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Lecture 1: DIS and Parton Showering

● Deep Inelastic Scattering

❖ Parton model

❖ Asymptotic freedom

❖ Scaling violation and DGLAP equation

❖ Quark and gluon distributions

❖ Solution by moments

❖ Small x

● Parton Showers

❖ Sudakov form factor

❖ Infrared cutoff

❖ Polarization effects



Deep Inelastic Scattering

● Consider lepton-proton scattering via exchange of virtual photon:

● Standard variables are:

x =
−q2

2p · q
=

Q2

2M(E − E′)

y =
q · p

k · p
= 1 −

E′

E

where Q2 = −q2 > 0, M2 = p2 and energies refer to target rest frame.

● Elastic scattering has (p + q)2 = M2, i.e. x = 1. Hence deep inelastic scattering (DIS)

means Q2 ≫ M2 and x < 1.
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● Structure functions Fi(x, Q2) parametrise target structure as ‘seen’ by virtual photon.

Defined in terms of cross section

d2σ

dxdy
=

8πα2ME

Q4

»„

1 + (1 − y)2

2

«

2xF1

+(1 − y)(F2 − 2xF1) − (M/2E)xyF2

–

.

● Bjorken limit is Q2, p · q → ∞ with x fixed. In this limit structure functions obey

approximate Bjorken scaling law, i.e. depend only on dimensionless variable x:

Fi(x, Q2) −→ Fi(x).

● Bjorken scaling implies that virtual photon is scattered by almost-free pointlike constituents

(partons) — otherwise structure functions would depend on ratio Q/Q0, with 1/Q0 a

length scale characterizing size of constituents.

● How can partons be bound inside hadrons but still appear almost free at high Q2?
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● Figure shows F2 structure function for proton target. Although Q2 varies by two orders of

magnitude, in first approximation data lie on universal curve.
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● Parton model of DIS is formulated in a frame where target proton is moving very fast —

infinite momentum frame.

❖ Suppose that, in this frame, photon scatters from pointlike quark with fraction ξ of

proton’s momentum. Since (ξp+q)2 = m2
q ≪ Q2, we must have ξ = Q2/2p·q = x.

❖ In terms of Mandelstam variables ŝ, t̂, û, spin-averaged matrix element squared for

massless eq → eq scattering is

X

|M|2 = 2e2
qe

4 ŝ2 + û2

t̂2

where
P

denotes average (sum) over initial (final) colours and spins.

❖ In terms of DIS variables, t̂ = −Q2, û = ŝ(y − 1) and ŝ = Q2/y. Differential cross

section is then
d2σ̂

dxdQ2
=

4πα2

Q4
[1 + (1 − y)

2
]
1

2
e

2
qδ(x − ξ).

❖ From structure function definition (neglecting M)

d2σ

dxdQ2
=

4πα2

Q4



[1 + (1 − y)
2
]F1 +

(1 − y)

x
(F2 − 2xF1)

ff

.

❖ Hence structure functions for scattering from parton with momentum fraction ξ is

F̂2 = xe
2
qδ(x − ξ) = 2xF̂1 .
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❖ Suppose probability that quark q carries momentum fraction between ξ and ξ + dξ is

q(ξ) dξ. Then

F2(x) =
X

q

Z 1

0

dξ q(ξ) xe2
qδ(x − ξ)

=
X

q

e
2
qxq(x) = 2xF1(x) .

❖ Relationship F2 = 2xF1 (Callan-Gross relation) follows from spin-12 property of quarks

(F1 = 0 for spin-0).

● Proton consists of three valence quarks (uud), which carry its electric charge and baryon

number, and infinite sea of light qq̄ pairs. Probed at scale Q, sea contains all quark flavours

with mq ≪ Q. Thus at Q ∼ 1 GeV expect

F em
2 (x) ≃

4

9
x[u(x) + ū(x)] +

1

9
x[d(x) + d̄(x) + s(x) + s̄(x)]

where

u(x) = uV (x) + ū(x)

d(x) = dV (x) + d̄(x)

s(x) = s̄(x)
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with sum rules
Z 1

0

dx uV (x) = 2 ,

Z 1

0

dx dV (x) = 1 .

● Experimentally one finds
P

q

R 1

0
dx x[q(x)+ q̄(x)] ≃ 0.5.. Thus quarks only carry about

50% of proton’s momentum. Rest is carried by gluons. Although not directly measured in

DIS, gluons participate in other hard scattering processes such as large-pT jet and prompt

photon production.

● Figure shows typical set of parton distributions extracted from fits to DIS data, at

Q2 = 10 GeV2.
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QCD Running Coupling

● Consider dimensionless physical observable R which depends on a single large energy scale,

Q ≫ m where m is any mass. Then we can set m → 0 (assuming this limit exists), and

dimensional analysis suggests that R should be independent of Q.

