
NEUTRINO 
INTERACTIONS 
AT MINERvA
Kevin McFarland
University of Rochester
IPMU Seminar
9 February 2015



Outline

• Why we study neutrino interactions
• The MINERvA Experiment
• Results

• Quasi-Elastic Scattering and Pion Production in a 
Nucleus

• Ratios of Total Cross-Sections on Different Nuclei
• “New” In Situ Flux Measurement Technique:

Neutrino-Electron Scattering
• Conclusions and Prospects

9 February 2015 K. McFarland, MINERvA 2



Neutrino Interactions:
Simple… until they aren’t

3

ν l

d u
W±

Leptonic current is perfectly predicted in SM…
…as is the hadronic current for free quarks.

For inclusive scattering from a 
nucleon, add PDFs for a robust 

high energy limit prediction

For exclusive, e.g., quasi-
elastic scattering, hadron 
current requires empirical 
form factors.

If the nucleon is part of a nucleus, it may be modified, off-
shell, bound, etc.  Also, exclusive states are affected by 

interactions of final state hadrons within the nucleus.

(drawings courtesy G. Perdue)
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Wrong Tools for the Job?

• Accelerator oscillation 
experiments require beam 
energies of 0.3-5 GeV
• Nuclear response in this region 

makes the transition between 
inelastic and elastic processes.

9 February 2015 K. McFarland, MINERvA 4

• First-principles calculations of the 
strongly bound target are 
impossible or unreliable.

Descent of the 
Eiffel Tower, 
ca. 1910



How do we Understand 
and Model Interactions?

• Iterative process, using data to improve models
• Models are effective theories, ranging from pure 
parameterizations of data to microphysical 
models with simplifying assumptions.
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Effective 
Model

Measurements 
(Neutrino 

scattering or 
related 

processes)



Oscillations: Needs
(J-PARC to Hyper K)

• Discovery of CP violation in neutrino oscillations requires 
seeing distortions of P(νμ→νe) as a function of neutrino 
and anti-neutrino energy
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Oscillation Probabilities for L=295 km, 
Hyper-K LOI



Oscillations: Needs (LBNF)

• Maximum CP effect is range of red-blue curve
• Backgrounds are significant, vary with energy and are different 

between neutrino and anti-neutrino beams
• Pileup of backgrounds at lower energy makes 2nd maximum only 

marginally useful in optimized design
• Spectral information plays a role

• CP effect may show up primarily as a rate decrease in one beam and a 
spectral shift in the other
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Example:
Quasi-Elastic Energy Reconstruction



Charged Current Quasi-
Elastic Scattering

• Quasi-elastic reaction allows 
neutrino energy to be 
estimated from only 
the outgoing lepton:
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νµ µ-

pn 
(bound)

• This assumes:
• A single target nucleon, motionless in a 

potential well (the nucleus)
• Smearing due to the nucleus is typically built 

into the cross-section model since it cannot 
be removed on an event-by-event basisWhen things are too complicated, 

sometimes you give up trying!



Simple Model of the 
Nucleon in a Nucleus

• Our models come from theory tuned to electron scattering
• Generators usually use Fermi Gas model, which takes 

into account effect of the mean field.
• Corrections to electron

data from isospin
effects in neutrino
scattering.

• Hmmm… between elastic
peak and pion production
rise looks bad.

• This approach of quasi-free nucleons
in a mean field neglects processes
involving closely correlated nucleons
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e-+12C→e-

+X

E. Moniz et al, 
PRL 26, 445 (1971)



Solution to MiniBooNE
CCQE “Puzzle”?

• From the 12C experiment and calculations, expect 
a cross-section enhancement from correlated 
process:
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Energy Reconstruction: 
Quasi-Elastic

• Does it quantitatively matter if we model this effectively (e.g., 
alter nucleon form factors) or microphysically?

