Holographic vortex pair annihilation in superfluid turbulence

Hongbao Zhang(FWO Fellow)

 $\label{eq:Vrije} \begin{array}{l} \mbox{Vrije Universiteit Brussel and International Solvay Institutes} \\ \rightarrow \mbox{Beijing Normal University} \end{array}$

Based mainly on arXiv:1412.8417 with: Yiqiang Du and Yu Tian(UCAS,CAS) Chao Niu(IHEP,CAS)

June 02, 2015 String Seminars@Kavli IPMU

Hongbao Zhang(FWO Fellow)

Holographic vortex pair annihilation in superfluid turbulence

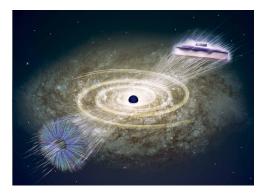
Sac

International School on NR and GWs

July 26-July 31, 2015 (Korea) You are welcome to register for it by following the link https://www.apctp.org/plan.php/NRGW2015

Hongbao Zhang(FWO Fellow) Holographic vortex pair annihilation in superfluid turbulence

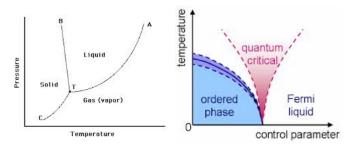
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●


LIGO connected to LHC by holography!

Hongbao Zhang(FWO Fellow)

Holographic vortex pair annihilation in superfluid turbulence

Black hole can also answer condensed matter questions!



Hongbao Zhang(FWO Fellow)

Holographic vortex pair annihilation in superfluid turbulence

< □ > < □ > < □ > < □ > < □ > < □ > =

- The physical world is partially unified by remarkable RG flow in QFT
 - High Energy Physics: IR→UV(Reductionism)
 - Condensed Matter Physics: UV→IR(Emergence)
 - Thermal Phase Transition
 - Quantum Phase Transition

 Another seemingly distinct part is gravitation, which is understood as geometry by general relativity

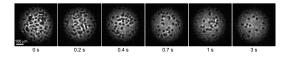
◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ のへの Holographic vortex pair annihilation in superfluid turbulence Remarkably, with AdS/CFT correspondence, general relativity can also geometrize renormalization flow in particular when the quantum field theory is strongly coupled, namely

GR = RG.

In this sense, the world is further unified by AdS/CFT duality. This talk will focus on its particular application to condensed matter physics by general relativity.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

2 Holographic model of superfluids


3 Quantized vortex and quantum turbulence in holographic superfluids

4 Vortex pair annihilation in holographic superfluid turbulence

5 Conclusion and outlook

Hongbao Zhang(FWO Fellow) Holographic vortex pair annihilation in superfluid turbulence

[Shin et.al. arXiv:1403.4658]

Gross-Pitaevskii equation

$$(i-\eta)\hbar\partial_t\varphi = (-\frac{\nabla^2}{2m} + V(x,y,t) + g|\varphi|^2 - \mu)\varphi$$

Holographic vortex pair annihilation in superfluid turbulence

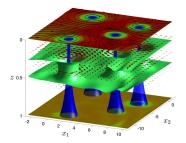
・ロト ・回 ト ・ヨト ・ヨト

Э

Hongbao Zhang(FWO Fellow)

Here comes AdS/CFT I

It is a machine, mapping a hard quantum many-body problem to an easy classical few-body one.


- Strongly coupled systems
- Non-equilibrium behaviors

◆□ → ◆□ → ◆ □ → ◆ □ →

Here comes AdS/CFT I

[Adams, Chesler, Liu, arXiv:1212.0281]

- Kolmogorov scaling law: $\epsilon_{kin}(k) \sim \varepsilon^{\frac{2}{3}} k^{-\frac{5}{3}}$,
- A direct energy cascade from IR to UV.

But the temporal variation of vortex number density n(t) is more easily accessible by cold atom experiments. So here we are!

