

Measuring the Universe with the Dark Energy Spectroscopic Instrument

Stephen Bailey

Lawrence Berkeley National Lab April 2015 IPMU

Outline

Context

- Galaxy redshift surveys
- Baryon Acoustic Oscillations (BAO) & related probes

Current generation surveys

BOSS & eBOSS

Dark Energy Spectroscopic Instrument (DESI) Survey

- Hardware
- Science
- Data Systems

Galaxy Redshift Surveys

What's out there? – fundamental astro

Where is it?

– cosmic rulers

How is it moving?

 universe expansion, redshift space distortions

http://www.astro.ljmu.ac.uk/~ikb/research/galaxy-redshift-surveys.html

Comparison between galaxy redshift surveys: *squares* represent predominantly magnitude-limited surveys; *circles* represent surveys involving colour cuts for photometric redshift selection; while *triangles* represent highly targeted surveys. Filled symbols show completed surveys. The grey region shows the parameter space covered by magnitude-limited surveys. Surveys are colour coded according to selection wavelength. The dotted lines correspond to surveys of 1000, 10⁴, 10⁵ and 10⁶ galaxies.

Baryon Acoustic Oscillations

- Frozen sound waves from early universe
- **Seeds of large scale structure**

Observable signature

Excess probability of galaxies separated by ~100 Mpc/h

Why BAO?

3D BAO

Parallel to line of sight: H(z) – expansion of universe Perpendicular to line-of-sight: D_A(z) – distance

observer

 $\Delta \theta$

$$r_{\parallel}(z) = \int_{0}^{z} \frac{c}{H(z')} \, dz'$$

Graphics compliments of D. Kirkby, UC Irvine

·Δz

 $\overline{H(z)}$

 $\Delta r_{\perp} = (1+z) D_A(z) \Delta \theta$

Lyman-alpha Forest

Stephen Bailey – LBNL

Credit: Andrew Pontzen

Classic BAO Results

Ties the CMB (~400k years) to galaxies (~13B years)

Provides standard ruler for cosmology measurements

 Compliments Supernovae for Dark Energy constraints

BOSS Galaxy BAO

Eisenstein+ 2005 Anderson+2013b 200 60 150 100 52 & (h-2 Mpc2) $s^2 \xi(s)$ 50 20 0 - 50 post-recon -100 -20 40 200 20 60 BC 100 10 Comoving Separation (h-1 Mpc) 100 150 200 80 s (h-* Mpc)

Note: error bars are correlated; do not try chi-by-eye

BAO with the Lyman-α Forest

Fiducial: Flat Λ CDM Ω_m =0.27

12

BAO with the Lyman-α Forest

BAO Hubble Diagram

Aubourg et al. 2014 arXiv:1411.1074 Cosmological implications of baryon acoustic oscillation (BAO) measurements

BOSS: Baryon Oscillation Spectroscopic Survey

3rd Generation of Sloan Digital Sky Survey

Spectra of:

- 1.5M galaxies
- 160k quasars

2.5m telescope at Apache Point Observatory

Improvements from SDSS-I & II

- More sky area (7600 \rightarrow 10800 deg²)
- Deeper redshifts (z ~ 0.5 \rightarrow 0.7)
- Better instrument throughput
- Denser sampling (640 →1000 fibers/plate)

Plate Plugging

- Each field is unique plate drilled with target positions
- 1000 fibers per plate plugged by hand
- Up to 9 plates per night

BOSS Plugging

Plates are mounted on carts & changed for each field

Simple, effective, but hard to scale beyond BOSS

Data Release 12: >2.5M spectra

On time, under budget, great science

targets & redshifts

How to get from here to there

What	How
Higher redshift	Bigger telescope; Better throughput; Deeper imaging
Larger footprint	New imaging survey(s)
Emission Line Galaxies	Higher resolution spectrographs
More targets	More fibers
Lower S/N data	Better software

Mayall Telescope @ Kitt Peak

4-m instead of 2.5-m

One of the only 4-m telescopes that could be converted to wide field-of-view

New Corrector: 0.5 -> 8 sqdeg FOV

20 designs evaluated by 4 groups 6 elements, 2 glass types, 2 aspheres Field of view 3.2° linear

Atmospheric dispersion compensator

Improves effective throughput

Spectrographs

Higher resolution; better throughput

1.00_E 10 spectrographs 3726 3729 with 500 fibers each Relative Flux [OIII] [0]] Hb Ha 0.01 1000 400 600 800 200 Dichroic 2 Wavelength [nm] Red Grating Collimator Blue Mirror Grating NIR **Dichroic 1** Fiber Slithead Grating

Spectrograph performance

Spectrograph throughput

Focal Plane

10 wedges of 500 positioners
8 sq deg field of view
7.5 sq deg visible to fibers
Fixed fidicial fibers for
fiber view camera

5000 fiber positioner robots

Larger Footprint: new imaging

Bright Time Survey

O(10M) Galaxies to r~19.5

Low-z BAO, clustering, SN hosts, photo-z training

O(10M) Stars

- Gaia sources
- Radial velocities, metalicities beyond what GAIA can measure

14k – 20k footprint

Deeper Imaging

Both better data & better processing

Forward model all images & filters into single catalog detection

SDSS

First data release April 2015: http://legacysurvey.org

g<24.7 r<23.9 z<23.0

DESI Spectra

DESI ELG S/N

[OII] Flux limit vs. redshift

ELG Target Selection

DESI Redshift Coverage

ξ(r) distortions: uniform coverage

Actual Coverage

$\xi(r)$ distortions: non-uniform coverage

ξ(r) distortions: corrected

BAO Hubble Diagram

Cosmological implications of baryon acoustic oscillation (BAO) measurements

Luminous Red Galaxies

Emission Line Galaxies

Tracer QSOs

Lyman- α forest quasars

DESI Hubble Diagram

Target	z	Target density	Good z density	∆z/(1+z)	Δz/(1+z)	Bad z	Complete
type	range	deg-2	deg ⁻²	precision	systematic	assignment	-ness
LRG	0.4-1.0	350	300	0.0005	0.0002	< 5%	> 95%
ELG	0.6-1.6	2400	1280	0.0005	0.0002	< 5%	> 90%
QSO	< 2.1	170	120	0.0025	0.0004	< 5%	> 90%
Ly-a	>2.1	90	50	0.0025	(#J	< 2%	>72%