• Inferred neutrino energy changes if target is multinucleon.
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ex: Mosel/Lalakulich 1204.2269, Martini et al. 1202.4745, 
Lalakulich et al. 1203.2935, Leitner/Mosel PRC81, 064614 (2010)

Effect at MiniBooNE calculated by
Lalakulich, Gallmeister, Mosel,1203.2935



Data on 
nucleons

Knowledge

Another Energy 
Reconstruction Problem

• In inelastic events the hadronic final state can in principle 
aid neutrino energy reconstruction

• But produced hadrons inside the
nuclear targets interact as they exit

• This typically increases multiplicity of
low energy nucleons
• Detector response is unlikely to be uniform for

charged and neutral pions, protons and neutrons

• Modeling this is non-trivial and verifying
the knowledge is even more difficult
• In part because we lack good data on free

nucleons as a benchmark
• Comparing different nuclei may be helpful
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The MINERvA Experiment
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MINERvA Collaboration
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Hampton University
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Mass. Col. Lib. Arts
Northwestern University
University of Chicago

Otterbein University
Pontificia Universidad Catolica del Peru
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University of Rochester

Rutgers University
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University of Minnesota at Duluth
Universidad Nacional de Ingeniería

Universidad Técnica Federico Santa María
College of William and Mary



Detector
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Detector comprised of 120 “modules” stacked along the beam direction

Central region is finely segmented scintillator tracker
~32k plastic scintillator strip channels total

3 orientations
0°, +60°, −60°

3 orientations
0°, +60°, −60°



Detector Technology
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Wavelength shifting fiber

8×8 pixels

64 channel multi-anode PMT

Scintillator strip

17 mm

16 mm



Forward-going track 
position resolution: ~3mm

2.1m
127 strips into a plane

2.5 m

17



Events in MINERvA
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3 stereo views, X—U —V , shown separately

Particle leaves the
inner detector,
stops in outer

iron calorimeter

Muon leaves the back
of the detector headed 

toward MINOS

looking down on detector +60° -60°

color = energy

 beam 
direction

Stops in Scintillator,
best hadron particle ID



250 kg 
Liquid He

1” Fe / 1” Pb
323kg / 264kg

6” 500kg
Water

Passive Nuclear Targets
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W
ater

Scintillator Modules

Tracking 
RegionHe

1” Pb / 1” Fe
266kg / 323kg

3” C / 1” Fe / 
1” Pb

166kg / 169kg
/ 121kg 0.3” Pb

228kg

.5” Fe / .5” Pb
161kg/ 135kg



Hadron Testbeam

20

±30% variation in 
ionization 
saturation

(Birks’ constant)
shown

high-energy charged pion 
response uncertainty ≈ 5% 

(before tuning hadron 
interactions in detector)
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The NuMI Beam

• NuMI is a “conventional” neutrino 
beam, with most neutrinos 
produced from focused pions

• Implies significant uncertainties in 
flux from hadron production and 
focusing

• Constrain, where possible, with 
hadron production data
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NuMI Low Energy Beam Flux



Datasets
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Neutrino beams are hard!  NuMI target troubles: some running with damaged targets

120 GeV protons 
on target (POT) to 

MINERvA
neutrino (LE): 
3.9E20 POT

anti-neutrino (LE):
1.0E20 POT

+0.9E20 POT with 
partial detector



Reducing Flux Uncertainty
• Like almost all neutrino beams, flux is uncertain by ~10% 

because of hadron production and focusing uncertainties
• MINERvA also has a new technique in progress.
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 

e e

0Z

Precisely predicted
(point-like fermions)

νe→ νe candidate event
Very forward single electron final state

• Background is γ.  Reject by 
dE/dx at start of “electron” track

• Useful @ FNAL LBNF

Process is very 
rare, 1/2000 of 
total cross-
section.  But we 
measure to ~10%, 
so know flux to 
same precision!

γ
e

e
e

e
e e

γ

γ
γ

e



Quasi-Elastic Scattering
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Identifying Quasi-Elastic 
Scattering

• Signature of quasi-elastic 
scattering is production of no 
mesons, photons or heavy 
baryons

• Breakup of nucleus or 
hadron reinteraction may 
produce additional protons 
and neutrinos in final state.  
Allow those as signal.
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νµ µ-

pn 
(bound)

• Veto events with energy from pions (leading background)
• Strategies: (1) limit calorimetric recoil to be consistent with 

nucleons, (2) explicitly identify a leading proton or neutron, 
(3) veto on Michel electrons from π+
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MeV

TRACKER ECAL HCAL

Module number

 Beam

MINOS ND

TRACKER ECAL HCAL



Module number
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MeV

TRACKER ECAL HCAL

 Beam

MINOS ND

TRACKER ECAL HCAL

Recoil Energy 
Region

Recoil Energy 
Region

Vertex Energy

Vertex Energy



Recoil Energy Distributions
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QE QE

