to appreciate that fundamental quantum 

concepts have a geometric avatar, e.g., entanglement. 

✦ While entanglement is not a true observable in QFT, it nevertheless obeys 
some non-trivial consistency requirements, especially vis a vis causality.

✦ Holographically information about quantum entanglement information is 
encoded in a codimension-2 extremal surface in the bulk spacetime.

Ryu & Takayanagi (2006): RT Hubeny, MR & Takayanagi (2007): HRT

✦ The static prescription of RT is by now well understood and can be derived by a 
path integral argument and satisfies various consistency conditions. 

✦ Restriction to static situations however does not lend itself to analysis of causality 
conditions; one has to therefore test the covariant holographic  prescription of HRT.

Casini, Heurta & Myers (2011): CHM Lewkowycz & Maldacena (2013): LM



Motivation

✦ We shall ask three different questions about holographic entanglement 
entropy and find some interesting surprises in how the field theory 
expectations are upheld.

✦ Part I: Holographic entanglement entropy satisfies field theory causality.

✦ Part II: The homology constraint on holographic entanglement follows from 
a Euclidean quantum gravity path integral.

✦ Part III: Constraints from strong-subadditivity suggest connections with the 
laws of gravitational thermodynamics.
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a finite spacetime region. We have engineered an asymptotically AdS
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geometry sourced

by matter satisfying the null energy condition (see footnote 14) and taken A to nearly

half the boundary, 'A = 1.503, at t = 0 (thick red curve). The shaded regions on the

boundary cylinder are D[A] and D[Ac] respectively. The extremal surface is the thick

blue curve, while the purple curves are the rims of the causal wedge (causal information

surfaces) for A and Ac respectively. A few representative generators are provided for

orientation: the blue null geodesics generate the boundary of the causal wedge for A
while the green ones do likewise for Ac. The orange generators in the middle of the

spacetime generate the boundary of the causal shadow region Q
@A.

We define this region as the set of points in the bulk M that are spacelike-related to

both D[A] and D[Ac], i.e.,

Q
@A :=

⇣
J̃+[D[A]] [ J̃�[D[A]] [ J̃+[D[Ac]] [ J̃�[D[Ac]]

⌘
c

= S̃[D[A] [D[Ac]] . (2.7)

For a generic region A in a generic asymptotically AdS spacetime, the causal shadow
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Motivation

✦ No short-cuts through the bulk. 

๏ For bulk matter obeying null energy condition, signals propagating 
through an asymptotically AdS bulk spacetime are time-delayed relative 
to signals propagating through the boundary. 

๏ Fastest propagation between boundary points is along the boundary.

Gao & Wald (2000)

✦ Note that this statement relies on the bulk spacetime being smooth.  

✦ Timelike singularities in the bulk can indeed result in time advance. 

๏ Obvious eg., negative mass AdS-Schwarzschild  

๏ Less obvious: charged scalar solitons with positive boundary energy. 
Gentle & MR (2013)



Entanglement in QFT

✦ Consider a QFT in a density matrix, living on a background      which is 
globally hyperbolic spacetime with a nice time foliation (Cauchy slices     ). 

✦      is a subregion of the Cauchy slice, with an entangling surface        .

⌃

A @A

A
@A

⌃

Ac

⇢A
reduced density 
matrix

SA = �Tr (⇢A log ⇢A)

B



Causality and Entanglement

✦ Entanglement entropy in QFT is a wedge observable.

✦ The entanglement entropy can only be influenced by changing conditions 
in the past domain             .

AD+[A]

D�[A]

D[A] = D+[A] [D�[A]

D[A]D[Ac]

J+[@A]

J�[@A]

J�[@A]



Covariant Holographic Entanglement Entropy

✦ The proposal has passed some basic consistency checks and gives 
reasonable results in many settings, but unlike the static case we don’t yet 
have a proof. 

✦ Progress has been made in proving various entropy inequalities (strong 
subadditivity), but lacking a general proof tests of consistency with QFT are 
desirable.

✦ Given the boundary region      the prescription to compute entanglement 
holographically involves finding a bulk extremal surface        which is anchored 
on         and is homologous to     .

A

@A A
EA

truncates to that of Einstein gravity, possibly coupled to matter which we will assume

satisfies the null energy condition.

The dynamics of the QFT on B is described by classical gravitational dynamics

on a bulk asymptotically locally AdS spacetime M with conformal boundary B, the
spacetime where the field theory lives. We define M̃ := M [ B. M̃ is endowed with a

metric g̃
ab

which is related by a Weyl transformation to the physical metric g
ab

on M,

g̃
ab

= ⌦2g
ab

, where ⌦ ! 0 on B.9 Causal domains on M̃ will be denoted with a tilde to

distinguish them from their boundary counterparts, e.g., J̃±(p) will denote the causal

future and past of a point p in M̃ and D̃[R] will denote the domain of dependence of

some set R ⇢ M̃.

It will also be useful to introduce a compact notation to indicate when two points

p and q are spacelike-separated; for this we adopt the notation ⇣, i.e.

p ⇣ q , @ a causal curve between p and q. (2.2)

Moreover, to denote regions that are spacelike separated from a point, we will use S(p)
and S̃(p) in the boundary and bulk respectively,

S(p) := {q | p ⇣ q} =
�
J+(p) [ J�(p)

�
c

and S̃(p) :=
⇣
J̃+(p) [ J̃�(p)

⌘
c

.

(2.3)

Just as for other causal sets, we can extend these definitions to any region R, namely

S[R] := \
p2RS(p) is the set of points which are causally disconnected from the entire

region R, etc.

Having established our notation for general causal relations, let us now specify the

notation relevant for holographic entanglement entropy. As before we will fix a region

A on the boundary. The HRT proposal [3] states that the entanglement entropy SA is

holographically computed by the area of a bulk codimension-two extremal surface EA
that is anchored on @A; specifically,

SA =
Area(EA)

4G
N

. (2.4)

In the static (RT) case, it is known that the extremal surface is required to be homol-

ogous to A, meaning that there exists a bulk region RA such that @RA = A [ EA.
So far, it has not been entirely clear what the correct covariant generalization of this

condition is. In particular, should it merely be a topological condition, or should one

impose geometrical or causal requirements on RA, for example, that it be spacelike?

(A critical discussion of the issues involved can be found in [32].) In this paper, we

9 These are necessary but not su�cient conditions for the spacetime to be asymptotically AdS.

– 9 –

✦ The extremal surface        is a codimension-2 surface in the bulk 
asymptotically AdS spacetime       (nb:                  )   

EA
M @M = B



Why causality for HRT?

✦ To appreciate the problem, recall that a-priori causal domains seem not be 
a barrier to extremal surfaces. In dynamical spacetimes the extremal 
surface can (and often does) go behind event and apparent horizons. 

✦ More generally, associated with a region on the boundary, we can define a 
corresponding bulk causal wedge.

Hubeny, MR & Tonni (2013)

Wall (2012)Hubeny, MR (2012)

✦ Extremal surfaces can be shown to lie 
outside the causal wedge in 
asymptotically AdS spacetimes. 

✦ This is in fact a consequence of the time-
delay result discussed earlier.

A

c
A

⌅A⌅Ac

EA

Fig. 3: Sketch to illustrate the fact the causal information surfaces ⌅A and ⌅Ac
for a region A and its

complement A

c
have to lie closer to the respective boundary regions than the common extremal

surface EA = EAc
.