● This is not true in quantum field theory. Calculation of R as a perturbation series in the

coupling αS = g2/4π requires renormalization to remove ultraviolet divergences. This

introduces a second mass scale µ — point at which subtractions which remove divergences

are performed. Then R depends on the ratio Q/µ and is not constant. The renormalized

coupling αS also depends on µ.

● But µ is arbitrary! Therefore, if we hold bare coupling fixed, R cannot depend on µ. Since

R is dimensionless, it can only depend on Q2/µ2 and the renormalized coupling αS. Hence

µ2 d

dµ2
R

 

Q2

µ2
, αS

!

≡

"

µ2 ∂

∂µ2
+ µ2∂αS

∂µ2

∂

∂αS

#

R = 0 .
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● Introducing

τ = ln

 

Q2

µ2

!

, β(αS) = µ2∂αS

∂µ2
,

we have
"

−
∂

∂τ
+ β(αS)

∂

∂αS

#

R = 0.

This renormalization group equation is solved by defining running coupling αS(Q):

τ =

Z αS(Q)

αS

dx

β(x)
, αS(µ) ≡ αS .

Then
∂αS(Q)

∂τ
= β(αS(Q)) ,

∂αS(Q)

∂αS

=
β(αS(Q))

β(αS)
.

and hence R(Q2/µ2, αS) = R(1, αS(Q)). Thus all scale dependence in R comes from

running of αS(Q).

● We shall see QCD is asymptotically free: αS(Q) → 0 as Q → ∞. Thus for large Q we

can safely use perturbation theory. Then knowledge of R(1, αS) to fixed order allows us to

predict variation of R with Q.

8



QCD Beta Function

● Running of of the QCD coupling αS is determined by the β function, which has the

expansion

β(αS) = −bα
2
S(1 + b

′
αS) + O(α

4
S)

b =
(11CA − 2nf)

12π
, b

′
=

(17C2
A − 5CAnf − 3CFnf)

2π(11CA − 2nf)
,

where nf is number of “active” light flavours. Terms up to O(α5
S) are known.

● Roughly speaking, quark loop “vacuum polarisation” diagram (a) contributes negative nf

term in b, while gluon loop (b) gives positive CA contribution, which makes β function

negative overall.

● QED β function is

βQED(α) =
1

3π
α

2
+ . . .

Thus b coefficients in QED and QCD have opposite signs.
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● From previous section,

∂αS(Q)

∂τ
= −bα

2
S(Q)

h

1 + b
′
αS(Q)

i

+ O(α
4
S).

Neglecting b′ and higher coefficients gives

αS(Q) =
αS(µ)

1 + αS(µ)bτ
, τ = ln

 

Q2

µ2

!

.

● As Q becomes large, αS(Q) decreases to zero: this is asymptotic freedom. Notice that

sign of b is crucial. In QED, b < 0 and coupling increases at large Q.

Including next coefficient b′ gives implicit equation for αS(Q):

bτ =
1

αS(Q)
−

1

αS(µ)
+ b′ ln

“ αS(Q)

1 + b′αS(Q)

”

− b′ ln
“ αS(µ)

1 + b′αS(µ)

”
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● What type of terms does the solution of the renormalization group equation take into

account in the dimensionless physical quantity R(Q2/µ2, αS)?

Assume that R has perturbative expansion

R(1, αS) = R1αS + R2α
2
S + O(α3

S)

RGE solution R(1, αS(Q)) can be re-expressed in terms of αS(µ):

αS(Q) = αS(µ) − bτ [αS(µ)]
2
+ O(α

3
S)

R(1, αS(Q)) = R1αS(µ) + (R2 − bτ)αS(µ)2 + O(α3
S)

Thus there are powers of τ = log(Q2/µ2) that are automatically resummed by using the

running coupling.

● Notice that a leading order (LO) evaluation of R (i.e. the coefficient R1) is not very useful

since αS(µ) can be given any value by varying the scale µ.

❖ We need the next-to-leading order (NLO) coefficient (R2 − bτ) to gain some control of

scale dependence: the µ dependence of τ starts to compensate that of αS(µ).
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● Current best fit value of αS at mass of Z is [Bethke, hep-ex/0606035]

αS(MZ) = 0.1189 ± 0.0010

● Uncertainty in αS propagates directly into QCD cross sections. Thus we expect errors at

the percent level (at least) in prediction of cross sections which begin in order αS.
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jets & shapes 161 GeV 

jets & shapes 172 GeV 

0.08 0.10 0.12 0.14

α  (Μ  )s Z

τ-decays  [LEP]

xF   [ν -DIS]
F   [e-, µ-DIS]

Υ decays

 Γ(Z  --> had.) [LEP]

e  e  [σ     ]+
had

_
e  e  [jets & shapes 35 GeV]+ _

σ(pp --> jets)

pp --> bb X

0

QQ + lattice QCD

DIS [GLS-SR]

