MICE simulations

Abundance of massive clusters and large-scale clustering

Martin Crocce ICE / CSIC - Barcelona

Marenostrum Institut de Ciències de l'Espai Simulations

MICE \Rightarrow Project to develop very large numerical "cosmological" simulations in the **Marenostrum** supercomputer (Barcelona). Provide future surveys with mocks (DES).

✿ 10.000 processors, 20 TB RAM , 100 Teraflops

GADGET N-body simulations with 10^{9} - ~ 10^{11} dark-matter particles in volumes 1-500 h^{-3} Gpc³ \Rightarrow *dynamical range of 5-6 orders of magnitude in scale*

People

MICE collaboration : P.Fosalba (PI), F.Castander, M.Crocce, E.Gaztañaga, M.Manera External : C.Baugh , A.Cabré, A. Gonzalez, V.Springel

project web: www.ice.cat/mice

MICE

Marenostrum Institut de Ciències de l'Espai Simulations

Run	$N_{ m part}$	$L_{\rm box}$	m_p	10 ¹³ MICE7680 MICE4500 ■ ■
		(<i>n</i> mpc)	(n n)	10 ¹² MICE3072LR
MICE7680	2048^{3}	7680	3.66×10^{12}	
MICE3072	2048^{3}	3072	$2.34 imes 10^{11}$	
MICE4500	1200^{3}	4500	$3.66 imes 10^{12}$	MICE768
				Z 1010
$MICE3072LR^{\star}$	1024^{3}	3072	$1.87 imes10^{12}$	
MICE768*	1024^{3}	768	$2.93 imes10^{10}$	
MICE384*	1024^{3}	384	$3.66 imes10^9$	≥ 10 ⁹ =
MICE179*	1024^{3}	179	$3.70 imes10^8$	▲ MICE179
MICE1200* ($\times 20$)	800^{3}	1200	$2.34 imes10^{11}$	108 SDSS SDSS
$N_{part} = 4096^3 - L_{box} = 3072 \ h^{-1}Mpc - m_p = 3 \ x \ 10^{10} \ h^{-1}M_o \ Running !$				10 ⁻³ 0.01 0.1 1 10 10 ² 10 ³ Volume [(Gpc/h) ³]

Where do we stand ? Millenniun : $N_p 2160^3$, m = 9 x 10⁸ $h^{-1} M_O$, L = 500 $h^{-1} M_P$ (Springel et al. 2006)

MICE 3072 ~ 200 times the volume of Millennium Run (same particle load)

MICE 7680 ~ 20 Hubble Volume Simulations (and 500 times SDSS volume)

MICE light-cone and projected density maps

" *The onion universe: all sky light-cone simulations in spherical shells*" Fosalba, P. et al , MNRAS 391, 435 (2008)

Lightcone to z = 1.4 and proyected density maps :

• Lensing, Integrated Sachs Wolf Effect, Evolution bias

Cluster abundance :

• Particularly suitable for the most massive and least abundant objects

"Simulating the Universe with MICE : The abundance of massive clusters" Crocce, Fosalba, Castander & Gaztanaga, arXiv astro-ph/0907.0019 (2009)

Large Scale Clustering (e.g. BAO to % accuracy) :

- Large-scale bias (e.g. in LRG type halos)
- Angular Clustering in z-slices
- Clustering of Clusters

Quick review ..

From spherical collapse it is possible to compute the minimum δ_c that a given region must have in order to expand and then collapse into a virialized structure

For a given filter scale R (or M) we then associate the fraction of points with $\delta > \delta_c$ with the fraction of halos with mass larger than M,

$$F_{6M}$$
 = $\int_{\mathcal{S}_c} P_R(S) dS$

The number density of halos of mass M is then,

$$h_{ps}(M) = -\frac{2\bar{q}}{M} \frac{\delta_c}{\sigma^2} = \frac{e^{\delta_c^2/2\sigma^2}}{\sqrt{2\pi}} \frac{d\sigma}{dM}$$

MICE halo catalogues and mass function

- We built halo catalogues using standard FoF algorithm (b = 0.2 / 0.164)
- Using FoF(0.2) there are (with N_p > 20) ~ $25x10^{6}$ halos in MICE3072 (M > 5 x 10¹²) and ~ $15x10^{6}$ in MICE7680 (M > 7 x 10¹³) (reaching M ~ 8 x 10¹⁵)
- We also built SO catalogues starting from the FoF halos

$$egin{aligned} f(\sigma,z) &= rac{M}{
ho_b} rac{dn(M,z)}{d\ln\sigma^{-1}(M,z)} \ f_{
m Jenkins}(\sigma) &= 0.315 \exp\left[-|\log\sigma^{-1}+0.61|^{3.8}
ight] \end{aligned}$$

The Mass Function to high-masses

$$f(\sigma, z) = \frac{M}{\rho_b} \frac{dn(M, z)}{d \ln \sigma^{-1}(M, z)} \qquad \sigma^2(M, z) = \frac{D^2(z)}{2\pi^2} \int k^2 P(k) W^2(kR) dk, \quad M = \rho_b 4\pi R^3/3,$$

$$f_{
m ST}(\sigma) = A \sqrt{rac{2q}{\pi}} rac{\delta_c}{\sigma} \left[1 + \left(rac{\sigma^2}{q \delta_c^2}
ight)^p
ight] \exp \left[-rac{q \delta_c^2}{2 \sigma^2}
ight],$$

We can cover both the power-law regime at low-mass where $n \sim M^{-\alpha}$

 $P(k) \sim k^{n_{eff}} ~\sigma^2 \sim M^{-(1+n_{eff}/3)}$

and up to the exponential cut-off regime n ~ exp[- M^{α}]