However, for the causal construction there is an asymmetry generically between the causal

wedges of the regions A and A

c.17 The basic point is quite simple and the main idea is sketched in

Fig. 3, set in the more natural context of global AdS. Consider e.g. a static asymptotically global

AdS geometry with a gravitational potential well. By the Gao-Wald theorem [24], within a fixed

time set by the size of ⌃A, the null geodesics which define the causal wedge cannot reach as far

from the AdS boundary as they could in the pure AdS spacetime. But in pure global AdS, the

causal information surfaces for a circular region A and its complement would coincide.18 Hence

for any physical deformation of AdS, the causal information surfaces would shift, ⌅A towards the

boundary where A is located, and ⌅c
A towards the boundary where Ac is located, as indicated in

Fig. 3. Moreover, due to caustics in ⌃A for any other shaped region in d > 2, the corresponding

causal information surfaces would likewise retreat towards the boundary, even for pure AdS,

whenever A is not the round ball. Thus, in general, ⌅A and ⌅c
A di↵er, so there is no reason for

�A and �Ac to be the same.

To see an explicit example, for simplicity in the context of flat boundary, let us again consider

the strip discussed above; but in order to keep both A and its complement finitely extended in at

least one direction, let the x1 direction be compactified, say x1 ⇠ x1 +R. This means we should

consider the boundary theory on Rd�2,1
⇥ S1 and let | i be the corresponding vacuum state.

17 This argument was developed together with Mark van Raamsdonk.
18 The reason is apparent from Fig. 4(a), where the null boundaries of the causal wedge for A corresponding

to half the circle are shown. These are Rindler horizons, and due to the large symmetry Rindler horizons from

any other point would look the same. In particular, to construct causal wedge for any other circular region (i.e.

shorter interval in Fig. 4(a)), we can simply time-translate one of the null planes with respect to the other. But

in pure AdS, the same null plane acts both as the past boundary of A’s causal wedge and as the future boundary

of Ac’s causal wedge, since null geodesics through AdS all reconverge at the same antipodal null-translated point.

Since the two null planes (future and past boundaries of either region’s causal wedge) always intersect on a single

surface; this surface is simultaneously ⌅A and ⌅c
A.
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A gedanken experiment

CFTR

CFTL

A

Eternal BH in AdS = Entangled state in 2 CFTs
Perturb  the two boundaries

EA



A gedanken experiment

The extremal surface lies in the causal shadow.

CFT
R

CFT
L

AEA

Q
WC[A]WC[Ac]

FA

Fig. 5: Sketch of Penrose diagram for a symmetric Vaidya-Schwarzschild-AdS geometry ob-

tained by imploding null shells to the past and future from both boundaries. The crucial

new feature of note is the presence a causal shadow region that is spacelike separated

from both boundaries. We have also indicated the extremal surface EA for the region

A = ⌃
R

in red at the center of the figure and FA is a Sd�1 of finite area in the causal

future of the left boundary. The lightly shaded regions are the causal wedges associated

with A and Ac respectively.

t = 0, symmetry under exchanging the left and right sides, and the SO(d) rotational

symmetry.

According to the theorems above, the extremal surface must be spacelike-separated

from both boundaries, when we take A = ⌃
R

. Using both time and space reflection

symmetry, it is clear that EA must sit in the center of the causal shadow Q of the two

boundaries, spacelike separated from both.

In the general case of spherically symmetric spacetime (even in the absence of time

or space reflection symmetry) there is an easy proof of our claim that EA must lie in the

causal shadow. We proceed by contradiction: suppose that a spherical extremal surface

EA lies in J̃+ [⌃
L

]. This means that on a Penrose diagram, it lies somewhere in the top-

left region; say it is the surface FA indicated in Fig. 5 (which by rotational symmetry is

a copy of Sd�1). Let us then consider the past congruence of null normal geodesics from

FA towards B
L

. Since we assume that FA candidate surface lies in J̃+ [⌃
L

], past-going

null congruences from the surface intersect B
L

on a spacelike codimension-one surface.

– 16 –



The argument

✦ The extremal surface is by definition a codimension-2 bulk surface whose 
null expansions are vanishing. 

✦ The congruence emanating from this surface will start converging & it  
cannot make it out to the boundary without encountering caustics/
crossover points. 

✦ If the extremal surface lies in the forbidden regions where it can be 
influenced by perturbations in the causal wedge of the region or its 
complement, then the null congruence can make it out to the boundary 
within the domain of dependence           . 

✦ One can in fact show that the congruence from         intersects the    
boundary precisely on           . 

D[A]

D[A]
EA



Entanglement wedges
Natural decomposition of the bulk spacetime in distinct domains.

CFT
R

CFT
L

A

Q
WE [Ac] WE [A]

Fig. 10: Sketch of Penrose diagram for a symmetric Vaidya-Schwarzschild-AdS geometry

obtained by imploding null shells to the past and future from both boundaries now

displaying the entanglement wedges and the causal shadow region, with A being a full

Cauchy surface for CFT
R

.

pure states, where the homology constraint trivializes and we have EA = EAc , we can

write the bulk decomposition equivalently with respect to both A and Ac,

M = WE [A] [WE [Ac] [ J̃+[EA] [ J̃�[EA] (5.1)

which is directly analogous to the boundary decomposition (2.1). However, for mixed

states, where typically EA 6= EAc , the decomposition (5.1) is not true;26 instead the

correct decomposition should replace WE [Ac] with the bulk domain of dependence of

the complement of RA within the bulk Cauchy slice ⌃̃, or more precisely D̃[⌃̃\RA\EA].
Dual of ⇢A? Within the class of CFTs and states with a geometrical holographic

dual, it has often been asked,27 for a given region A, what is the bulk “dual” of the

reduced density matrix ⇢A. One way to formulate what one means by this is as follows:

suppose we fix ⇢A and vary over all compatible density matrices for the full state

⇢. What is the maximal bulk spacetime region which coincides for all such ⇢’s? By

26 Note however that if we purify a mixed state by additional boundaries, such as in the deformed
eternal black hole example illustrated in Fig. 10, then the decomposition (5.1) does hold.

27 In recent years this question has been invigorated by e.g. [53, 54].
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dual, it has often been asked,27 for a given region A, what is the bulk “dual” of the

reduced density matrix ⇢A. One way to formulate what one means by this is as follows:
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Precis Part I

✦  The extremal surface computing the holographic entanglement entropy 
lies in the causal shadow in the bulk.  

✦ The decomposition of the bulk spacetime into four casual domains, 
determined by the codimension-2 extremal surface, is the holographic 
image of the boundary causal domain decomposition. 

✦ It is natural to conjecture that the entanglement wedge which is a bulk 
codimension-0 region is dual to the density matrix. 

✦ Consequences for holographic subregion duality arising from the presence 
of casual shadows remain to be explored in greater detail.
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Motivation

✦ The RT/HRT constructions requires a homology constraint. 

✦ Basically the extremal surface        is required to be smoothly contractible  
onto the region     .  More precisely, we require the existence of a 
codimension-1 (spacelike) bulk region 

EA
A

Boundary regions

Symbol Description Dimension

B full boundary manifold d

⌃t fixed-time slice d� 1

A subregion of ⌃t d� 1

@A entangling surface d� 2

B̃q q-fold branched cover of B used in the replica trick d

Bulk regions

Symbol Description Dimension

M full bulk manifold (with @M = B) d+ 1

E RT minimal surface (with @E = @A) d� 1

RA homology surface interpolating between E and A d

M̃q smooth bulk replica manifold (with singular @M̃q = B̃q) d+ 1

Mq fundamental domain of M̃q when M̃q is a branched cover (i.e. M̃q/Zq) d+ 1

eq branching surface of the branched cover M̃q ! Mq varies

rq homology surface interpolating between eq and A (if it exists) d

Table 1: Definition of boundary and bulk regions that we consider in the course of our discussion.