2

3

pp, pp --> γ X

DIS [Bj-SR]

e  e  [jets & shapes 58 GeV]+ _

jets & shapes [HERA]

jets & shapes 133 GeV

e  e  [jets & shapes 22 GeV]+ _

e  e  [jets & shapes 44 GeV]+ _

e  e  [σ     ]+
had

_

jets & shapes 183 GeV

DIS [pol. strct. fctn.]

jets & shapes 189 GeV

e  e  [scaling. viol.]+ _

jets & shapes 91.2 GeV [LEP]

● Using the formula for running αS(Q) to rescale all measurements to Q = MZ gives

excellent agreement.
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Charge Screening

● In QED the observed electron charge is distance-dependent (⇒ momentum transfer

dependent) due to charge screening by the vacuum polarisation:

+

+

+

+
+

+

+
++

+

+
+

-
-

--
-

-
-

- - -
-

-

q2

αeff

137
1 128

1

2m
Z

● At short distances (high momentum scales) we see more of the “bare” charge ⇒ effective

charge (coupling) increases.

● In contrast, the vacuum polarisation of a non-Abelian gauge field gives anti-screening.

❖ Consider for simplicity an SU(2) gauge field: this has 3 “colours”. . .
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Non-Abelian Vacuum Polarization

E

∇ · E = g δ3(r) + g (A · E − A · E)
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Non-Abelian Vacuum Polarization

E

A

∇ · E = g (A · E − A · E)
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Non-Abelian Vacuum Polarization

E

A

E

∇ · E = g (A · E − A · E)
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Non-Abelian Vacuum Polarization

E

A

E

∇ · E = g δ3(r) + g (A · E − A · E)
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History of Asymptotic Freedom

1954 Yang & Mills study vector field theory with non-Abelian gauge invariance.

1965 Vanyashin & Terentyev compute vacuum polarization due to a massive charged vector field.

In our notation, they found

b =
1

12π

„

21

2
= 11 −

1

2

«

The 1
2 comes from longitudinal polarization states (absent for massless gluons)

❖ They concluded that this result “. . . seems extremely undesirable”

1969 Khriplovich correctly computes the one-loop β-function in SU(2) Yang-Mills theory using

the Coulomb (∇ · A = 0) gauge

b =
CA

12π
(12 − 1 = 11)

In Coulomb gauge the anti-screening (12) is due to an instantaneous Coulomb interaction

❖ He did not make a connection with strong interactions

1971 ’t Hooft computes the one-loop β-function for SU(3) gauge theory but does not publish it.

❖ He wrote it on the blackboard at a conference

❖ His supervisor (Veltman) told him it wasn’t interesting

❖ ’t Hooft & Veltman received the 1999 Nobel Prize for proving the renormalizability of QCD

(and the whole Standard Model).
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1972 Fritzsch & Gell-Mann propose that the strong interaction is an SU(3) gauge theory, later

named QCD by Gell-Mann

1973 Gross & Wilczek, and independently Politzer, compute and publish the 1-loop β-function

for QCD:

b =
1

12π
(11CA − 2nf)

⇒2004 Nobel Prize (now that ’t Hooft has one anyway . . . )

1974 Caswell† and Jones compute the 2-loop β-function for QCD.

1980 Tarasov, Vladimirov & Zharkov compute the 3-loop β-function for QCD.

1997 van Ritbergen, Vermaseren & Larin compute the 4-loop β-function for QCD

(∼ 50, 000 Feynman diagrams):

“. . . We obtained in this way the following result for the 4-loop beta function in the

MS-scheme:

q
2∂as

∂q2
= −β0a

2
s − β1a

3
s − β2a

4
s − β3a

5
s + O(a

6
s)

where as = αS/4π and . . .
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β0 =
11

3
CA −

4

3
TFnf , β1 =

34

3
C2

A − 4CFTFnf −
20

3
CATFnf

β2 =
2857

54
C

3
A + 2C

2
FTFnf −

205

9
CFCATFnf

−
1415

27
C2

ATFnf +
44

9
CFT 2

Fn2
f +

158

27
CAT 2

Fn2
f

β3 = C4
A

„

150653

486
−

44

9
ζ3

«

+ C3
ATFnf

„

−
39143

81
+

136

3
ζ3

«

+C
2
ACFTFnf

„

7073

243
−

656

9
ζ3

«

+ CAC
2
FTFnf

„

−
4204

27
+

352

9
ζ3

«

+46C
3
FTFnf + C

2
AT

2
Fn

2
f

„

7930

81
+

224

9
ζ3

«

+ C
2
FT

2
Fn

2
f

„

1352

27
−

704

9
ζ3

«

+CACFT 2
Fn2

f

„

17152

243
+

448

9
ζ3

«

+
424

243
CAT 3

Fn3
f +

1232

243
CFT 3

Fn3
f

+
dabcd

A dabcd
A

NA

„

−
80

9
+

704

3
ζ3

«

+ nf

dabcd
F dabcd

A

NA

„

512

9
−

1664

3
ζ3

«

+n2
f

dabcd
F dabcd

F

NA

„

−
704

9
+

512

3
ζ3

«
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Here ζ is the Riemann zeta-function (ζ3 = 1.202 · · ·) and the colour factors for SU(N)