Sources of Systematic Effects in the abundance of halos I

• Transients from the initial conditions

dynamics (using Zeldovich vs. 2LPT)

Sources of Systematic Effects in the abundance of halos II

• Definition of (FoF) Halo Mass

Sub-sampling the particle distribution

Sources of Systematic Effects in the abundance of halos III

Mass Resolution

- MICE7680 and MICE4500 have completely different random phases, different starting red-shifts and different initial dynamics
- Abundance at high-mass end seems quite robust in front of mass resolution, after correcting the FoF halo mass according to Warren et al (2006)

Estimating errors in the MF : internal, external and analytic methods (but also for statistical errors in cluster-counts)

(

Internal :

Poisson and

$$\sigma_{Poisson}^{(i)^2} = 1/N_i$$

Jack-knife sampling

$$\sigma_{JK}^{(i)^2} = \frac{1}{\bar{n}^{(i)^2}} \frac{N_{JK} - 1}{N_{JK}} \sum_{j=1}^{N_{JK}} (n_j^{(i)} - \bar{n}^{(i)})^2$$

External :

Sub-volumes, using nonoverlapping sub-divisions of larger volume runs.

$$\sigma^{(i)^2} = \frac{1}{\bar{n}^{(i)^2}} \sum_{j=1}^N (n_j^{(i)} - \bar{n}^{(i)})^2$$

Theory :

Accounting for both, sampling variance and shot-noise

$$\sigma_h^2 = rac{\langle n^2
angle - ar{n}_h^2}{ar{n}_h^2} = rac{1}{ar{n}_h V} + b_h^2 \int rac{d^3 k}{(2\pi)^3} |W(kR)|^2 P(k),$$

Results

[] Theoretical estimation in very good agreement with sub-vols method

[] Jack-knife re-sampling under-estimates errors at low-mass ($M \le 10^{13} M_{\odot}/h$)

[] Poisson shot-noise only good at very high masses $(M \ge 10^{14} M_{\odot}/h)$

0.29

15

16

0.57

MICE Mass Function Fit @ z = 0

only through $\sigma(M,z)$ (*self similarity*)

We find the z = 0.5 mass function to be "universal" at ~ 3% at $10^{11} M_{\odot}h^{-1}$ and 10% at larger masses. Larger departures at higher red-shifts in agreement with previous work.

Scaling ansatz

$$f_{ ext{MICE}}(\sigma,z) = A(z) \left[\sigma^{-a(z)} + b(z)
ight] \exp \left[-rac{c(z)}{\sigma^2}
ight]$$

 $P(z) = P(0)(1+z)^{-\alpha_i}$; $P = \{A, a, b, c\}$; $\alpha_i = \{\alpha_1, \cdots, \alpha_4\}$

Using z = 0 and 0.5 we can compute the slope and then, predict the abundance at higher red-shifts

$$\alpha_1 = 0.13, \ \alpha_2 = 0.15,$$

$$\alpha_3 = 0.084, \ \alpha_4 = 0.024.$$

(see also Tinker et al 2008 for SO halos)

Halo Growth Function

Scaling ansatz in Red, Self Similarity in Magenta (Sheth & Tormen 1999) and Green (Warren 2006)

Cosmological Implications

Bias on w induced by a self similar prior on the MF

[] Cluster counts in red-shift shells $\Delta z = 0.1$ up to z = 2 (full sky)

[] Assume red-shift independent mass threshold, $M = 10^{14} M_{\odot} / h$

$$\chi^{2} = \sum_{z_{i}} \frac{(n(w)^{(i)} - n(z)^{(i)}_{Nbody})^{2}}{\sigma^{(i)^{2}}}$$

[] At low z mass function shape and the geometric volume have relatively small and comparable sensitivity to changes in *w*

A tentative explanation for the high-mass excess,

work in progress

Within the larger volume δ_L will not be zero but very small (with Gaussian PDF) due to the long-wavelength modes

$$\bar{\rho} \longrightarrow \delta_c \longrightarrow \nu = \frac{\delta_c}{\sigma(M)} \qquad \delta_c \longrightarrow \delta_c(1 - \# \delta_L)$$

A tentative explanation for the high-mass excess,

work in progress

⇒ We divided the largest box-size in 252 sub-volumes of L ~ 1200 h^{-1} Mpc

A tentative explanation for the high-mass excess,

work in progress

Conclusions

- * MICE Consortium : developing a set of large N-body simulations, largest halo catalogues publicly available (http://www.ice.cat/mice)
- * Combine big volumes (10-100 Gpc³ h^{-3}) with good mass resolution (~ 10¹⁰ M_o h^{-1})
- * Accurately sampling the mass function in more than 5 decade in mass, we find a departure from standard FoF fit of Warren at large masses, with 10-30% larger abundance
- * Result is robust in front of several possible systematic effect. Maybe is the effect of long-wavelength modes?
- * We quantified to what extent the FoF mass function is universal and found scaling law for the parameters that account accurately for the high-z masss function
- * Assuming self-similarity can bias estimates of dark-energy

MICE - Large Scale Clustering

Dark Matter Probing the baryon acoustic oscillations (BAO)

Nonlinear Model : Renormalized Perturbation Theory

$$P(k, z) = G_{\delta}^{2}(k, z) \times P_{\text{Linear}}(k) + P_{\text{ModeCoupling}}(k, z)$$

 $\xi(r) = [\xi_{\text{L}} \otimes G_{\delta}^{2}](r) + \xi_{\text{MC}}(r)$

Halo Bias - scale dependence at BAO regime

Fourier Space : *non-trivial shot-noise correction*

- ✓ Halo bias with respect to the *nonlinear* matter distribution
- ✓ Strong dependence on halo mass

Halo Bias - scale dependence at BAO regime

Real Space : from cross-correlation function

