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Introduction

Motivation and Abstract

Quark confinement is a long-standing problem in modern
physics, but its rigorous proof is not in our sight. E. T. Tomboulis
published a paper in which he claims a rigorous proof of quark
confinement in 4D LGT.
But this paper contains many problematic points and many
physicists were confused.
We point them out and discuss if it is possible to correct his
proof. If not, what could be the next step?
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Introduction

LGT, the invention by K.Wilson

It started with the paper by Wilson.

< f (gC) > =
1
Z

∫
exp[β

∑
p

χ(gp)]f (gC)
∏

dgb

gp =
∏
p⊃b

gb

f (gC) = f (
∏
b∈C

gb)

where χ is a rep. of G, p are unit squares (blocks, plaquettes)
and

gb = exp
[

2√
β

Ab

]
∈ G, Ab =

∑
i

A(i)
µ τi , τ ∈ G
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Introduction

LGT, the invention by K.Wilson

Typically two phases:

< χ(gC) >=


exp[−σ|C|] area decay

(σ = Wilson’s string tension)
exp[−σ|∂C|] perimeter decay

We expect area decay for D = 4 and G = SU(N).
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Introduction

LGT, the invention by K.Wilson

The Millenium Problem

Open Problem

1. Does quark confinement hold for all β > 0 in 4D LGT of
G = SU(N)?

2. Does the continuum limit exist and both asymptotic
freedom and confinement hold there ?

If the first claim is not affirmative, quark confinement and
asymptotic freedom may depend on the methods of continuum
limit.
If (1) is true, then the second one is plausible but its proof is
much more difficult.
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Introduction

LGT, the invention by K.Wilson

Our Present Knowledges

Theorem

1. For any D, if β > 0 is small, the area decay law holds for
G = SU(N), U(N).

2. If D = 3, the area law holds for G = U(1) for all β

3. If D = 4 and G = U(1), there exit two phases:
QED (KT) phase and confining phase in LQED
(Guth, Froehlich, Spencer)

For G = SU(N), nothing is known (even in D = 3) except for
the case of β ≪ 1.
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Introduction

Block Spin Transf of LGT

Block Spin transformation

ϕ(x) → ϕ1(x) =
1

L(d+2)/2

∑
y∈˜

ϕ(y)

ϕ(x) =
1

L(d−2)/2
ϕ1([x/L]) +

∑
(small fluctuation)

may not work well for groups (average of groups is not a group):

gb = exp[(i/
√

β)Ax ,x+eµ ] ∈ G

Block Ave of gb = exp[
∑

b′//b

log gb′ ] ∈ G

(Rivasseau - Balaban’s method,

straight calculation is terrible)
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MK Transf

Approximate RG was invented by Migdal 30 years ago!
Block plaquettes of size b × b are shifted to the walls at
xi = b, 2b, 3b, · · · (for i = 1, 2, .., D). (bD−2 block plaquettes are
gathered.)

Figure: decimation of Kananoff type: bD−2 block plaquettes of size
b × b are moved to the walls of large cubes and gathered (by putting
β = ∞)
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MK Transf

For the dimension D, bD−2 block plaquettes (from x3, · · · xD

directions) of size b × b are glued together. This is calculable
(2D LGT).
Each bond means f (n−1)(U)bD−2

(Kadanoff type):

Block Plaquette 1D Spin System
Scaling

Figure: 2Dim LGT = 1D Spin Sys. Decimation and Scaling
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MK Transf

Internal bonds are integrated out (decimated) and closed RG
formula is obtained for plaquette actions f (n)(Up):

f (0)(U) = exp[βχ(U)], U =
∏

∂p⊃b

Ub ∈ G

and

f (n)(U) =
1

F0(n)
×∫

[ f (n−1)(UU1)f
(n−1)(U−1

1 U2) · · · f (n−1)(Ub2)︸ ︷︷ ︸
b2

]b
D−2 ∏

dUk
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MK Transf

where

F0(n) =

(∫
[f (n−1)(U)]b

D−2
dU

)b2

In terms of the Fourier (characteristic func.) expansion,

f (n)(U) ≡ f (n)({cj(n)}, U) = 1 +
∑

j

cj(n)djχj(U)

cj(n) ≡
∫

f (n)(U)
1
dj

χj(U)dU

we have

f ({cj(n − 1)}, U) → f (n)(U) = f ({cj(n)}, U)
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MK Transf

Theorem

For D ≤ 4 and for G = SU(N) or G = U(N),

lim
n→∞

cj(n) = 0 for j ̸= 0

Quark confinement holds for D ≤ 4 and G = SU(N), U(N) in
the MK approximation . These recursions are approximate and
yield upper bounds for the partition functions.