Crucially the bulk extremal surface is required to satisfy a homology constraint originally

motivated in [6]. Usually this is stated as the requirement that the extremal surface must be

homologous to the region A. More precisely, following e.g., [7, 8] we will take this to mean

that there exists a bulk codimension-1 spacelike surface RA which interpolates between the

extremal surface and the boundary region of interest. To wit,

9 RA ⇢ M : @RA = E [A . (2.2)

In the RT/HRT constructions, taking A to be spacelike is an additional restriction on the al-

lowed minimal/extremal surfaces, though it is naturally incorporated in the maximin proposal

of [11]. We will have much more to say about this constraint below.

We need one more ingredient to make contact with the LM path integral derivation. This

ingredient is the replica trick for computing powers of the reduced density matrix ⇢A whose

von Neumann entropy is the entanglement entropy under discussion. We define

⇢A = TrAc⇢ , SA = �Tr (⇢A log ⇢A) , (2.3)

where ⇢ is the total density matrix on ⌃t = A [A

c. After setting t = 0 as in footnote 2 and

passing to Euclidean signature, ⇢ can be viewed as a state prepared by some path integral

over B (now denoting a Euclidean boundary) cut along ⌃t=0 where boundary conditions are

imposed on fields at ⌃t=0 to compute particular matrix elements of ⇢. Up to a normalizing

factor, the trace over Ac to obtain ⇢A is implemented by sewing up the part of the cut along

A

c, leaving B with a cut only along A. The replica construction in the QFT then proceeds

– 4 –

✦ This condition was motivated in the context of proving strong-subadditivity 
of holographic entanglement. 

✦ The strongest motivation for it comes from requiring that the entanglement 
entropy for a subregion tend to the von Neumann entropy of the total 
density matrix when the region becomes the entire Cauchy slice.

Fursaev (2007); Headrick & Takayanagi (2007)

cf., Headrick (2013); Hubeny, Maxfield, MR & Tonni (2013)   
      Headrick, Hubeny, Lawrence & MR (2014)



Wherefrom homology?

✦ This condition was motivated in the context of proving strong-subadditivity 
of holographic entanglement. 

✦ The strongest motivation for it comes from requiring that the entanglement 
entropy for a subregion tend to the von Neumann entropy of the total 
density matrix when the region becomes the entire Cauchy slice. 

✦ Whilst the constraint seems necessary to ensure that the holographic 
prescriptions is consistent with the features of quantum entanglement, its 
origins are murky. 

✦ Is this automatic or should it be imposed simply to ensure consistency? 

✦ Instructive to examine this in the case of the RT proposal using the 
generalized gravitational entropy prescription of LM. 



Replicas in QFT and gravity

A

e3
r3

B

Fig. 1: Replica construction in the boundary and bulk for q = 3. The replica symmetric q copies of

the field theory on B, form a q-fold branched cover B̃q which fixes the asymptotic data for the

bulk problem. The bulk covering spacetime M̃q has a Zq symmetry with fixed point locus eq

(shown as the wavy lines) anchored on @A. Typically one also encounters via this construction a

bulk interpolating surface rq (the light blue branching surface) in the bulk whose boundaries are

eq and A. Conventional intuition dictates that the bulk spacetimes are all covers over a single

fundamental domain (one of the components in the picture) branched over the codimension-1

surface rq. Passing through this surface cycles through the sheets of the bulk in a fashion identical

to passage through A. The homology condition posits that such an rq exists. We argue that this

picture is accurate as long as we are suitably careful with the notion of allowed branched covers.

As q ! 1, rq ! RA and eq ! E .

(ii). There are branched covers with the correct boundary conditions which cannot be re-

alized in this way. That is, for given q 2 Z+, there can exist an Mq formed from a

quotient of a branched cover which does not admit an interpolating surface rq between

A and the fixed point set eq (lift 6=) homology).

(iii). However, given a continuous family of bulk geometriesMq parameterized by real q which

for every q 2 Z+ lifts to a q-fold branched cover, we will show that each Mq admits

an interpolating surface rq. Taking q ! 1 then shows that E satisfies the homology

constraint as desired (lift 8 q =) homology).

We also note that, on top of this, the fixed point set arising from a Zq quotient may give

rise to something other than a 2⇡
q conical defect. It is possible to generate fixed point sets

with the wrong codimension, and also to engineer situations wherein the codimension-2 fixed

point set has an incorrect defect angle. In §3 we give examples where both these scenarios

can be realized.

Below we generally confine ourselves to topological arguments. In particular, we refrain

from employing dynamical information from the path integral to constrain Mq. This is in

part due to the fact that classification of all replica invariant saddles with given boundary

– 7 –

✦ The replica method is a useful technical tool for computing powers of the 
reduced density matrix and can be naturally be motivated not only in the 
boundary QFT, but also in the bulk gravitational theory.



Rényi entropy in QFT
by sewing q copies together cyclically along the cuts at A to construct a singular manifold

B̃q whose partition function computes Tr(⇢qA). This then allows us to recover the qth Rényi

entropy of the QFT via:

S
(q)
A =

1

1� q
log Tr(⇢qA) =

1

1� q
log

Zq

Zq
1

, (2.4)

where Zq is the partition function of the QFT on B̃q and Z1 that on B1 ⌘ B. The entanglement

entropy SA of (2.3) is recovered in the limit q ! 1.

The LM construction first implements this computation of Rényi entropies holographi-

cally by extending the replica trick into the bulk. It then extracts the entanglement entropy

as above by giving a geometric implementation of the continuation to non-integer q.

To compute Zq, one proceeds by obtaining a bulk manifold M̃q with boundary B̃q (for

some explicit examples see [12, 13]); as always, the partition function is simply given by the

on-shell gravitational action computed on this geometry. This bulk computation follows the

usual rules of Euclidean quantum gravity and the LM saddle point analysis remains valid

when we analytically continue q 2 Z+ 7! q 2 R, as long as (q � 1) `AdS/`P lanck � 1.

To get from the replica spacetimes M̃q of LM to the RT minimal surface one proceeds

as follows. Since the boundary geometry B̃q is a q-fold cover over B branched at @A with

cyclic Zq symmetry, we can restrict attention to a single ‘fundamental domain’ by focusing

on the quotient spacetime B̃q/Zq; this is just a copy of B itself. Assuming the bulk saddle

point geometry M̃q to respect replica symmetry,3 we may similarly consider the bulk quotient

Mq = M̃q/Zq. LM focus on the case where the action of Zq on M̃q has a codimension-2

fixed point set eq with boundary @A. This eq is to be identified as the progenitor of the

extremal surface E . It is assumed to result in a conical defect of angle 2⇡
q in Mq. The desired

QFT partition function Zq on B̃q is then q times the bulk action on Mq, computed without

a contribution from the conical defect.

The point of considering this quotient is that it allows continuation to arbitrary real

values of q. The protocol is to find a geometry Mq with boundary B and from which a

‘singular’ codimension-2 surface eq ending at @A has been excised. One then imposes as a

further boundary condition that eq is a conical defect of opening angle 2⇡
q . The geometry

is fixed by minimizing the action subject to this requirement, with no contribution to the

action from the singularity. In the q ! 1 limit we require Mq ! M. The defect surface eq

then becomes the minimal area surface E in the Euclidean geometry. One can furthermore

argue that the contribution to Zq localizes on this surface, giving a correction to the action

proportional to the area, in such a way that the area of the extremal surface computes the

entanglement entropy.