DESI Improvements

relative to Planck + BOSS

Figure 2.16: Improvement in the measurements of w_p , $w' = w_a$, Ω_k , m_v the sum of the neutrino masses, n_s the spectral index, α_s the running of the spectral index, and $N_{v,eff}$ the number of neutrino-like (relativistic) species.

DESI in comparison

DESI Schedule

Nov 2012 CD0: DOE says they need a spectroscopy survey

- Merges BigBOSS and DESpec collaborations
- Sept 2014 CD1: Conceptual Design Review

July 2015 CD2: Preliminary Design Review

This secures the money

Early 2016 CD3: Another Design Review

- This gives us permission to build stuff
- Private money is already being used for long lead items

Mid 2018: Installation

- Early 2019: Commissioning
- Late 2019: Science verification

Late 2019 / early 2020: 5 year survey start

DESI & PFS (?)

What	DESI	PFS	
Area	14k sq deg	1.4k sq deg	
Field of View	7.5 sq deg	1.1 sq deg	
Fibers	5000	2400	
Wavelength	3600–9800	3800–12600	
Telescope	4m @ 1.1" seeing	8m @ 0.8" seeing	
Survey	5 years	3 x 1 years (?)	
Start	2019	2017	

DESI Data Systems

Getting the data

- Target selection
- Survey planning
- Interface with operations

Raw data -> useful data

- Spectroscopic pipeline
- Data transfer & distribution

Simulations

Can you find the ELG?

3x10⁻⁶ % of DESI data

Horne 1986

"Optimal" Extraction

"Optimal Extraction" \neq Optimal Only optimal if PSF(x,y) = P(x) Q(y)

Need Full 2D PSF to get this right: "Spectroperfectionism" Bolton & Schlegel 2010

Bolton+ 2012

What is a Spectrum?

Extraction as lossless data compression

Project flux to CCD pixels:

Projection Matrix: full 2D PSF

$$p = A(f_{\rm obj} + f_{\rm sky}) + \text{noise}$$

CCD pixels

Flux for all objects

 χ^2 for model spectrum *m*:

Extraction products:

- 1. Spectrum: sky subtracted, resolution convolved
- 2. Resolution matrix R (replaces Gaussian LSF)

3. Error model (full covariance)

Spectroperfectionism in a Nutshell

 $2D PSF vs. spectrum and \lambda$ p = Af + noise

$$f = (A^T N^{-1} A)^{-1} A^T N^{-1} p$$

$$C_f = (A^T N^{-1} A)^{-1}$$

$$\widetilde{\tilde{C}} = RC_f R^T$$
$$\widetilde{\tilde{f}} = Rf$$

Three extraction products:

- 1. Spectrum (resolution convolved)
- 2. Resolution Matrix
- 3. Error model (diagonalized covariance)

Spectral flux -> CCD pixels

Solve for f

Covariance of f

Diagonalize C_f

f has diagonal error

–> Resolution equivalent to 1D spectrograph

Extraction Residuals

Original Data

"Optimal" Residuals

Spectroperfectionism Residuals

Improved BOSS Sky Residuals

CPU Challenges

CCD pixels Flux
$$p = Af + ext{noise}$$

$$f = (A^T N^{-1} A)^{-1} A^T N^{-1} p$$

16M x 16M matrix30 per exposureup to 100 per nightfortunately they are sparse matrices

Spectral Extraction: CPU Hours

Spectral Extraction: CPU Hours

Spectral Extraction: CPU Hours

Simulation = (Extraction)⁻¹

Stephen Bailey

Instrument Simulations

Used for:

- Science impact of design choices
- Extraction algorithm development
- Operations *requirements*
 - Temperature stability
 - Calibration system

Prototype Pipeline ELGs

Prototype Pipeline Redshifts

SRD	Requirement	Achieved*
ELG z err	150 km/s	30 km/s
ELG z failures	<5% catastrophic	5% failures; 1% catastrophic
ELG z bias	60 km/s	10 km/s

*Caveat: it can only get worse from here...

DESI applied to BOSS data

Real data keeps us honest

Simulations & Pipeline

DESI improvements over BOSS

Hardware

 Bigger telescope, new corrector with ADC 	2.5m –> 4m
 Higher resolution & better throughput spectrographs 	R ~ 4000
5000 robotically positioned fibers	1k –> 5k
Survey	
Larger footprint	11k -> 14k
 Target selection from new, deeper imaging 	1-2 mag deeper
Software	
 Better algorithms to maximize the data Information content Minimizing systematics 	Full information propagation
Smoother data flow, learning from our experiences with SDSS	
Analysis	

Combining all these pieces into the definitive BAO survey

PSF Stability Requirements

Varying Focus ->

PSF Stability Requirements

Conclusions

BOSS has the world's best BAO measurements

- Highest precision galaxy BAO
- First (and only) Lyman-alpha BAO

DESI will greatly expand this reach

Better hardware, software, science

Complimentary to other cosmology probes & surveys

Great future for big surveys

Let's collaborate!