This means that the MK fails to prove Kosterlitz-Thouless
transition (QED phase).
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MK Transf

Proof
Put D = 4 and define the set F of class functions such that

1. f (u) is a class function of positive type,
f (uv) = f (vu), 1 = f (1) ≥ f (u) = f (u−1)

2. For σ(z) = exp[i
∑

ziλi ] and τ(ω) = exp[i
∑

ωiλi ] where
{λi} are N × N hermitian matrices, f (σvτ ṽ) is analytic in
D = {(z, ω); |Imzi |, |Imωi | < ℓ}

3. f satisfies the bound

|fn+1(σ(z)uτ(ω)ṽ)|
≤ |fn+1(σ(Rez)uτ(Reω)ṽ)|exp[βC

∑
((Imzi)

2 + (Imωi)
2)]

Clearly f0 ∈ F . Then fn ∈ F by induction since

fn+1(σ(z)uτ(ω)ṽ) =
1
N

∫ [
fn(σ(z/b2)uτ(ω/b2)v−1

1 ) · · ·

×fn(σ(z/b2)vb2−1τ(ω/b2)ṽ)
]b2 ∏

dvi
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MK Transf

fn belongs to F larger analytic region D. We define

βn
v (a) =

2
a2 log

∣∣∣∣ fn(vτ(ia))

fn(v)

∣∣∣∣
(real analytic and even in a). Then

βn
v = βn

v (0) = − ∂2

∂2θ
log |fn(vτ(θ))|

Note that
fn+1(vτ(a))

=
1
N

∫ [
fn(vτ(a/b2)v−1

1 ) · · · × fn(vb2−1τ(a/b2))
]b2 ∏

dvi

Take the absolute values of both sides and expand
|fn(vτ(ia/b2))| in a (even in a) to find

βn+1 ≤ βn, D ≤ 4
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MK Transf

This arguments work for both U(N) and SU(N).
MK does not see the difference between U(N) and SU(N).

To my best knowledge, nobody suceeded to find any
approximate formula which distinguishes non-abelian and
abelian.

But this is not a shame since nobody could solve the real
non-abelian system.
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’tHooft’s string tension

vortex container

Vortex Condensation
Mack, Petkova, ’t Hooft and Yoneya introduced the idea of
vortex condensation:
V ⊂ Λ is p = (x0, x0 + e1, x0 + e1 + e2, x0 + e2) in an x1 − x2

plane and its translations along the axis normal to p (say, 3rd
and 4th axis)

Figure: vortex container V of base size L1 × L2, height L3 × L4 in Λ
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’tHooft’s string tension

vortex container

We consider Λ containing one vortex (vortex container). (Or
called twisted boundary condition).

Z− =

∫
dUΛ

∏
p⊂Λ

f ({cj}, (−1)ν(p)Up)

−1 ∈ center of G = SU(2)

where

ν(p) =

{
0 if p /∈ V
1 if p ∈ V
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’tHooft’s string tension

vortex container

Z =

∫
dUΛ

∏
p⊂Λ

(1 +
∑
j ̸=0

cjdjχj(Up))

Z− =

∫
dUΛ

∏
p⊂Λ\V

(1 +
∑
j ̸=0

cjdjχj(Up))

×
∏
q⊂V

(1 +
∑
j ̸=0

(−1)2jcjdjχj(Uq))
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’tHooft’s string tension

vortex container

Old results

Theorem

Take L1, L2 << L3, L4 and let F ≡ − log
Z−

Λ

ZΛ
(1) If G = U(1),

F ∼
{

L3L4/L1L2 for large β perimeter
L3L4 exp[−σL1L2] for small β area

(σ > 0 = ’t Hooft’s string tension.)
(2) For G = SU(N)

F ∼ L3L4 exp[−σL1L2]

(area decay law) for small β.
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’tHooft’s string tension

vortex container

(1) High-Temp Expansion: Assume β << 1. Take 2D slices
ZL1L2 and Z−

L1L2
. Then

ZL1L2 = 1 + e−σL1L2 , Z−
L1L2

= 1 − e−σL1L2

L1 x L2 

L3 
L4

Figure: high temp exp = L3L4 copies of 2D slices
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’tHooft’s string tension

vortex container

Z−
Λ

ZΛ
∼

(
Z−

L1L2

ZL1L2

)L3L4

=

(
1 − e−σL1L2

1 + e−σL1L2

)L3L4

∼ exp[−L3L4e−σL1L2 ]

(2) The existence of KT phase uses duality transformation.

exp[β cos θ] =
∑

n

exp[−n2/2β + inθ]

and n = h + ∗d ∗ ϕ (Hodge decomposition)
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Tomboulis’ trick

Tomboulis’ difficult to understand Trick:

Z = ZΛ increases by the MK formula. Two competing
parameters α and t are introduced:

I cj(n) → αcj(n) = c̃j(n), Z increases as α ↗ 1,
I [F0(n)]h(α,t) decreases as t increases

h(α, t) = exp[−t(1 − α)/α]

Choose t and α cleverly so that ′′ =′′ holds:

Zn−1 =

∫ ∏
(1 +

∑
cj(n − 1)djχj(Up))dUn−1

= [F0(n)]|Λn|h(α(t),t)
∫ ∏

(1 +
∑

α(t)cj(n)djχj(Up))dUn



. . . . . .