are

TF =
1

2
, CA = N, CF =

N2 − 1

2N
,

dabcd
A dabcd

A

NA

=
N2(N2 + 36)

24
,

dabcd
F dabcd

A

NA

=
N(N2 + 6)

48
,

dabcd
F dabcd

F

NA

=
N4 − 6N2 + 18

96N2

● Substitution of these colour factors for N = 3 yields the following numerical results for

QCD:

β0 ≈ 11 − 0.66667nf

β1 ≈ 102 − 12.6667nf

β2 ≈ 1428.50 − 279.611nf + 6.01852n
2
f

β3 ≈ 29243.0 − 6946.30nf + 405.089n2
f + 1.49931n3

f

● Expansion parameter as = αS/4π ≈ 0.01 ⇒ good convergence.
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Nonperturbative QCD

● Corresponding to asymptotic freedom at high momentum scales (short distances), we have

infrared slavery: αS(Q) becomes large at low momenta (long distances). Perturbation

theory (PT) not reliable for large αS, so nonperturbative methods (e.g. lattice) must be

used.

● Important low momentum-scale phenomena:

❖ Confinement: partons (quarks and gluons) found only in colour-singlet bound states

(hadrons), size ∼ 1 fm. If we try to separate them, it becomes energetically favourable to

create extra partons, forming additional hadrons.

q q

q q q q

❖ Hadronization: partons produced in short-distance interactions reorganize themselves (and

multiply) to make observed hadrons.

● Note that confinement is a static (long-distance) property of QCD, treatable by lattice

techniques whereas hadronization is a dynamical (long timescale) phenomenon: only models

are available at present (see later).
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Infrared Divergences

● Even in high-energy, short-distance regime, long-distance aspects of QCD cannot be ignored.

Soft or collinear gluon emission gives infrared divergences in PT. Light quarks (mq ≪ Λ)

also lead to divergences in the limit mq → 0 (mass singularities).

❖ Spacelike branching: gluon splitting on incoming line (a)

p2
b = −EaEc(1 − cos θ) ≤ 0 .

Propagator factor 1/p2
b diverges as Ec → 0 (soft singularity) or θ → 0 (collinear or mass

singularity). If a and b are quarks, inverse propagator factor is

p2
b − m2

q = −EaEc(1 − va cos θ) ≤ 0 ,

Hence Ec → 0 soft divergence remains; collinear enhancement becomes a divergence as

va → 1, i.e. when quark mass is negligible. If emitted parton c is a quark, vertex factor

cancels Ec → 0 divergence.
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❖ Timelike branching: gluon splitting on outgoing line (b)

p2
a = EbEc(1 − cos θ) ≥ 0 .

Diverges when either emitted gluon is soft (Eb or Ec → 0) or when opening angle θ → 0.

If b and/or c are quarks, collinear/mass singularity in mq → 0 limit. Again, soft quark

divergences cancelled by vertex factor.

● Similar infrared divergences in loop diagrams, associated with soft and/or collinear

configurations of virtual partons within region of integration of loop momenta.

● Infrared divergences indicate dependence on long-distance aspects of QCD not correctly

described by PT. Divergent (or enhanced) propagators imply propagation of partons over

long distances. When distance becomes comparable with hadron size ∼ 1 fm, quasi-free

partons of perturbative calculation are confined/hadronized non-perturbatively, and apparent

divergences disappear.

● Can still use PT to perform calculations, provided we limit ourselves to two classes of

observables:

❖ Infrared safe quantities, i.e. those insensitive to soft or collinear branching. Infrared

divergences in PT calculation either cancel between real and virtual contributions or are

removed by kinematic factors. Such quantities are determined primarily by hard, short-

distance physics; long-distance effects give power corrections, suppressed by inverse powers

of a large momentum scale.

❖ Factorizable quantities, i.e. those in which infrared sensitivity can be absorbed into an overall

non-perturbative factor, to be determined experimentally.
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● Infrared safe quantities:

❖ Total cross section for e+e− → hadrons: real and virtual divergences cancel.