Estimate of 
4-momentum
transfered to 

nucleon



Constraint on Background

• Large 
uncertainties on 
background 
cross-section 
models

• Complicated by 
reinteraction
inside nucleus 
“Final State 
Interactions” (FSI)

• Use high recoil 
events to study
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TEM TEM
MA = 1.35 MA = 1.35

RFG, SF RFG, SF

d/dQ2 Shape

• Model used by MiniBooNE in oscillation analysis is the 
green line (enhance “effective” axial form factor at high Q2)

• Best fit prefers data-drive multi-nucleon model
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Vertex Energy

• Microscopic models of multi-nucleon (np-nh) contributions are not 
presently available in event generators at NuMI energies

• No prediction for the hadron kinematics in these classes of events

• In general, multi-nucleon emission is expected in interactions 
with correlated nucleons, so this provides another possible 
signature
• Additional nucleons beyond the expected leading neutron (antineutrino) or 

proton (neutrino) and nucleons knocked out from nuclear rescattering (FSI)

• So, we look very near the interaction vertex in neutrino and 
antineutrino events for excess energy coming from charged 
nucleons (protons)
• Recall, we purposefully avoided this region when selecting QE candidates 

• Because we did not want our QE event selection biased by the MC not having these 
multi-nucleon events; now we look in the ignored region

• Final State Interaction (FSI) uncertainties are very important in this analysis  
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Vertex Energy

• A harder spectrum of vertex energy is observed in neutrinos

• All systematics considered, including energy scale errors on charged 
hadrons and FSI model uncertainties 

• At this point, we make the working assumption that the additional vertex 
energy per event in data is due to protons
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Vertex Energy
• Examine annular rings around the reconstructed vertex

• To 10 cm for antineutrino (Tp~120 MeV)
• To 30 cm  for neutrino (Tp~225 MeV)
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Evis in that 
annulus vs. true 

KEproton

Note: to add visible energy to an inner 
annulus you must add a charged hadron, 
not just increase energy of an existing one



Vertex Energy - Neutrinos
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We find that adding an additional low-
energy proton (KE < 225 MeV) to 
(25 ± 9)% of QE events improves 

agreements with data



Vertex Energy - Antineutrinos
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No such addition required for 
antineutrinos. Slight reduction if 

anything.
(-10 ± 7)% of QE events



Exclusive Proton+Muon
• Sample includes events where muon

is fully contained and events where 
only muon angle is well measured

• Muon kinematics of sample are 
compatible with μ+X(0π) sample

• What about proton kinematics?
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• Measure Q2
QE,p assuming 

quasi-elastic kinematics from 
the bound nucleon at rest
• A model-independent quantity, 

Q2
QE,p(Tp,θp), sensitive to final 

state interaction model



Quasi-Elastic: Discussion
• Selected events that had muons and nucleons, but 

without pions
• Enhancement at moderate Q2, consistent with other 

experiments, does not persist at high Q2

• Consistent with dynamical models of multi-nucleon processes
• Not consistent with “standard” modification of nucleon form factors

• Also see presence of additional energy near vertex in 
neutrinos, but not anti-neutrinos
• Consistent with interpretation of leading multi-nucleon correlations 

as an “np” state… so pp in neutrinos, but nn in anti-neutrinos

• Exclusive muon+proton measurements suggest that final 
state hadrons are incorrectly modeled in GENIE & NuWro

• We can find no model that captures all these features
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Pion Production
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Pion Production

• Most common inelastic 
interaction at low energies

• Oscillation experiments that 
don’t identify the pion suffer 
an energy bias

• Produced pions strongly 
interact inside nucleus 
before emerging
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Module	Number

DATA	π+
Event μ candidate

p candidate
π candidate

Simulated LBNE νμ disappearance

Solid:  true Eν
Dash:  rec. Eν

At 3 GeV:
~50% QE
~35% RES + DIS 
π absorption

Mosel et al: arxiv 1311.7288



Charged Pion Reconstruction
• Key is identification of a track as a pion by energy loss as 

a function of range from the vertex
• Confirmed by presence of Michel electron, π→μ→e
• Elastic or inelastic scattering in scintillator is a significant 

complication of reconstruction
• Study uncertainties by varying pion reactions, constrained by data
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X-view
(plan view)

Beam direction
Pion tracking 
efficiency is reduced 
by secondary 
interactions



π+ Signal and Background
• Pion kinetic energy distributions with background 

prediction (untuned)
• Green and blue are high W backgrounds
• Pink (proton) and purple are non-pion events
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Neutral Pion Reconstruction
• Reaction is 