Recent Topics in Rigorous Proof of Quark Confinement in Lattice Gauge Theory

Tomboulis’ trick

Then there exist functions α and α+ and values t and t+ such
that

ZΛ({cj}) = [F0(1)]h(α(t),t)|Λ(1)|ZΛ(1)({c̃j(α(t))})

Z+
Λ ({cj}) = [F0(1)]h(α+(t),t)|Λ(1)|Z+

Λ(1)({c̃j(α
+(t+))})

where

Z+ =
1
2
(Z + Z−)

c̃j(α(t))(n) = α(t)cj(n)
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Tomboulis’ trick

Then we have

Z+
Λ (cj)

ZΛ(cj)
=

F0(n)|Λn|h(α+(t+),t+)

F0(n)|Λn|h(α(t),t)︸ ︷︷ ︸
phase factor

×
Z+

Λn
(α+(t+)cj)

ZΛn(α(t)cj)︸ ︷︷ ︸
next oredr Z

To continue this step, he wants to find α, t , α+ and t+ such that

(i) at first n: “phase factor= 1”

(ii) at later steps: α+(t+) = α(t)

This means

Z+
Λ (cj)

ZΛ(cj)
=

Z+
Λn

(α+(t+)cj)

ZΛn(α(t)cj)
=

Z+
Λn

(α(t)cj)

ZΛn(α(t)cj)
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Tomboulis’ trick

Since cj(n) → 0, as n → ∞ we have

σ′tHooft > 0 → σWilson > 0 → Confinement

But

1. this does not distinguish abelian and non-abelian

2. this is the ratio of the partition functions of two different
systems. It is usually 0 or ∞.

3. why α and α+? One α and t and t+ are enough?

It seems that he intentionally introduced a maze so that the
reader (and the author) would be confused.
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Tomboulis’ trick

His argumet depernds on

Claim

(1) There exist t ≥ 0 and t+ ≥ 0 such that

1 +
Z−

Λ ({cj})
ZΛ({cj})

= 1 +
Z−

Λ(1)({c̃(1)
j (α+(t+))})

ZΛ(1)({c̃(1)
j (α(t))})

where c̃(1)
j (α(t)) = α(t)cj(1)

(2) For small β, there exists t ≥ 0 such that α+
n (t) = αn(t):

1 +
Z−

Λ ({cj})
ZΛ({cj})

= 1 +
Z−

Λ(1)({c̃(1)
j (α(t))})

ZΛ(1)({c̃(1)
j (α(t))})
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Tomboulis’ trick

For the calims (1) and (2), he assumes
(1) α(t) and α+(t) change significantly as t ∈ [0, 1] changes.
For this he proves

∂

∂t
α(t) > η1 > 0,

∂

∂t
α+(t) > η2 > 0

(He introduces additional dimension r to D = 4 to prove. This
changes the recursion formula completely and unreliable. )

(2) Put (do not ask me what this is)

Ψ(t , λ) = h(α(t), t) + (1 − λ)Φ+(α+(tI)) + λΦ+(α+(t))

He obtains t(λ) which satisfies Ψ(λ, t) = 0 and shows that
t(λ = 1) exits. For this, he uses the implicit function theorem
but wrongly:

if Ψ(λ, t) ∈ C1 and Ψt(λ, t) ̸= 0, there exists
t = t(λ) satisfying Ψ(λ, t) = 0 for all λ
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Tomboulis’ trick

What is r ∈ (0, 1] ? In his paper, f (n)(U) is redefined by∫
[ f (n−1)(UU1)f

(n−1)(U−1
1 U2) · · · f (n−1)(Ub2×r )︸ ︷︷ ︸

b2×r

]b
2 ∏

dUk

This is a risky parameter which increaeses dimension D.
Put f = exp[−βθ2/2], θ ∈ R, (non-compact QED):∫

[ f (UU1)f (U
−1
1 U2) · · · f (Ub2r )︸ ︷︷ ︸

b2×r

]b
2 ∏

dUk

=

∫
exp[−βb2

2

(
(θ − θ1)

2 + (θ1 − θ2)
2 + · · · + θb2r

)
]
∏

dθi

= (const.) exp[− β

2r
θ2]
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Tomboulis’ trick

Theorem

In the previous recursion formulas, if r < 1 and D = 4, f (n)(U)
(G = U(1)) converges to the delta funcation as n → ∞ if
β > βc . (An ordered phase takes place.)