In 4 − 2ǫ dimensions [H(ǫ) = 1 + O(ǫ)]

σreal

σBorn

= CF

αS

2π
H(ǫ)

»

2

ǫ2
+

3

ǫ
+

19

2
− π2 + O(ǫ)

–

σvirt

σBorn

= 1 + CF

αS

2π
H(ǫ)

»

−
2

ǫ2
−

3

ǫ
− 8 + π

2
+ O(ǫ)

–

σtot

σBorn

= 1 + CF

3αS

4π
+ O(α

2
S) .

❖ Event shapes: singularities cancelled by kinematics. Examples are Thrust and C-parameter:

T = max

P

i |pi · n|
P

i |pi|

C =
3

2

P

i,j |pi| |pj| sin2 θij

(
P

i |pi|)
2

● Factorizable quantities: hadronic structure functions; jet fragmentation functions.
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Scaling Violation and DGLAP Equation

● Bjorken scaling is not exact. This is due to enhancement of higher-order contributions from

small-angle parton branching, discussed earlier.

● Incoming quark from target hadron, initially with low virtual mass-squared −t0 and carrying

a fraction x0 of hadron’s momentum, moves to more virtual masses and lower momentum

fractions by successive small-angle emissions, and is finally struck by photon of virtual

mass-squared q2 = −Q2.

● Cross section will depend on Q2 and on momentum fraction distribution of partons seen by

virtual photon at this scale, D(x, Q2).

● To derive evolution equation for Q2-dependence of D(x, Q2), first introduce pictorial

representation of evolution, also useful for Monte Carlo simulation.
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● Represent sequence of branchings by path in (t, x)-space. Each branching is a step

downwards in x, at a value of t equal to (minus) the virtual mass-squared after the

branching.

● At t = t0, paths have distribution of starting points D(x0, t0) characteristic of target

hadron at that scale. Then distribution D(x, t) of partons at scale t is just the x-distribution

of paths at that scale.

● Consider change in the parton distribution D(x, t) when t is increased to t + δt. This is

number of paths arriving in element (δt, δx) minus number leaving that element, divided

by δx.
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● Number arriving is branching probability times parton density integrated over all higher

momenta x′ = x/z,

δDin(x, t) =
δt

t

Z 1

x

dx
′
dz

αS

2π
P̂ (z)D(x

′
, t) δ(x − zx

′
)

=
δt

t

Z 1

0

dz

z

αS

2π
P̂ (z)D(x/z, t)

● For the number leaving element, must integrate over lower momenta x′ = zx:

δDout(x, t) =
δt

t
D(x, t)

Z x

0

dx′ dz
αS

2π
P̂ (z) δ(x′ − zx)

=
δt

t
D(x, t)

Z 1

0

dz
αS

2π
P̂ (z)

● Change in population of element is

δD(x, t) = δDin − δDout

=
δt

t

Z 1

0

dz
αS

2π
P̂ (z)

»

1

z
D(x/z, t) − D(x, t)

–

.
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● Introduce plus-prescription with definition

Z 1

0

dz f(z) g(z)+ =

Z 1

0

dz [f(z) − f(1)] g(z) .

Using this we can define regularized splitting function

P (z) = P̂ (z)+ ,

and obtain Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation:

t
∂

∂t
D(x, t) =

Z 1

x

dz

z

αS

2π
P (z)D(x/z, t) .

Beware! Note that
Z 1

x

dz f(z)g(z)+ =

Z 1

0

dz Θ(z − x)f(z)g(z)+

=

Z 1

x

dz [f(z) − f(1)]g(z) − f(1)

Z x

0

dz g(z)

● Here D(x, t) represents parton momentum fraction distribution inside incoming hadron

probed at scale t. In timelike branching, it represents instead hadron momentum fraction

distribution produced by an outgoing parton. Boundary conditions and direction of evolution

are different, but evolution equation remains the same.
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Quark and Gluon Distributions

● For several different types of partons, must take into account different processes by which

parton of type i can enter or leave the element (δt, δx). This leads to coupled DGLAP

evolution equations of form

t
∂

∂t
Di(x, t) =

X

j

Z 1

x

dz

z

αS

2π
Pij(z)Dj(x/z, t) ≡

αS

2π
Pij ⊗ Dj

● Quark (i = q) can enter element via either q → qg or g → qq̄, but can only leave via

q → qg. Thus plus-prescription applies only to q → qg part, giving

Pqq(z) = P̂qq(z)+ = CF

 

1 + z2

1 − z

!

+

Pqg(z) = P̂qg(z) = TR [z2 + (1 − z)2]

where CF = 4/3 and TR = 1/2 for colour group SU(3).

● Gluon can arrive either from g → gg (2 contributions) or from q → qg (or q̄ → q̄g).