3 The Z2 time-reflection symmetry about t = 0 of the state ⇢ intertwines with the cyclic Zq symmetry of

the replica construction, to give a larger dihedral symmetry group Dq; see [14] for its relevance in computing

Rényi entropies. We refrain from utilizing the full dihedral symmetry, allowing for the possibility that the LM

construction gives a surface that does not lie at t = 0 in the bulk. Therefore, in what follows, replica symmetry

will always refer to the cyclic Zq group.
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✦ The Rényi entropy in QFT is obtained from the powers of the reduced 
density matrix

✦ This quantity can be obtained by considering the partition function       of 
the QFT on a new  background geometry      . 

Zq

B̃q

✦         is a singular manifold obtained by taking the q-fold branched cover 
over             (cut-out the entangling surface and cyclically sew q-copies).
B̃q

B\@A

✦ Note that there is a natural replica symmetry (cyclic       symmetry)  on        
with the fundamental domain being a copy of the original spacetime.

Zq B̃q

B̃q/Zq ' B



Rényi entropy in gravity

✦ The  usual rules of AdS/CFT say that the partition function        is obtained 
as the on-shell action of gravity on the bulk geometry         whose boundary 
is the replica geometry                    .

Zq

✦ In fact, if we assume that the bulk gravity theory continues to respect the 
replica symmetry then we can consider the quotient spacetime:

M̃q

@M̃q = B̃q

Mq = M̃q/Zq

✦ We expect         has a codimension-2 singular surface      which in             
limit becomes the RT surface (extension to HRT seems possible).  

✦ This singular surface which is anchored on the entangling surface is usually 
referred to as the conical defect or cosmic brane in the literature. 

Mq eq q ! 1

Lewkowycz & Maldacena (2013)



Rényi and homology
✦ Naively one expects a  (two-sided) codimension-1 interpolating surface that 

connects the cosmic brane and the entangling surface. 

✦ Assuming the codimension-1 surface exists it then follows that the quotient  
geometry         lifts to a branched cover         . Roughly think of all fields 
having        monodromy about the branching surface     .

Mq M̃q
2⇡

q
eq

✦ Rather surprisingly the converse statement can fail (for some values of q): 

✴ the quotient geometry does not admit an interpolating surface, or 
✴ the fixed point set is something other than the conical defect of interest.

✦ Both of these scenarios can be realized by explicit counter-examples. 

✦  Homology is not guaranteed in the LM construction trivially at the level of 
topology; a precise criterion can be given, but first… 



When homology fails…

A

e3

e2

� �
�

(a) (b) (c)

Fig. 2: Di↵erent ways of filling the boundary torus. The replica Zq symmetry acts as a rotation along

the Euclidean time direction by �. Case (a) shows a slice of M̃3 after filling the boundary time

circle with a disk; the replica fixed point set e3 (blue) is a codimension-2 surface in the centre of

the circle. Cases (b) and (c) show slices of M̃q for q = 3 and q = 2, respectively, after filling the

boundary torus with a cross cap. For q = 3 the fixed point set e3 of the replica symmetry is empty

and the homology constraint is violated. For q = 2 the fixed point set e2 is a codimension-1

orbifold plane wrapping the cross cap.

rotation of the cross-cap in the obvious manner. This gives a space M̃q with the topology of

a Möbius strip times the spatial circle. The (single) edge of the Möbius strip is the boundary

Euclidean time circle.

There are now two cases, depending on whether q is odd or even, both of which are

illustrated in Fig. 2. We begin with q odd. In this case, there are no fixed points of the

replica symmetry, and the quotient Mq is a smooth geometry with the same topology as M̃q.

But A has non-trivial homology in Mq: there is no surface in the bulk whose only boundary

is a spatial circle. In this way, the homology constraint is violated because the fixed point set

of the replica symmetry (being empty here) is not homologous to the boundary region.

The second case occurs for even q. While no surface is fixed by every element of the

replica group, the q/2 replica symmetry now rotates half way round the time circle. On the

inner edge of the annulus where points are identified with their antipodes, this symmetry thus

takes every point to itself. In the quotient Mq, the resulting singular set is the inside circle of

the annulus times the spatial circle. This set is not codimension-2, but instead codimension-1;

– 9 –

✦ Topological example: three scenarios for computing thermal entropy using 
replica method.  CFT on spatial circle (suppressed) with the period of  
Euclidean time direction setting the temperature.



And when it works…  

A

E

(a)

E

(b)
E

(c)
D

D

(a) (b) (c)

Fig. 3: Three di↵erent candidates for bulk geodesics (blue) whose length may be considered to compute

the entanglement entropy of the spatial boundary interval A (red). The green surfaces D illustrate

the connection between boundary sheet counting (intersections with A) and bulk intersections.

Thick dots illustrate intersections. The bulk surfaces E

(a)
and E

(c)
are homologous to A; which

one of them is dominant depends on the length of A. The surface E

(b)
is not homologous to

A and is also forbidden by our topological consistency condition. In this latter case, boundary

intersections do not match bulk intersection numbers.

map � does not lift to a global sheet counting map  consistent with u on loops which are

boundaries of 2-surfaces that intersect E (b). Such a lift not being possible means that covers

of the bulk branched along E

(b) do not have the correct boundary conditions. This situation

can therefore never arise from a LM construction.

At a pictorial level, this demonstrates our claims for the BTZ geometry: the homology

constraint on A and E comes in conjunction with consistency of bulk intersection number

with E on the one hand, and boundary intersection number with A on the other hand. This

consistency is equivalent to the topological consistency condition (4.2). We will now turn to

a rigorous proof of this idea.

5.3 Topological consistency is equivalent to homology constraint

We begin with a reminder of the notation. The bulk M is a d + 1 dimensional orientable

manifold with boundary B, A is a d � 1 dimensional submanifold of B with boundary @A,

and E is a d� 1 dimensional submanifold of M, also with boundary @A. It should be borne

in mind that either or both of A and E may be disconnected. For this proof, we will focus

on the case when the bulk is orientable; we will return to the extension to the non-orientable

case in the next subsection. A review of the algebraic topology required for this section can

be found in Appendix B.

To construct the cover on the boundary, we have a map from ⇡1(B� @A) to Z, counting
signed intersections with A. This is equivalent to a map H1(B�@A) ! Z, since this homology

group12 is the abelianization of the fundamental group by the Hurewicz theorem. In turn,

12 All homology and cohomology groups are taken with coe�cients in Z, so we will not explicitly indicate

this dependence until we later generalize to the non-orientable case.

– 18 –

✦ Homology respecting extremal surfaces in the solid torus geometry (BTZ).

✦ Thinking of the above as the fundamental domain of the branched cover 
we require that the sheet counting map on the boundary agree with the 
sheet counting map in the bulk.



Homology from gravity
✦ Start with original bulk manifold and put in a codimension-2 conical defect.  

✦ We want the defect to have the correct monodromy for fields, so that going 
around the defect in the bulk is tantamount to going through the region on 
the boundary. 

✦ Formally, we need a local bulk sheet counting  map (defined in the 
neighbourhood of the conical defect) which lift to a global sheet counting 
map and restricts on the boundary to the boundary sheet counting map. 

✦ This is guaranteed provided we have replica symmetric saddle points for 
every integer q, i.e., we need families of Rényi saddles.