This is presumably true for G = SU(N).
By the way, the implicit function t = t(λ) of Ψ(λ, t) satisfies

t(λ) = −
∫ λ

0

Ψλ(x , t(x))

Ψt(x , t(x))
dx

But Ψt ̸= 0 does not mean t(λ) can be defined for all λ.
Example (T.Kanazawa): Ψ(λ, t) = e−t − 1 + 2λ
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Tomboulis’ trick

Remedy?

Sorry, I cant give you any remedy in this direction.

I think
it is impossible to use methods or formula which cannot
distinguish U(N) and SU(N).

Though the MK RG formulas cannot distinguish non-abelian
groups from abelian ones, the velocities of the convergences of
{cj(n)}∞j=1/2 to 0 as n → ∞ are very different. So there may be
something.
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Sigma model and LGT

Ising, Sigma and LGT

Non-abelan LGT is more non-linear than 2D sigma model
(Heisenberg model) and domain wall problem is most serious in
this game.
In the case of the Ising model, the domain wall is easily defined
and this leads us to the famous Peiers argumet of the
spontaneous magnetization.

exp[β
∑
nn

sisj ], si = ±1

→ domain wall of length ℓ < 3ℓe−βℓ

→ Peiels famous argument

large domain wall energy means an ordered phase
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Sigma model and LGT

How does this work for 2D O(N) Heisenberg and for 4F LGT?
We decompose ϕn(x) ∈ RN into block spin ϕn+1(x) and
zero-average fluctuations Qξn

ϕn+1(x) ∈ RN , ξn ∈ RN ,
∑
ζ∈∆0

(Qξ)(x + ζ) = 0

ϕn(x) = (Aϕn+1)(x) + (Qξ)(x)

integrate over fluctuations in the wine bottle:

exp[−Wn+1(ϕn+1)]

=

∫
exp

− g
2N

∑
x

[(Aϕn+1)(x) + (Qξ)(x)]2︸ ︷︷ ︸
ϕ2

n(x)

−Nβn


2

−1
2
ξ2

x

]∏
dξ
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Sigma model and LGT

where

ϕ2
n(x) = Nβn + fluct.

ϕ2
n+1(x) = Nβn+1 + fluct. = N (βn − κ)︸ ︷︷ ︸

βn+1

+fluct.

and

ϕ2
n(x) − Nβn = [(Aϕn+1)

2(x) − Nβn+1] + q(x)

q(x) = 2(Aϕn+1)(Qξ)+ : (Qξ)2 :

= Wick ordered fluctuations affected by DW

The fluctuation integral dξ is very much influenced by the back
ground field = spin waves ϕn+1.
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Sigma model and LGT

The subtle is the definition of domain wall. In the present
system, domain walls are very thick and consists of rotating
spins:

Dw (ϕ) = {∆ ⊂ Λ; ∀∆ ⊂ Dw ,∃x ∈ ∆,∃∆′ ⊂ Dw ,∃y ∈ ∆′,

| : ϕn(x)ϕn(y) :Gn | ≥ N1/2+ε exp[(c/10)|x − y |]

This is an extension of the domain walls in the Ising model and
very implicit. The right hand is indep. of β except of : · · · :Gn
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Sigma model and LGT

Lemma

(i) the energy of the domain wall Dw is large. gDi in
below are small

(ii) q(ξ) contains ξ4. But distribution of q(ξ) is approximately
Gaussian of variance N

Theorem

For given D(ϕn) = ∪Di , the n′th Gibbs measure is given by

exp[−Wn] =
∏

i

gDi (ϕn)

×exp

[
−1

2
⟨ϕn, (−∆)ϕn⟩ −

g∗

2N

∑
x∈Dc

(
ϕ2

n(x) − Nβn

)2
]

βn = β0 − nκ → 0, κ > 0

where g∗ is the fixed point of running coupling constant gn.
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Sigma model and LGT

So we apply this idea to LGT giving up that the block spin transf
keeps group property.

exp[−Wn+1]

=

∫
exp

β
∑

p

Tr
∏

b∈∂p

gb − λ
∑

b

Tr(gt
bgb − 1)2

∏
dξ

λ ≫ 1

where

gb ∈ Mat(N × N, R),

gb = (Ag1
b) + Qξn ∈ Mat(N × N, R),

∑
ζ∈∆0

(Qξ)(x + ζ) = 0

Here we will again encounter the problem of domain walls
which is very much complicated. Without solving this, it may be
very hard to prove our millenium problem.
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