• Reconstruction strategy is to find 
muon and “detached” vertices
• Photons shower slowly in plastic, so 

they look like “fat tracks”

• Backgrounds can be constrained 
with pion mass
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π+ Kinematics
(Flux integrated)

• Overall rate varies because knowledge from “free 
nucleon” targets (mostly weakly bound D2) is unclear

• But see C. Wilkinson, P. Rodrigues et al, 
9 February 2015 K. McFarland, MINERvA 43



Uncertainties and “Shape”

• Flux uncertainties and (preliminary) uncertainty from 
extrapolation to high muon angle (high Q2) both become 
insignificant in pion kinetic energy and angle shape distributions
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Shape only



π+ Shape and Final State 
Interactions

• Conclusion:  NuWro, Neut, and GENIE all predict the data shape 
well

• Conclusion:  Data insensitive to the differences in pion absorption 
shape between GENIE, NuWro, and Neut

• Conclusion:  Athar, the sole theoretical calculation, does not agree 
with data.  Likely due to an insufficient FSI model
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Separating Final State 
Reactions

• Some ability of this data with different final states to probe 
different reactions of pions within the nucleus

• Both datsets would prefer a higher fraction of inelastic 
interactions of pions than current in GENIE generator
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π+ comparison to MiniBooNE

• Even with ~10% flux uncertainties from 
both experiments, there is ~2σ tension 
between MINERvA and MiniBooNE

• Shape tension also
• Note, MINERvA π+ and π0 are similar
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Can Current Models 
Resolve this Tension?

• Interesting study  by Sobczyk and Zmuda (arXiV:1410.7788) 
asks if uncertainties in final state “cascade” models and pion 
production to explain MiniBooNE-MINERvA difference

• Their conclusion: it cannot.  Theory uncertainties on the ratio are 
very small.
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• Uncertainties in bins 
are highly correlated, 
so maybe explains 
high energy part?

• And maybe low 
energy is a statistical 
fluctuation?



Coherent (!) Pion Production
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A Very Strange Reaction…
• Despite small binding energy of nucleus 

(few-10s MeV), a pion can be created 
from the off-shell W boson and leave the 
nucleus in its ground state

• Reaction has small 4-momentum 
transfer, t, to nucleus

• Can reconstruct |t| 
from final state

• Reconstruction of |t| gives a model-
independent separation of coherent
signal and background
• Tune background at high |t|
• Measure signal
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MINERvA Result
• Measure in both neutrinos and 

anti-neutrinos (signal cross-
section should be the same)

• Models differ in treatment of 
one input (pion-nucleus elastic 
scattering cross-section) and in 
treatment of mass effects

• Neither NEUT nor GENIE 
generators do well

• This is an important reaction for 
low energy oscillation 
experiments like T2K and H-K
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Nuclear Target Ratios
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Charged Lepton Data
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Charged lepton data show 
structure function F2 effectively 
changes when nucleon bound in 
nucleus

Abstract:
“Using the data on deep inelastic muon
scattering on iron and deuterium the ratio of 
the nucleon structure functions F2(Fe)/F2 (D) 
is presented. 
The observed x-dependence of this ratio 
is in disagreement with existing 
theoretical predictions. “

Physics Letters B123, 
Issues 3–4, 31 March 1983, Pages 275–278

… and after much experimental and 
theoretical effort to explain this …



Structure Functions
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Sum of all quark and antiquark momentum

Sum of valence quark momentum

*Calculated for neutrino-neutron at Q2 =1 GeV2, Eν = 4 GeV

F2 = 1.23
xF3 = 0.93 

F2 = 0.69
xF3 = 0.82 

X = .2 X = .6

How much do they contribute to the neutrino DIS cross section?



No comparable neutrino 
data exists!
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Compromise approach is to 
compare a theoretical calculation 
of free nucleon F2 to, e.g., NuTeV
(ν-Fe) data, and fit.  Compared to 
fits to charged lepton data.