@A. Then there is a homomorphism � : ⇡1(B � @A) ! Z which counts the number of times

the loop passes through A. This map is defined to take into account the orientation of the

loop relative to A, so it computes the signed intersection number. Hence for any given q there

is a map �q : ⇡1(B � @A) ! Zq which is just the previous map modulo q. The replicated

boundary can be found by taking the cover B̃q�@A of B�@A, defined so that loops in ker�q
lift to closed loops in the covering space. This is just saying that �q counts which sheet we

are on in the replicated CFT, and loops which intersect q times with A are to be identified

with closed loops in the q-fold covering space in accordance with the replica trick.

Replica symmetry and the boundary condition @M̃q = B̃q imply a similar construction

for the bulk. First, it implies that there exists a map  q keeping track of movements between

sheets of the cover in the bulk. Second, it requires that this restricts to �q on the boundary

@(Mq � eq) = B � @A to give the correct boundary conditions. This can be summarized as

the existence of a bulk sheet-counting homomorphism  q, factoring �q so that the following

diagram commutes:

⇡1(B � @A) Zq

⇡1(Mq � eq)

�q

i⇤
 q

(4.1)

Here i⇤ is the pushforward induced by the inclusion i of the boundary into the bulk. Below,

we show more formally that the existence of such a  q is equivalent to the existence of a

replica-symmetric covering space of the bulk.

4.2 Stronger criterion from the cosmic brane construction

The condition (4.1) is true of any branched cover satisfying the boundary conditions required

by AdS/CFT. The example in §3 illustrates that with this condition alone, the singularity eq

is not necessarily homologous to A.

But now, let us we restrict to branched covers of the original manifold M constructed

following LM: choose a codimension-2 surface E , and introduce a conical defect 2⇡
q at this

surface. Can this be lifted to a branched cover M̃q obeying the correct boundary conditions?

In general, this is possible only if the boundary condition (4.1) holds for M�E . This criterion

must be applied at each q separately, as in general it may be possible to find  q for some

values of q but not for others, as in the crosscap example in §3. If  q exists lifting �q for all q,

then there is a lift8  : ⇡1(M� E) ! Z of �, meaning that the following diagram commutes:

⇡1(B � @A) Z

⇡1(M� E)

�

i⇤
 

(4.2)

8 This is guaranteed if the relevant groups are finitely generated, which holds for compact manifolds with

boundary.
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since if E is connected, then the restrictions H2(N,N � E) ! H2(F, F � {0}) are in fact

all isomorphisms. This is clear when restricted to a local trivialization of the bundle, and

can be extended to the whole of the connected component by a standard procedure of gluing

trivializations together one by one using a Mayer-Vietoris sequence. So our choices of  F can

be summarized by a choice of generator u 2 H2(N,N � E) for each connected component of

E . See section 4.D of [17] for a discussion of the Thom class.

Now regarding N once again as a tubular neighbourhood13 of E in M, we can use an

excision theorem to give an isomorphism H2(N,N � E) ⇡ H2(M,M� E) (excising M� E),

so we may regard u instead as an element of H2(M,M � E). Roughly speaking, we may

think of u as a map from two-dimensional chains with boundaries away from E , which counts,

with signs, the number of intersections with E .

Now ifM is oriented, the orientation of the normal bundle of E induces also an orientation

of the tangent bundle of E . This can be characterized by a relative homology class e 2

Hd�1(E , @A).

Consider now the two cohomological long exact sequences, of the pair (M� E ,B � @A),

and of the triple (M,M� E ,B � @A), as explained in (B.3), which fit into a diagram:

H1(M� E) H1(B � @A)

H1(M� E ,B � @A) H2(M� E ,B � @A)

H2(M,M� E) H2(M,B � @A)

i⇤

�

�

�

j⇤

�

j⇤

i⇤

where the i⇤ and j⇤ maps are the relevant restrictions and extensions (dual to inclusion and

quotient) respectively, and all the �s are various relative coboundary maps. The top and

bottom rows are the usual exact sequences of relative cohomology, and it is straightforward

to show that the diagram commutes at the level of cochains. It is then an easy exercise14 to

show that this induces another long exact sequence, the crucial part of which is

H1(M� E) H1(B � @A)�H2(M,M� E) H2(M,B � @A)
(i⇤,�) ��j⇤

where the maps are the obvious ones from the diagram above, except that one factor in the

second map has a minus sign.

Now an element  2 H1(M� @A) restricting to � on the boundary means that i⇤ = �,

and restricting to  F on the fibres is equivalent to � = u. So  with the desired properties

exists i↵ ��u is in the image of the first map, which by exactness is the kernel of the second,

so this is equivalent to �� = j⇤u.

Finally, there is a generalization of Poincaré-Lefschetz duality (B.6) that by splitting B

into a tubular neighborhood of @A and its complement gives us an isomorphism H2(M,B �

@A) ⇡ Hd�1(M, @A), via cap product with the fundamental class µ 2 Hd+1(M,B). The

13 The existence of such a neighborhood is in fact a technical assumption, though this can be relaxed [18].
14 Exercise 38 in chapter 2.2 of [17].
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Precis Part II

✦ The homology constraint follows from the LM in gravity iff the replica 
symmetric bulk geometries are branched cover for every integral Rényi 
index, with the branching structure commensurate with the boundary 
conditions. 

✦ The argument can be made purely in topology and thus should hold for 
any bulk gravitational theory. 

✦ There is an interesting challenge to extend this to the covariant case as well 
as to understand relevance of complex saddles in the LM construction.
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Strong-subadditivity of entanglement entropy

✦ The von Neumann entropy satisfies a number of important constraints, 
primary amongst which is strong-subadditivity (SSA).

2

other fixed (or vice versa).3 In this context �1 �2 Svac

A

= 0
for 2d and 3d CFTs, although (1) pertains in any QFT.

We will exploit the fact that n̂ is naturally sensitive
to a key property of the von Neumann entropy, namely
strong subadditivity (SSA), which states that

S

A1[A2 + S

A1\A2  S

A1 + S

A2 8A1,2 . (2)

SSA is a convexity property of entanglement; for regions
in (2) being small deformations of a parent region, this
has a quadratic structure, which motivates (1). Inspired
by a beautiful construction of Casini & Huerta [15, 16],
we show that entanglement density can be expressed as
a second order di↵erential operator D2

±

acting on EE by
di↵erentiating with respect to the coordinates c± of C±

(specified explicitly for d = 2, 3 in §II). SSA then implies
D2

c±S(c
+; c�) � 0.

Exploiting the holographic construction of EE in terms
of bulk codimension-two extremal surfaces E

A

, we argue
that the variations of interest can be mapped to the mo-
tion of the extremal surface along its null normals Nµ

(±).
Using standard di↵erential geometric identities, this in
turn can be simplified to a statement about the geometry
side of Einstein’s equations E

µ⌫

= R

µ⌫

� 1
2Rg

µ⌫

+⇤ g

µ⌫

,
namely

Z

EA

✏ E

µ⌫

N

µ

(±) N
⌫

(±) � 0 , (3)

where ✏ is the volume form induced on the extremal sur-
face.4 We have therefore related SSA (which can be re-
garded as a physicality condition on EE) to a restriction
on the spacetime curvature.5

NB: As this work was nearing completion we received
[24], where a similar relation between SSA and bulk en-
ergy stress tensor has been discussed.