Thus number arriving is
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δDg,in =
δt

t

Z 1

0

dz
αS

2π

(

P̂gg(z)

"

Dg(x/z, t)

z
+

Dg(x/(1 − z), t)

1 − z

#

+
P̂qq(z)

1 − z

"

Dq

„

x

1 − z
, t

«

+ Dq̄

„

x

1 − z
, t

«

#)

=
δt

t

Z 1

0

dz

z

αS

2π

(

2P̂gg(z)Dg

„

x

z
, t

«

+ P̂qq(1 − z)

»

Dq

„

x

z
, t

«

+ Dq̄

„

x

z
, t

«–

)

● Gluon can leave by splitting into either gg or qq̄, so that

δDg,out =
δt

t
Dg(x, t)

Z 1

0

dz
αS

2π

h

P̂gg(z) + nfP̂qg(z) dz
i

.

● After some manipulation we find (CA = 3, nf light flavours)

Pgg(z) = 2CA

"

„

z

1 − z
+ 1

2z(1 − z)

«

+

+
1 − z

z
+ 1

2z(1 − z)

#

−
2

3
nfTR δ(1 − z) ,
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Pgq(z) = Pgq̄(z) = P̂qq(1 − z) = CF

1 + (1 − z)2

z
.

● Using definition of the plus-prescription, can check that

„

z

1 − z
+ 1

2z(1 − z)

«

+

=
z

(1 − z)+

+ 1
2z(1 − z) +

11

12
δ(1 − z)

 

1 + z2

1 − z

!

+

=
1 + z2

(1 − z)+

+
3

2
δ(1 − z) ,

so Pqq and Pgg can be written in more common forms

Pqq(z) = CF

"

1 + z2

(1 − z)+

+
3

2
δ(1 − z)

#

Pgg(z) = 2CA

»

z

(1 − z)+

+
1 − z

z
+ z(1 − z)

–

+
1

6
(11CA − 4nfTR) δ(1 − z) .
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Solution by Moments
● Given Di(x, t) at some scale t = t0, factorized structure of DGLAP equation means we

can compute its form at any other scale.

● One strategy for doing this is to take moments (Mellin transforms) with respect to x:

D̃i(N, t) =

Z 1

0

dx x
N−1

Di(x, t) .

Inverse Mellin transform is

Di(x, t) =
1

2πi

Z

C

dN x
−N

D̃i(N, t) ,

where contour C is parallel to imaginary axis to right of all singularities of integrand.

● After Mellin transformation, convolution in DGLAP equation becomes simply a product:

t
∂

∂t
D̃i(N, t) =

X

j

γij(N, αS)D̃j(N, t)

where moments of splitting functions give PT expansion of anomalous dimensions γij:

γij(N, αS) =
∞
X

n=0

γ
(n)
ij (N)

„

αS

2π

«n+1

γ
(0)
ij (N) = P̃ij(N) =

Z 1

0

dz z
N−1

Pij(z)
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● From above expressions for Pij(z) we find

γ(0)
qq (N) = CF

"

−
1

2
+

1

N(N + 1)
− 2

N
X

k=2

1

k

#

γ
(0)
qg (N) = TR

"

(2 + N + N2)

N(N + 1)(N + 2)

#

γ
(0)
gq (N) = CF

"

(2 + N + N2)

N(N2 − 1)

#

γ(0)
gg (N) = 2CA

"

−
1

12
+

1

N(N − 1)
+

1

(N + 1)(N + 2)

−
N
X

k=2

1

k

#

−
2

3
nfTR .
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● Consider combination of parton distributions which is flavour non-singlet, e.g. DV =

Dqi
− Dq̄i

or Dqi
− Dqj

. Then mixing with the flavour-singlet gluons drops out and

solution for fixed αS is

D̃V (N, t) = D̃V (N, t0)

„

t

t0

«γqq(N,αS)

,

● We see that dimensionless function DV , instead of being scale-independent function of x

as expected from dimensional analysis, has scaling violation: its moments vary like powers

of scale t (hence the name anomalous dimensions).

● For running coupling αS(t), scaling violation is power-behaved in ln t rather than t. Using

leading-order formula αS(t) = 1/b ln(t/Λ2), we find

D̃V (N, t) = D̃V (N, t0)

„

αS(t0)

αS(t)

«dqq(N)

where dqq(N) = γ(0)
qq (N)/2πb.

● Now dqq(1) = 0 and dqq(N) < 0 for N ≥ 2. Thus as t increases D̃V (N, t) is constant

for N = 1 (valence sum rule) and decreases at larger N .
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● Since larger-N moments emphasise larger x, this means that DV (x, t) decreases at large

x and increases at small x. Physically, this is due to increase in the phase space for gluon

emission by quarks as t increases, leading to loss of momentum. This is clearly visible in

data:
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● For flavour-singlet combination, define Σ =
P

i

`

Dqi
+ Dq̄i

´

. Then we obtain

t
∂Σ

∂t
=

αS(t)

2π
[Pqq ⊗ Σ + 2nfPqg ⊗ Dg]

t
∂Dg

∂t
=

αS(t)

2π
[Pgq ⊗ Σ + Pgg ⊗ Dg] .