◆□▶ ◆●▶ ◆ ■▶ ◆ ■▶ ● ■ のへの Holographic vortex pair annihilation in superfluid turbulence

What AdS/CFT is I: Dictionary

$Z_{CFT}[J] = S_{AdS}[\phi](J = \phi)$

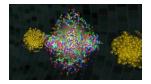
Hongbao Zhang(FWO Fellow)

Holographic vortex pair annihilation in superfluid turbulence

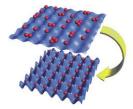
What AdS/CFT is II: Implications

• Entanglement entropy for boundary QFT is equal to the extremal surface area in the bulk gravity

• Finite temperature field theory with finite chemical potential is dual to charged black hole


• AdS boundary corresponds to QFT at UV fixed point and the bulk horizon corresponds to IR fixed point

✓ ・ □ ト < ⑦ ト < 注 ト < 注 ト 注 → シ く の へ (Holographic vortex pair annihilation in superfluid turbulence


Towards applied AdS/CFT

AdS/QCD

AdS/CMT

Non-Fermi liquids, superfluids and superconductors, charge density waves, thermalization and many-body localization...

AdS/???

Hongbao Zhang(FWO Fellow)

◆□▶ ◆●▶ ◆ ■▶ ◆ ■▶ ● ■ のへの Holographic vortex pair annihilation in superfluid turbulence

1 Motivation and introduction

2 Holographic model of superfluids

3 Quantized vortex and quantum turbulence in holographic superfluids

4 Vortex pair annihilation in holographic superfluid turbulence

Hongbao Zhang(FWO Fellow)

5 Conclusion and outlook

Holographic vortex pair annihilation in superfluid turbulence

・ロト ・回ト ・ヨト ・ヨト

Action of model

[Hartnoll, Herzog, and Horowitz, arXiv:0803.3295,0810.6513]

$$S = \frac{1}{16\pi G} \int_{\mathcal{M}} d^4x \sqrt{-g} [R + \frac{6}{L^2} + \frac{1}{q^2} (-\frac{1}{4} F_{ab} F^{ab} - |D\Psi|^2 - m^2 |\Psi|^2)].$$
(1)

Background metric

$$ds^{2} = \frac{L^{2}}{z^{2}} [-f(z)dt^{2} - 2dtdz + dx^{2} + dy^{2}], f(z) = 1 - (\frac{z}{z_{h}})^{3}.$$
(2)

Heat bath temperature

$$T = \frac{3}{4\pi z_h}.$$
 (3)

Equations of motion

$$D_a D_a \Psi - m^2 \Psi = 0, \nabla_a F^{ab} = i(\bar{\Psi} D^b \Psi - \Psi \overline{D^b \Psi}). \tag{4}$$

Hongbao Zhang(FWO Fellow)

Holographic vortex pair annihilation in superfluid turbulence

Asymptotical behavior at AdS boundary

$$A_{\nu} = a_{\nu} + b_{\nu}z + o(z), \tag{5}$$

$$\Psi = \frac{1}{L} [\phi z + z^2 \psi + o(z^2)].$$
 (6)

• AdS/CFT dictionary

$$\langle J^{\nu} \rangle = \frac{\delta S_{ren}}{\delta a_{\nu}} = \lim_{z \to 0} \frac{\sqrt{-g}}{q^2} F^{z\nu},$$

$$\langle O \rangle = \frac{\delta S_{ren}}{\delta \phi} = \lim_{z \to 0} \left[\frac{z\sqrt{-g}}{Lq^2} \overline{D^z \Psi} - \frac{z\sqrt{-\gamma}}{L^2 q^2} \bar{\Psi} \right]$$

$$= \frac{1}{q^2} (\bar{\psi} - \dot{\phi} - ia_t \bar{\phi}),$$

$$(8)$$

where

$$S_{ren} = S - \frac{1}{Lq^2} \int_{\mathcal{B}} \sqrt{-\gamma} |\Psi|^2 \tag{9}$$

is the renormalized action by holography.

Hongbao Zhang(FWO Fellow)

Holographic vortex pair annihilation in superfluid turbulence

Sac

Phase transition to a superfluid

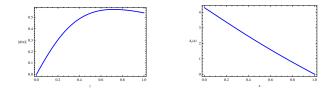


Figure: The profile of amplitude of scalar field and electromagnetic potential for the superconducting phase at the charge density $\rho = 4.7$.

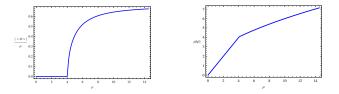


Figure: The condensate and chemical potential as a function of charge density with the critical charge density $\rho_c = 4.06(\mu_c = 4.07)$.

