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@ Observed properties of barred galaxies
® The Milky Way bar
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@ Overview: Hubble sequence of galaxies

 2/3 of spiral galaxies host bars, especially in the infrared
* Understanding of the Milky Way bar is key to understanding
other barred galaxies in the Universe



Barred galaxies in the Universe

NGC 1300

"« Bars are straight — rigid angular pattern speed

v'no winding up due to differential rotation!
 Bars often host dust lanes & vigorous star formation at the
. end of bars )




Rings in Barred galaxies

1IC 5240

~ p
 Barred galaxies often show rings of star formations

© IC 5240 has an outer ring (~4 kpc) at the end of bar )




Rings in Barred galaxies

Radius ~300 pc

Galaxy NGC 4314 » Nuclear-Ring
Hubble Space Telescope » Wide Field Planetary Camera 2

Rings are thought to be associated with
resonances in barred galaxies.




Boxy/peanut-shaped barred galaxies

NGC4565

 edge-on barred galaxies often exhibit boxy
or peanut shapes

* They follow more complex kinematics



Peanut-shaped galaxy NGC 128

NGC 128

-

* Located in a group of five galaxies.

* External tidal origin (Li, Gadotti, Mao et al.
2009) or internal secular evolution?



X-shaped Structure

NGC 4710 by Hubble




X-shaped structure

NGC 128

» X-shaped structure may be related to
resonant orbits




Summary: barred galaxies

* Barred galaxies are very common
> Straight - rigid rotation
> Dust lanes (gas streaming motions)
> Rings of star formation (resonances)

* Edge-on bars
> exhibit as boxy, peanut-shaped or X-

shaped galaxies

> Kinematics are more complex

 They likely form via internal secular (long-

. term) evolution




® The Milky Way bar

{ZMASS NIR images of the MW: disk + bulge }




COBE map of the Milky Way bar

DIRBE 1.25, 2.2, 3.5 um Composite

Dwek et al. (1995)

4 N

« Milky Way from the space satellite COBE.

» The asymmetric shapes implies the presence of a bar.
. v




Top-down view of the Galaxy

Credit:
Robert Hurt
(SSC/)PL/
Caltech)

SUN _
Offset: 8 kpc

[The Milky Way is a beautiful SBc type galaxy}




©® Photometric modelling of the

Milky Way bar

Bar basic parameters:
v Bar angle

v Bar tri-axial lengths
How many bars?

v boxy/peanut bar

v' Long, thin bar

v’ Super-thin bar
Needs tracer
populations: RR Lyrae
stars, red clump
giants




Color-magnitude diagram close to the Sun

Red clump giants
are metal-rich
horizontal branch
stars

e Small intrinsic
scatter in

luminosity
(~0.09mag)
Hipparcos
o | —  Good standard

05 00 05 1.0 L5 20 2.5 3.0 candles!
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Bulge Color-magnitude diagrams
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* Observed RCG width is larger in the bulge due to the
extension of the bulge.

» Careful studies of RCGs provide a 3D map of the bar.

/




OGLE-III sky coverage
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Number counts of red clump giants
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Nataf et al.
i ; (2012)
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» Contours at fixed surface density are
approximate ellipses.




Other surveys

UKIDSS VVV

Wegg, Gerhard &
Portail (2015)

—10
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\%

N

iews of the Milky Way combining three surveys
Vista Variables in the Via Lactea (VVV)

~

United Kingdom Infrared Deep Sky Survey (UKIDSS)

2MASS

v




Parametric modelling

UKIDSS

Wegg, Gerhard &
Portail (2015)

* Fit smooth tri-axial ellipsoidal models, such as
v p = pp exp(-r¥/2),  Gaussian model
v p = p, exp(-r), exponential model,
v where r?=(x/xy)%+(y/yq)?+(z/z,)?

- /




Photometric model of the MW

4 N

 Tri-axial “exponential” density model

preferred over Gaussian (Cao, Mao et al.
2013):

v’ X0:Y0:Zo=0.68kpc: 0.28kpc: 0.25kpc.
v' Close to being prolate (cigar-shaped).
v" Bar angle ~ 30 degrees (statistically

\ very well constrained).




Double peaks in RCG counts
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Mcwilliam & Zoccali (2010); Nataf et al. (2010)

* Most fields exhibit a single peak.