• Neutrinos sensitive to structure 
function xF3
• (Charged leptons are not)
• Gives neutrinos ability to separate 

valence and sea

• Neutrinos sensitive to axial piece of 
structure function F2
• (Charged leptons are not)
• Axial effect larger at low x, low Q2

Most dynamical explanations 
for “EMC effect” will give a 
different answer for neutrinos

J.G.MorfÍn, J Nieves, and J.T. Sobczyk
Advances in High Energy Physics, vol. 
2012, Article ID 934597

nCTEQ – νA
nCTEQ – l±A



MINERvA’s Targets: 
Multi-track Pb Candidate

Fe

DATA

Module Number

S
tri

p 
N

um
be

r
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X View
Fe

C

Pb

Muon in MINOS Limits 
Signal Kinematics

2 < Neutrino Energy < 20 GeV
0 < Muon Angle < 17 degrees



DATA

Module Number

S
tri

p 
N

um
be

r

MINERvA’s Targets: 
One-track C Candidate

• One track candidates may 
originate from passive target or 
from downstream scintillator

• Source of background
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X View

Fe

C

Pb



Use events in the tracker 
modules to predict and 

subtract the plastic 
background

Scintillator Background
• Assume that single-track events downstream 

of passive target are from target
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Tgt2

Tgt3
Tgt4 Tgt5



Predicting Scintillator 
Background
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1. Find an event in 
scintillator of tracker

2. Move to a passive 
nuclear target

Module NumberS
tri

p 
N

um
be

r

Module NumberS
tri

p 
N

um
be

r

3. Use simulation to predict 
probability of track(s) being 
obscured by recoil shower

4. Evaluate uncertainties by 
comparing simulation 
procedure (and variants) 
against true event



Result of Subtraction

• Multiple iron 
and lead 
targets 

• Can compare 
consistency 
among these

• Well within 
statistical 
uncertainties
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Calculated with GENIE 2.6.2

Isoscalar correction – remove effect of neutron excess.



Target Ratio Technique:
MINERvA’s Advantage
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Uncertainties on Ratio 
of Cross Sections

Uncertainties on Absolute
Cross Section



Low x Region

• At x=[0,0.1], we observe a 
deficit that increases with the 
size of the nucleus

• Data show effects not modeled 
in simulation
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Neutrinos sensitive to 
structure function xF3

Neutrinos sensitive to 
axial piece of structure 

function F2

Expected Neutrino Differences

dσC/dx
dσCH/dx

dσPb/dx
dσCH/dx

dσFe/dx
dσCH/dx



High x Region
• At x=[0.7,1.1], we observe a 

excess that grows with the size of 
the nucleus

• This effect is also not observed in 
simulation

• But is due to not understanding 
physics of elastic processes, or 
that of inelastic processes?
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dσC/dx
dσCH/dx

dσPb/dx
dσCH/dx

dσFe/dx
dσCH/dx



Surprises in Nuclear 
Effects?

• Interesting recent idea is that 
EMC effect in heavy nuclei 
(suppression of cross-section on 
nuclei at moderate x) in electron 
scattering may also imply charge 
symmetry violating dynamics in 
non-isoscalar nuclei
• Predicts a much stronger “EMC” 

effect in neutrinos
• Right now, one assumes same 

effect in neutrinos and electrons

64
6 February 2015 NIWG Conveners Report

Fe/CH

Pb/CH



Nuclear Target Ratios
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• MINERvA observes behavior not found in 
“standard” interaction generators

• There initial results are interesting, but also 
difficult to compare to physics of EMC effect 
because high x effects, at least, may be in elastic 
or nearly elastic events

• New running in NOvA
beam tune will help
kinematic reach and
statistics and will  add
anti-neutrinos



Nuclear Target Ratios
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• MINERvA observes behavior not found in 
“standard” interaction generators

• There initial results are interesting, but also 
difficult to compare to physics of EMC effect 
because high x effects, at least, may be in elastic 
or nearly elastic events

• New running in NOvA
beam tune will help
kinematic reach and
statistics and will  add
anti-neutrinos



Conclusions and Outlook

9 February 2015 K. McFarland, MINERvA 67



MINERvA Continues

• By summer, we expect
• νe/νμ ratio of CCQE 
• Kaon production results (one interest is 

atmospheric neutrino kaon production 
as a background to p→K+ν)

• Flux uncertainty → 6-7% (νe → νe)

• In current (NOvA era) beam, we are 
collecting high statistics neutrinos and 
anti-neutrinos.  Most beneficial for 
nuclear target ratios and DIS studies.

• Results should continue to improve 
model descriptions used by both theory 
and oscillation experiments
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νe CCQE
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MINERvA invites 
you to continue 
to enjoy Neutrino 
Interactions!
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