II. SSA IN FIELD THEORY

To set the stage for our analysis let us recall the proof of
the c-theorem [25] and F-theorem [26–28] based on SSA,
as in [15, 16]. We consider subsystems which are defined
by the intersection of light-cones from two points C± in d-
dimensional QFTs. Letting D[A] = J

�[C+]\J

+[C�], we
pick A to be a Cauchy slice for D[A] at constant time; see
e.g., Figs 2 and 3. Then S

A

can be viewed of as a function
of the coordinates c± of C±; i.e., S

A

⌘ S(c+; c�). For
B = Rd�1,1 we take c± = (t

±

,x

±

). Letting a = ±, we

3
A related version of entanglement density was considered earlier

in [8, 14], without invoking the relativistic causal structure.

4
A su�cient condition for this positivity is the null energy condi-

tion. The null energy condition has been crucial in the deriva-

tions of SSA [17–19].

5
For other applications of entropic inequalities and related con-

straints in gravity duals see [20–23].

define the entanglement density in d = 2, 3 with respect
to varying C± as

n̂a(ta,xa) ⌘

⇤a +

2 (d� 2)

ta
@

ta

�
S(ta,xa) � 0 , (4)

where the inequality is guaranteed by SSA. We give a
quick overview following [16], with some additional gen-
eralizations.

A. QFTs in d = 2

We start by applying SSA to the configuration in
Fig. 2; for space- and time-translation invariant configu-
rations, we can w.l.o.g. fix C+ = (0, 0) as a reference and
drop subscripts for coordinates of C�. SSA implies

S

AD

+ S

CB

� S

AB

+ S

CD

. (5)

The fact that EE is defined on a causal domain can
be used to redefine our region. For example S

AD

=
S

AC [ CD

even for states which are not boost invariant,6

since both AD and AC [ CD have the same domain of
dependence. As a result we do not make any symmetry
assumptions about the state for which EE is evaluated.
Now consider moving C� from its original location

(t, x) along the light-cone directions to C�

% and C�

- re-
spectively by an amount ✏. This e↵ectively shifts the left
and right end-points of A along the boundary of D[A]
defining the regions on the l.h.s. of (5). For the second
region on the r.h.s. we can equivalently consider trans-
lating C� 7! C+

"

by a distance 2✏. Under these shifts we
track the implications of SSA (5). In fact, in the present
case we simply need to plug in the explicit dependence of
the coordinates of the end-points of the various regions:

S(t�✏, x�✏)+S(t�✏, x+✏)�S(t, x)�S(t�2✏, x) � 0. (6)

The inequality (6), upon expanding to second order in ✏,
immediately yields

n̂

�

⌘ ��@

2
t

+ @

2
x

�
S(t, x) � 0. (7)

Repeating the argument with the roles of C± reversed,
we obtain n̂+ � 0.

Note that the inequalities n̂

± � 0 can be saturated:
as is clear from the relation to the entropic c-function
[15], the entanglement densities n̂

±

are vanishing for the
vacuum state of a CFT. Furthermore, they also vanish
whenever the EE can be computed in a CFT by a con-
formal transformation as in [29], which includes, for ex-
ample, the finite size system at zero temperature and the
finite temperature system with an infinitely large size.

6
Since we have null segments, this statement should be viewed in

a suitable limiting sense.

✦ This is a convexity property of entanglement and has played an important 
role in QFT. eg., proofs of c-theorem and F-theorem in 2,3 dimensions.

Lieb & Ruskai (1973)

Casini & Huerta (2004, 2012)

✦ The holographic entanglement entropy satisfies the SSA; the proof in the 
static case is remarkably simple, but even the covariant prescription can be 
shown to respect it.

Headrick & Takayanagi (2007) 
Wall (2012)



Gravity and entanglement

✦ Recent discussions in the AdS/CFT context have tried to make precise the 
idea, that the bulk geometry is the encoder of the entanglement structure 
of the QFT state. 

✦ If true, dynamics of gravity, ought to arise from some basic principle of 
entanglement entropy. Indeed, this has been argued for using relative 
entropy, and special properties of entanglement for ball-shaped regions in 
the vacuum state of a CFT.  Lashkari, McDermott, Van Rammsdonk(2013)

Faulkner, Guica, Hartman, Myers, Van Rammsdonk(2013)

✦ In general, however, entanglement is rather non-local. Could one identify a 
more local construct that distills its essence and gives us insight into gravity?



Entanglement density 

✦ Consider infinitesimal  deformations 
of a given region. 

✦ Convexity of entanglement entropy 
which is encoded in the statement 
of strong subadditivity can be 
distilled into a statement about the 
second variation. 

✦ Inspired by this we define a notion 
of entanglement density which is 
sign-definite by SSA.

A

�1A

�2A

DCPT-14/77, YITP-104, IPMU14-0359

Entanglement density and gravitational thermodynamics
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In an attempt to find a quasi-local measure of quantum entanglement, we introduce the concept of
entanglement density in relativistic quantum theories. This density is defined in terms of infinites-
imal variations of the region whose entanglement we monitor, and in certain cases can be mapped
to the variations of the generating points of the associated domain of dependence. We argue that
strong sub-additivity constrains the entanglement density to be positive semi-definite. Examining
this density in the holographic context, we map its positivity to a statement of integrated null en-
ergy condition in the gravity dual. We further speculate that this may be mapped to a statement
analogous to the second law of black hole thermodynamics, for the extremal surface.

I. INTRODUCTION

The holographic AdS/CFT correspondence indicates
that the fundamental constituents of spacetime geometry
are quanta of a conventional non-gravitational field the-
ory. The precise manner in which these non-gravitational
quanta conspire to construct a smooth semiclassical
spacetime, however, still remains obscure. Holography is
motivated by black hole thermodynamics, which suggests
that emergence of gravity can be associated with coarse-
graining a la classical thermodynamics [1]. We then seek
to understand what is being coarse-grained, and how.
A crucial hint is provided by the fact that AdS/CFT

geometrizes quantum entanglement: entanglement en-
tropy (EE) in the CFT is given by the area of a certain
extremal surface in the bulk [2–4]. Indeed, the fascinat-
ing idea of spacetime geometry being the encoder of the
entanglement structure of the quantum state [5–7] hints
at potentially deep insights into the workings of quantum
gravity.
As a first step, we would like to decipher the dynamical

equations of gravity from the these statements. In this
regard, EE which motivates the connection to geometry,
a-priori presents a complication: it is non-local – even
in local QFTs, it is defined on a causal domain. The
corresponding bulk quantity depends on the bulk geom-
etry along a codimension-2 extremal surface. To make
contact with local gravitational physics, it would be con-
venient to work with a more localizable construct in the
dual CFT.1

Inspired by this logic, we propose to study a QFT
quantity we call entanglement density. To motivate its
construction, consider a quantum field theory on a (rigid)

⇤
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1
For recent progress on directly deriving gravitational dynamics

from EE, cf., [8–11].

FIG. 1. Illustration of the generic variations �1A and �2A
which are used to define the entanglement density (1).

background spacetime B which is foliated by spacelike
Cauchy surfaces ⌃. We pick a region A ⇢ ⌃ and con-
struct the reduced density matrix ⇢

A

. The entanglement
entropy S

A

= �Tr (⇢
A

log ⇢
A

) is the von Neumann en-
tropy of this density matrix, and is a functional of @A.
We propose to retain locality by examining EE for in-
finitesimal variations of @A (and hence A). Schemati-
cally for a configuration ⇢⌃ on the Cauchy slice, we define
the double variation:2

n̂ (�1A, �2A) = �1 �2 SA

(1)

The construction is pictorially illustrated in Fig. 1.
Let us now simplify n̂ by appealing to the fact that S

A

is a functional on the entire domain of dependence D[A].
We focus on backgrounds B and regionsA for whichD[A]
is given by the intersection of past and future light-cones
from two points, C± respectively. As a consequence we
will focus on the variations inherent in (1) which are due
to the variations of one of the points, say C�, keeping the

2
This construction has some parallels with recent discussions of

di↵erential entropy introduced in [12] and explored more thor-

oughly [13].

n̂ � 0



Entanglement density in 2d QFT

2

other fixed (or vice versa).3 In this context �1 �2 Svac

A

= 0
for 2d and 3d CFTs, although (1) pertains in any QFT.