* Double peaks are only prominent at large b.
L )




X-shaped structure in the Milky Way

At high latitude fields, double peaks
* Low latitude fields exhibit a single peak
 Kinematics (Qin, Shen, Mao et al. 2015)




O Dynamical modelling of MW bar

 Kinematic data

* Dynamical
modelling
techniques




Radial velocity fields of BRAVA
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Kunder et al. (2012)

Radial velocities of 8500 red giants.

Radial velocity accuracy ~ 5 km/s.

More data available from other surveys (ARGOS).

~
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BRAVA Radial velocity data
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Proper motions of stars with HST

"« Two decades of microlensing surveys enabled N
proper motions to be measured for millions of
stars (~few mas/yr).
e HST observations enable proper motions to even
\__higher accuracy (~ 0.2-0.6 mas/yr) W,




Galactic dynamics

o Stars in galaxies are collisionless.

* stars move in collective gravitational field
with effects of star-star scattering
negligible over the Hubble time.

e Galaxies are a sum of stars on different
orbits.
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Orbital families in rotating bars:
x1 and x2 families of closed orbits

bar

As viewed in the co-rotating frame

Contopoulos & Grosbol (1989) ‘




rotating bar
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Resonances in bars

Epicycle frequency «

o For perturbations with
m-fold symmetry,
resonances occur

when .
Corotation

m(Q (@) ) <|:+1< Inner LR

-k, Outer LR

Rings in bars are related to resonances
(Corotation, inner & outer Lindblad resonances)!
Outer ring = CR, nuclear ring = ILR?




Regular orbits in realistic potentials
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Chaotic orbits
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Many orbits are in fact chaotic!




Methods of orbit superposition

K Schwarzschild method: orbit-based \

v Choose ®(x), identify families of orbits,

fit data by weighting orbits.

* Made-to-Measure method: particle-based
v Choose ®(x), sample the system with
particles. Integrate orbits, fit data by

\\ changing particle weights. /




Schwarzschild orbit superposition method

velocity dispersion ~skewness ~kurtosis

mmt

- 1 T

o

gravitational
potential .. I w1 +W2 w3 +.. -
(stars+BH
+DM+...)

lorbit library

| distribution function = orbital weights > 0 |

From Ling Zhu




Made-to-Measure Method

(Syer & Tremaine 1996)

j-th :
lcell @ . * N (~10°) particles are
: ce . orbited
* Particle weights adjusted

Regular i=.1, N as a function of time

o Cartesian, los

polar,
« Irregular

Vlos,j
o e.g. from

Voronoi
binning of
actual data




Model observables

Position = j

N
. E Wi VIos.,i((sij
Vies,j = : Number of particles = N
% Individual particle = i
N
aw, =2k,
Vios, — E W. los,i S ;

ij
Kernel:

 Surface brightness

* Average velocity,
dispersion, ...



Weight evolution equation

Weight evolution equation (Syer & Tremaine 96):

J —_— i
% x  —EW, EKIA ,A.:yj YJ, e>0
dt j i j v

J

When the predicted y; > observed Y;, weight is reduced,
and vice versa, until convergence is reached.

Advantages:

* Adjusts the weights on-the-fly to fit obs. Data

* More flexible than the Schwarzschild method
~* Cross-check on model degeneracy




Numerical Model of the Milky Way Bulge

+ Shen et al. (2010) \
starts with an
exponential disk plus a
fixed DM halo

* Bar and buckling
instabilities induce
boxy/ peanut-shaped
bulges

: e Taken as the initial
-10 -5 0 . o) 10 o o
X (kpc) condition




Reproducmg BRAVA radial velocity
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Constraints on the Galactic bar
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Fit both surface brightness and BRAVA radial B

velocities well.
* bar pattern speed: 40 km/s/kpc, angle: 30 degrees.
.+ not well constrained! Need more data! y




Summary & open questions

Photometric modelling indicates

v' a short, exponential boxy/peanut bar with a
bar angle ~ 30 degrees.

v" There may be other thinner, longer bars in the
outer part.

Both the Schwarzschild and Made-to-Measure

methods can be used to fit the data.

* Open questions

v How long is the bar (5kpc)?
v" How fast does the bar rotate (30 km/s/kpc)?
v' Are different components distinct in

kinematics and chemical abundances? /



Future outlook

e Lots of new data to come
v Photometric data: OGLE-IV and VISTA
surveys.

v" Kinematic data: ARGOS, APOGEE-II, OGLE
(proper motions), GAIA.

e MaNGA data!

* Much theoretical work yet to be done
v Needs to explain new chemo-dynamical
correlations in particular (Long, Mao,
Merrifield 2015).
v' Stability and degeneracy issues need to be

~_  further explored. -