Hongbao Zhang(FWO Fellow)

Holographic vortex pair annihilation in superfluid turbulence

2 Holographic model of superfluids

3 Quantized vortex and quantum turbulence in holographic superfluids

4 Vortex pair annihilation in holographic superfluid turbulence

Hongbao Zhang(FWO Fellow)

6 Conclusion and outlook

Holographic vortex pair annihilation in superfluid turbulence

・ロト ・回ト ・ヨト ・ヨト

Quantized vortex in superfluids With the superfluid velocity defined as

$$\mathbf{u} = \frac{\mathbf{j}}{|\psi|^2}, \mathbf{j} = \frac{i}{2}(\bar{\psi}\partial\psi - \psi\partial\bar{\psi}), \tag{10}$$

the winding number \boldsymbol{w} of a vortex is determined by

$$w = \frac{1}{2\pi} \oint_{\gamma} d\mathbf{x} \cdot \mathbf{u},\tag{11}$$

In particular, close to the core of a single vortex with winding number $\boldsymbol{w},$ the condensate

$$\bar{\psi} \propto (\mathbf{z} - \mathbf{z_0})^w, w > 0$$
 (12)

$$\psi \propto (\mathbf{z} - \mathbf{z_0})^{-w}, w < 0$$
(13)

with \mathbf{z} the complex coordinate and \mathbf{z}_0 the location of the core.

Holographic vortex pair annihilation in superfluid turbulence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

1 Motivation and introduction

2 Holographic model of superfluids

3 Quantized vortex and quantum turbulence in holographic superfluids

4 Vortex pair annihilation in holographic superfluid turbulence

Hongbao Zhang(FWO Fellow)

5 Conclusion and outlook

Holographic vortex pair annihilation in superfluid turbulence

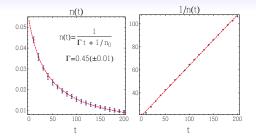


Figure: The temporal evolution of averaged vortex number density in the turbulent superfluid over 12 groups of data with randomly prepared initial conditions at the chemical potential $\mu = 6.25$

$$\frac{dn(t)}{dt} = -\Gamma n(t)^2,$$
(14)

where $\Gamma = \frac{vd}{2}$ with v the velocity of vortices and d cross section if the vortices can be regarded as a gas of particles.

◆□▶ ◆●▶ ◆ ■▶ ◆ ■▶ ● ■ のへの Holographic vortex pair annihilation in superfluid turbulence

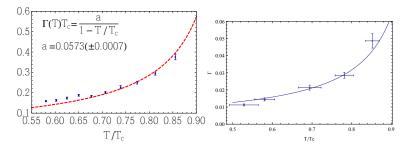


Figure: The variation of decay rate with respect to the temperature. The data near the critical point is fit by the effective field formula $\Gamma \propto |O|^{-2}$ [Chesler, Lucas, arXiv:1411.2610].

Hongbao Zhang(FWO Fellow) Holographic vortex pair annihilation in superfluid turbulence

・ロト ・母 ・ ・ ヨ ・ ・ ヨ ・

1 Motivation and introduction

2 Holographic model of superfluids

3 Quantized vortex and quantum turbulence in holographic superfluids

4 Vortex pair annihilation in holographic superfluid turbulence

Hongbao Zhang(FWO Fellow)

5 Conclusion and outlook

Holographic vortex pair annihilation in superfluid turbulence

・ロト ・回ト ・ヨト ・ヨト

Conclusion

- The decrease of vortex number can be well described by two-body decay due to vortex pair annihilation from a very early time on.
- The decay rate increases with the temperature.
- The decay rate near the critical temperature is in good agreement with the effective field theory calculation and the preliminary experimental data.
- Holography offers a first principles method for one to understand vortex dynamics by its gravity dual and may have an important impact on the upcoming experiments.

Outlook

- Low temperature behavior, where T^2 behavior can be reproduced?
- Other phenomena related to vortex dynamics such as snake instability, where the challenge arises mainly in the non-trivial boundary conditions.
- Back reaction effect, where one is require to go to fully numerical relativity regime.

Hongbao Zhang(FWO Fellow) Holographic vortex pair annihilation in superfluid turbulence

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Thanks for your attention!

Hongbao Zhang(FWO Fellow)

Holographic vortex pair annihilation in superfluid turbulence

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●