We will exploit the fact that n̂ is naturally sensitive
to a key property of the von Neumann entropy, namely
strong subadditivity (SSA), which states that

S

A1[A2 + S

A1\A2  S

A1 + S

A2 8A1,2 . (2)

SSA is a convexity property of entanglement; for regions
in (2) being small deformations of a parent region, this
has a quadratic structure, which motivates (1). Inspired
by a beautiful construction of Casini & Huerta [15, 16],
we show that entanglement density can be expressed as
a second order di↵erential operator D2

±

acting on EE by
di↵erentiating with respect to the coordinates c± of C±

(specified explicitly for d = 2, 3 in §II). SSA then implies
D2

c±S(c
+; c�) � 0.

Exploiting the holographic construction of EE in terms
of bulk codimension-two extremal surfaces E

A

, we argue
that the variations of interest can be mapped to the mo-
tion of the extremal surface along its null normals Nµ

(±).
Using standard di↵erential geometric identities, this in
turn can be simplified to a statement about the geometry
side of Einstein’s equations E

µ⌫

= R

µ⌫

� 1
2Rg

µ⌫

+⇤ g

µ⌫

,
namely

Z

EA

✏ E

µ⌫

N

µ

(±) N
⌫

(±) � 0 , (3)

where ✏ is the volume form induced on the extremal sur-
face.4 We have therefore related SSA (which can be re-
garded as a physicality condition on EE) to a restriction
on the spacetime curvature.5

NB: As this work was nearing completion we received
[24], where a similar relation between SSA and bulk en-
ergy stress tensor has been discussed.

II. SSA IN FIELD THEORY

To set the stage for our analysis let us recall the proof of
the c-theorem [25] and F-theorem [26–28] based on SSA,
as in [15, 16]. We consider subsystems which are defined
by the intersection of light-cones from two points C± in d-
dimensional QFTs. Letting D[A] = J

�[C+]\J

+[C�], we
pick A to be a Cauchy slice for D[A] at constant time; see
e.g., Figs 2 and 3. Then S

A

can be viewed of as a function
of the coordinates c± of C±; i.e., S

A

⌘ S(c+; c�). For
B = Rd�1,1 we take c± = (t

±

,x

±

). Letting a = ±, we

3
A related version of entanglement density was considered earlier

in [8, 14], without invoking the relativistic causal structure.

4
A su�cient condition for this positivity is the null energy condi-

tion. The null energy condition has been crucial in the deriva-

tions of SSA [17–19].

5
For other applications of entropic inequalities and related con-

straints in gravity duals see [20–23].

define the entanglement density in d = 2, 3 with respect
to varying C± as

n̂a(ta,xa) ⌘

⇤a +

2 (d� 2)

ta
@

ta

�
S(ta,xa) � 0 , (4)

where the inequality is guaranteed by SSA. We give a
quick overview following [16], with some additional gen-
eralizations.

A. QFTs in d = 2

We start by applying SSA to the configuration in
Fig. 2; for space- and time-translation invariant configu-
rations, we can w.l.o.g. fix C+ = (0, 0) as a reference and
drop subscripts for coordinates of C�. SSA implies

S

AD

+ S

CB

� S

AB

+ S

CD

. (5)
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dependence. As a result we do not make any symmetry
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3

Physically, n̂
±

computes the entanglement between the
two infinitesimally small light-like intervals AC and BD

in Fig. 2. Since both are directed in the opposite null
directions, it is obvious that if the state is completely
separated into the left and right-moving sector, the en-
tanglement should be trivial. This explains why the en-
tanglement density is vanishing for ground sates of 2d
CFTs. On the other hand, for generic states, for exam-
ple a ground state of a non-conformal theory, we will find
it is non-vanishing.

FIG. 2. Illustration of the set-up following [15] in d = 2.
We choose C+ to be the origin and the region A lies on the
time-slice with coordinate 1

2 t. We assume t < 0 and ✏  0.

B. QFTs in d = 3

The generalization to d = 3 can be obtained following
[16] by considering the iterated SSA inequality
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We will work in a continuum limit, converting the sums
to integrals on both sides of (8).
We once again start with A defined by C+ = (0,0)

and C� = (t,x). To apply SSA we consider translating
C� 7! C� in the light-cone directions by a distance ✏, but

this time respecting the rotation symmetry. This defines
the subsystems X

i

, described by ellipses on @D[A]. The
loci of points composing C� is a circle on @J

+[C�] at

time t� ✏, as indicated in Fig. 3.
To ascertain the unions of the iterated intersections

on the r.h.s. of (8) we make the following observation
[16]. Each term in the r.h.s. of (8) generically leads to
a curve which averages to a circular cross-section of the
light-cone; in the present case we need cross-sections of
@J

�[C+] at constant time. These can equivalently be

FIG. 3. Illustration of the set-up following [15] in d � 3
with the same conventions as in Fig. 2. The regions Xi in
d = 3 are obtained by considering the future light-cone from
points distributed on the (dotted) circle, while their iterated
intersections are obtained by considering the future light-cone
from points on the (dashed) line-segment.
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in the temporal direc-
tion. With this in place we can examine the implications
of SSA.
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Repeating the analysis about C+ we can show n̂+ � 0.
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uum state of a CFT. Furthermore, they also vanish when-
ever the EE can be computed in a CFT by a conformal
transformation as in [17], which includes, for example,
the finite size system at zero temperature and the finite
temperature system with an infinitely large size.
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computes the entangle-
ment between the two infinitesimally small light-like in-
tervals AC and BD in Fig. 2. Since both are directed
in the opposite null directions, it is obvious that if the
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sector, the entanglement should be trivial. This explains
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sates of 2d CFTs. On the other hand, for generic states,
for example a ground state of a non-conformal theory we
will find it is non-vanishing.
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We will work in a continuum limit, converting the sums
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Holographic entanglement density

✦ What does this translate to in gravity? 

✦ First, we observe that the density vanishes in the vacuum of a CFT. 

✦ This allows us to talk about the density relative to the vacuum, which is also 
guaranteed by SSA to be positive definite. 