● Thus flavour-singlet quark distribution Σ mixes with gluon distribution Dg: evolution

equation for moments has matrix form

t
∂

∂t

„

Σ̃

D̃g

«

=

„

γqq 2nfγqg

γgq γgg

«„

Σ̃

D̃g

«

● Singlet anomalous dimension matrix has two real eigenvalues γ± given by

γ± = 1
2[γgg + γqq ±

q

(γgg − γqq)2 + 8nfγgqγqg] .

● Expressing Σ̃ and D̃g as linear combinations of eigenvectors Σ̃+ and Σ̃−, we find they

evolve as superpositions of terms of above form with γ± in place of γqq.
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Small x

● At small x, corresponding to N → 1,

γ+ → γgg → ∞ , γ− → γqq → 0 ,

Therefore we expect structure functions to grow rapidly at small x, which is as observed:
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● Higher-order corrections also become large in this region:

γ
(1)
qq (N) →

40CFnfTR

9(N − 1)

γ
(1)
qg (N) →

40CATR

9(N − 1)

γ(1)
gq (N) →

9CFCA − 40CFnfTR

9(N − 1)

γ
(1)
gg (N) →

(12CF − 46CA)nfTR

9(N − 1)
.

● Thus we find

γ+ →
2CA

N − 1

αS

2π

»

1 +
(26CF − 23CA)nf

18CA

αS

2π
+ . . .

–

=
2CA

N − 1

αS

2π

»

1 − 0.64nf

αS

2π
+ . . .

–

where neglected terms are either non-singular at N = 1 or higher-order in αS. Thus NLO

correction is relatively small.
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● In general one finds (BFKL) that for N → 1

γ+ →
∞
X

n=1

n
X

m=0

γ(n,m)

(N − 1)m

„

αS

2π

«n

❖ Each inverse power of (N − 1) corresponds to a log x enhancement at small x.

❖ However, it happens that γ(2,2) and γ(3,3) are zero.

❖ This is the main reason why substantial deviations from NLO QCD are not yet seen in DIS

at small x.
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Parton Showers

● DGLAP equations are convenient for evolution of parton distributions. To study structure

of final states, a slightly different form is useful. Consider again simplified treatment with

only one type of parton branching. Introduce the Sudakov form factor:

∆(t) ≡ exp

"

−

Z t

t0

dt′

t′

Z

dz
αS

2π
P̂ (z)

#

,

Then

t
∂

∂t
D(x, t) =

Z

dz

z

αS

2π
P̂ (z)D(x/z, t) +

D(x, t)

∆(t)
t

∂

∂t
∆(t) ,

t
∂

∂t

„

D

∆

«

=
1

∆

Z

dz

z

αS

2π
P̂ (z)D(x/z, t) .

● This is similar to DGLAP, except D is replaced by D/∆ and regularized splitting function

P replaced by unregularized P̂ . Integrating,

D(x, t) = ∆(t)D(x, t0)

+

Z t

t0

dt′

t′
∆(t)

∆(t′)

Z

dz

z

αS

2π
P̂ (z)D(x/z, t

′
) .
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● This has simple interpretation. First

term is contribution from paths that

do not branch between scales t0 and

t. Thus Sudakov form factor ∆(t)

is probability of evolving from t0 to

t without branching. Second term

is contribution from paths which have

their last branching at scale t′. Factor

of ∆(t)/∆(t′) is probability of evolving

from t′ to t without branching.

● Generalization to several species of partons straightforward. Species i has Sudakov form

factor

∆i(t) ≡ exp

2

4−
X

j

Z t

t0

dt′

t′

Z

dz
αS

2π
P̂ji(z)

3

5 ,

which is probability of it evolving from t0 to t without branching. Then

t
∂

∂t

„

Di

∆i

«

=
1

∆i

X

j

Z

dz

z

αS

2π
P̂ij(z)Dj(x/z, t) .
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Infrared Cutoff

● In DGLAP equation, infrared singularities of splitting functions at z = 1 are regularized

by plus-prescription. However, in above form we must introduce an explicit infrared cutoff,

z < 1 − ǫ(t). Branchings with z above this range are unresolvable: emitted parton is too

soft to detect. Sudakov form factor with this cutoff is probability of evolving from t0 to t

without any resolvable branching.

● Sudakov form factor sums enhanced virtual (parton loop) as well as real (parton emission)

contributions. No-branching probability is the sum of virtual and unresolvable real

contributions: both are divergent but their sum is finite.

● Infrared cutoff ǫ(t) depends on what we classify as resolvable emission. For timelike

branching, natural resolution limit is given by cutoff on parton virtual mass-squared, t > t0.