✦ Examining perturbations around linearized AdS we find that the density 
naturally relates to the bulk gravitational dynamics

5

directly argued for its positivity using the SSA property
of EE in 2d and 3d field theories. More generally, we see
from our explicit analysis that the positivity of n̂ and the
gravitational null energy condition go hand in hand.
While our holographic analysis was carried out for lin-

earized fluctuations around AdS3, we anticipate that (16)
holds at the non-linear level. In fact, it is tempting to
conjecture a more general statement valid in any dimen-
sion: SSA implies that the entanglement density n̂ � 0
for any state of a QFT with n̂

vac = 0. Furthermore,
translating the description of n̂ into holography one finds
that (3) holds for any deformation away from pure AdS
in arbitrary spacetime dimensions. To wit,

SSA =) n̂

±

� 0 , n̂

vac

±

= 0 ,

=)
Z

EA

✏ N

µ

(±)N
⌫

(±) Eµ⌫

� 0 , (17)

One could try to follow the logic of §II B to arrive at
the conclusions above, by considering variations of the
past tip of D[A] (cf., Fig. 3 with each point replaced by
S

d�3). However, this attempt runs afoul of sub-leading
divergences in the entanglement entropy from the r.h.s.
of (8) as explained in [16]. It is nevertheless interesting
to contemplate whether the entanglement density can be
used to provide further insight into c and F-theorems and
generalizations thereof.
Nevertheless we may draw the following analogy based

on the conjecture above: the statement of SSA is reminis-
cent of the second law of thermodynamics since it asserts
convexity of entanglement (but under region variation as
opposed to time variation). We are arguing that this
guarantees positivity of the entanglement density. Via
holography, generic deformations about the CFT vac-

uum (equilibrium) then increase the ‘cosmological Ein-
stein tensor’ E

µ⌫

when suitably averaged over the ex-
tremal surface. In essence, this quantity codifies a ver-
sion of gravitational second law for entanglement density.
Indeed, in the ‘long-wavelength’ (hydrodynamic) regime,
one may capture the thermal entropy production via the
entanglement density by taking A to be suitably large.
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by intersecting light-cones from two points C±. Although
we have written the expressions (4) and (10) in a man-
ner which suggests an obvious generalization to higher d,
there are some subtleties with this interpretation, which
we revisit in §IV.

III. HOLOGRAPHIC ENTANGLEMENT
DENSITY

Having understood the basic constraint on the entan-
glement density, let us now consider the holographic con-
text, employing the AdS3/CFT2 duality. We focus on lin-
ear perturbations around the pure AdS3 solution, corre-
sponding to small excitations around the vacuum. In the
bulk gravity theory, we consider Einstein gravity coupled
to arbitrary matter fields, with the energy-momentum
tensor T

µ⌫

given by the Einstein’s equation

E

µ⌫

= R

µ⌫

� 1

2
Rg

µ⌫

+ ⇤ g

µ⌫

= 8⇡G
N

T

µ⌫

. (11)

It is now convenient to work directly with the end-
points of A, whose null coordinates are (uL , vL) and
(uR , vR) respectively in R1,1. In terms of these, the two
entanglement densities are given by:

n̂+ = � @

@uR

@

@vL

�S

A

, n̂

�

= � @

@uL

@

@vR

�S

A

. (12)

Note that we define the density in terms of �S

A

=
S

⇢⌃

A

� S

vac

A

which measures the entanglement of the ex-
cited state ⇢⌃ relative to the vacuum. It is crucial here
that n̂

±

vanishes in the vacuum state, for while SSA holds
for any state of the CFT, it is no longer true that �S

A

satisfies SSA.7 With this understanding we can replace
S

A

! �S

A

and still maintain the sign-definiteness of
entanglement densities n̂

±

defined in (12).
We now evaluate �S

A

by analyzing the holographic
entanglement entropy in the perturbed geometry around
pure AdS3 described by the (gauge fixed) metric:

ds

2 =
dz

2 � du dv

z

2
+ h

ab

(u, v, z) dxa

dx

b

, (13)

where h

ab

captures the perturbation (Latin indices re-
fer to the boundary). For linear order changes of holo-
graphic entanglement entropy, we can work with the orig-
inal geodesic in AdS3 (parameterized by ⇠) which con-
nects the endpoints of A:

(u, v, z) = (U + u� sin ⇠, V + v� sin ⇠,
p

|u�v� | cos ⇠) ,
where {U, u�} = 1

2 (uR ± uL) and {V, v�} = 1
2 (vR ± vL)

give the mid-point and separation between the end-points
of A.

7
It is easy to verify this statement explicitly say by considering

⇢⌃ to be the thermal state.

The first-order perturbation of �S

A

is given by

�S
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(1)(⇠)p
�
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, (14)

where �

(0) and �

(1) are induced metric (�
⇠⇠

) at leading
and first sub-leading orders, i.e.,

�

(0)(⇠) =
1

cos2 ⇠
,

�

(1)(⇠) = cos2 ⇠
�
h

uu

u

2
�
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vv
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2
�
+ 2h

uv

u� v�

�
.

After some algebra we arrive at the following simple
relations:

n̂

±

=
1

8G
N
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2

�
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2

d⇠

p
�

(0)
⇣
N

µ

(±)N
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p
�

(0)
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⌫
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⌘
� 0 , (15)

where E

µ⌫

is the l.h.s. of the Einstein’s equation (11).
The vectors N

µ

(±) are the two independent null normals
to the extremal surface E

A

in AdS3,

N

µ

(±) =

⇢p
|u�v� | cos2 ⇠,

u� cos3 ⇠

(⌥1 + sin ⇠)
,

v� cos3 ⇠

(sin ⇠ ± 1)

�
.

Firstly, we note from (15) that the positivity of entan-
glement density is correlated with null energy condition.
While we have established the above result explicitly only
for linear deviations away from the vacuum, the fact that
n̂

±

vanishes in vacuum, and its positive semi-definiteness
from SSA for any excited state, makes it natural for us
to conjecture that the relation

n̂

±

=
1

8G
N

Z

EA

d⇠

p
�

⇠⇠

⇣
N

µ

(±)N
⌫

(±) Eµ⌫

⌘
� 0 (16)

holds for any asymptotically AdS3 backgrounds, with E
A

being the extremal surface (spacelike geodesic parame-
terized ⇠) which holographically encodes S

A

. We leave a
more complete exploration of this relation for the future.

It is interesting to note that for normalizable states of
pure gravity in AdS3, the entanglement density always
vanishes. This is consistent with our earlier observation
that entanglement density is vanishing for any state ob-
tained by conformal transformations of ground states in
2d CFTs. Indeed, solutions in the pure AdS3 gravity can
be obtained by bulk di↵eomorphisms corresponding to
boundary conformal transformations [30].

IV. DISCUSSION

In this paper we have introduced a new quantity, the
entanglement density n̂ for relativistic field theories, and
argued that it provides a useful encoding of certain as-
pects of gravitational dynamics via holography. We have



Precis Part III

✦ Entanglement density distills the essence of SSA into a nice set of local 
differential inequalities. 

✦ The positivity of the density maps holographically to the null energy 
condition. 

✦ It is tempting to speculate that the local convexity of the entanglement 
density is related to a version of the second law of gravitational 
thermodynamics.  

✦ Indeed when we focus on the long-wavelength fluctuations about a density 
matrix in the QFT, we can use the entanglement density as a proxy for the 
hydrodynamic entropy production, which satisfies the second law. 
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Fig. 3: Example of a causally trivial spacetime and a boundary region A whose causal shadow is

a finite spacetime region. We have engineered an asymptotically AdS
3

geometry sourced

by matter satisfying the null energy condition (see footnote 14) and taken A to nearly

half the boundary, 'A = 1.503, at t = 0 (thick red curve). The shaded regions on the

boundary cylinder are D[A] and D[Ac] respectively. The extremal surface is the thick

blue curve, while the purple curves are the rims of the causal wedge (causal information

surfaces) for A and Ac respectively. A few representative generators are provided for

orientation: the blue null geodesics generate the boundary of the causal wedge for A
while the green ones do likewise for Ac. The orange generators in the middle of the

spacetime generate the boundary of the causal shadow region Q
@A.

We define this region as the set of points in the bulk M that are spacelike-related to

both D[A] and D[Ac], i.e.,

Q
@A :=

⇣
J̃+[D[A]] [ J̃�[D[A]] [ J̃+[D[Ac]] [ J̃�[D[Ac]]

⌘
c

= S̃[D[A] [D[Ac]] . (2.7)

For a generic region A in a generic asymptotically AdS spacetime, the causal shadow
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