When parton energies are much larger than virtual masses, transverse momentum in a → bc

is

p
2
T = z(1 − z)p

2
a − (1 − z)p

2
b − zp

2
c > 0 .

Hence for p2
a = t and p2

b, p2
c > t0 we require

z(1 − z) > t0/t ,

that is,

z, 1 − z > ǫ(t) = 1
2 − 1

2

q

1 − 4t0/t ≃ t0/t .
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● Quark Sudakov form factor is then

∆q(t) ≃ exp

"

−

Z t

2t0

dt′

t′

Z 1−t0/t′

t0/t′
dz

αS

2π
P̂qq(z)

#

.

● Careful treatment of running coupling suggests its argument should be p2
T ∼ z(1 − z)t′.

Then at large t

∆q(t) ∼

„

αS(t)

αS(t0)

«p ln t

,

(p = a constant), which tends to zero faster than any negative power of t.

● Infrared cutoff discussed here follows from kinematics. We shall see later that QCD dynamics

effectively reduces phase space for parton branching, leading to a more restrictive effective

cutoff.

● Each emitted (timelike) parton can itself branch. In that case t evolves downwards towards

cutoff value t0, rather than upwards towards hard process scale Q2. Due to successive

branching, a parton cascade or shower develops. Each outgoing line is source of new

cascade, until all outgoing lines have stopped branching. At this stage, which depends on

cutoff scale t0, outgoing partons have to be converted into hadrons via a hadronization

model.
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● Figure shows (schematically) a typical parton shower in Z0 → hadrons: for a resolution

scale t0 ∼ 1 GeV2, about 7 gluons are emitted.
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Polarization Effects

● Correlation between plane of polarization of initial gluon and plane of branching (angle φ)

in g → gg:

P̂gg(z, φ) = 2CA

»

1 − z

z
+

z

1 − z
+ z(1 − z) + z(1 − z) cos 2φ

–

.

Hence branching in plane of gluon polarization preferred.

● For g → qq̄:

P̂qg(z, φ) = TR

h

z
2
+ (1 − z)

2
− 2z(1 − z) cos 2φ

i

i.e. strong preference for splitting perpendicular to polarization.

● Branching q → qg:

❖ Helicity conservation ensures that quark does not change helicity in branching.

❖ Gluon polarized in plane of branching preferred:

P̂qq(z, φ) = CF

"

1 + z2

1 − z
+

2z

1 − z
cos 2φ

#

.
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Four-Jet Angular Distribution

● Angular correlations are illustrated by the angular distribution in e+e− → 4 jets. Bengtsson-

Zerwas angle χBZ is angle between the planes of two lowest and two highest energy jets:

cos χBZ =
(p1 × p2) · (p3 × p4)

|p1 × p2| |p3 × p4|
.
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❖ Lowest-order diagrams for 4-jet production shown below. Two hardest jets tend to follow

directions of primary qq̄.

❖ “Double bremsstrahlung” diagrams give negligible correlations.

❖ g → qq̄ give strong anti-correlation (“Abelian” curve), because gluon tends to be polarized

in plane of primary jets and prefers to split perpendicular to polarization.

❖ g → gg occurs more often parallel to polarization. Although its correlation is much weaker

than in g → qq̄, g → gg is dominant in QCD due to larger colour factor and soft gluon

enhancements.

❖ Thus B-Z angular distribution is flatter than in an Abelian theory.
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● Combining with fits to e+e− event shape distributions allows determination of the colour

factors CA and CF .

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

U(1)3

SU(1)

SU(2)

SU(4)

SU(5)Combined result

SU(3) QCD

ALEPH 4-jet

OPAL 4-jet

Event Shape

OPAL Ngg

DELPHI FF

CF

CA

86% CL error ellipses

51



Summary of Lecture 1

● Deep inelastic lepton scattering (DIS) reveals parton structure of hadrons.

❖ Pointlike constituents ⇒ Bjorken scaling.

❖ Sum rules reveal properties of partons.

❖ Gluons inferred from missing momentum.

● QCD charge anti-screening⇒ asymptotic freedom

❖ Infrared safe quantities perturbatively computable.

❖ Factorization ⇒ violation of Bjorken scaling also computable.

❖ Leading contribution due to multiple small-angle parton branching.

● Parton distributions evolve according to DGLAP equations.

❖ These involve convolutions ⇒ solve by taking moments (xN−1)

❖ Divergences as N → 1 lead to rapid increase in parton distributions at small x.

● Emitted partons can also branch, leading to parton showers.

❖ Showers determine broad structure of final state.

❖ Sudakov form factor gives probability of evolution without resolvable branching.

❖ Can follow parton showers until evolution scale becomes too low for

perturbation theory ⇒ infrared cutoff. Then we need hadronization model.

❖ Gluon polarization leads to angular correlations in showers.
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