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Motivation

°

Supersymmetry relies on two-Higgs-doublet structure.

°

PQ symmetry can be imposed to rotate away the CPV term from
QCD Lagrangian when there are two scalar doublets. This leads to
axions. Simplest versions are ruled out.

» With one Higgs doublet it is not possible to generate BAU of sufficient
size. 2HDM provides additional room.

® Natural extension keeping p = 1 at tree level.
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The scalar potential

Parametrization 1

2
Vo= m20e; +mole, - (m12q>Tc1>2+hc) 2( ) (@5%)
5

+83 (®]®1) (@1@2) + 84 (@]@2) (@f@1) { c1>’fc1>2) +he. } .

Parametrization 2

v? 2 v2 2 v? 4 V2 2
Vo= X\ (cb{cpl—?l> + X (cb;cbg—??) + X3 (¢{¢1+q>;<b2— 12 2)

U102

Y ((@J{cbl)(cbgcbg) _ (cb{cbg)(cb;cbl)) + s (Re ol Py — )2 + X (Im @{%)2

® All potential parameters are real.
® Thereis a Z> symmetry in the potential (®1 — @1, Py — —P»).
® m?, and X5 break the Z; symmetry softly.
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The two parametrizations

® Parametrization 1 is ‘more general’ than 2. The second parametrization assumes that
both scalars receive vevs.

® The ‘inert doublet’ limit can be achieved in the first one, not in second. Putting

B2 = (B3 = PB4 = B5 = m%Q =0, m%Q > 0, and v? = ’U% = —m%l/ﬁl.
® SMpotential: V ~ u2[¢|2 4+ A|p[4, and V/ ~ X (|¢]2 — v2/2)°. They are not always
equivalent.

If we assume that both scalars receive vevs, then

A
mi; = —(A1v7 + A3v?) 5 m3y = —(A2v3 + A3v?) 5 mi, = 75’01112 ; B1=2(M1 + A3) ;

)\5+>\6_>\4_B5:>\5_>\6

B2 =22+ A3); B3 =2 3+ A4 ; Ba = 5 5
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Physical Eigenstates

We express the scalar doublets as

o L[ V2
V2 (hi +vs) + iz |

wE cos (3 sin 3 wf: 5 A4 o
4 — . + ) mH_|_ = — U .
H —sinf cosf Wy 2

H B COS ¢ sin « h1
h —sina  cos« ho '
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Counting of parameters

1

sin o Cos & A5
A = m2; cos® o + m? sin? a — m2 —m?2)| — 22 (tan®’ B — 1 ,
! 21)2(:0825[ H h tan 3 (m ) ( -1
1 A5
A = m2COSQa—|—m2 sin® o — sinavcosatan B (M2, — m2)] — =2 (cot? B — 1
2 szsinzﬂ[ h H B (my —my,)] 4( B—1)
1 sinocos o A
A3 = . (m% —m3) — =,
202 sin B cos 8 4
2
A = —m?
2 HT
2
)\6 = —2m124
v

8 parameters: 6 lambdas, v, v2 (o1, v = 246 GeV, tan 3). All lambdas, except A5, can be
traded for mj, (= 125 GeV), my+, my, m4 and a.
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The Alignment limit

1
HO = ;(U1h1 —I—Ughz)

has gauge couplings exactly as the SM Higgs boson and its orthogonal combination (R)
does not have any RV'V trilinear couplings. H° also mimics the SM Higgs in Yukawa sector.

HO [ cosB  sing h1

R/ —sinf8  cosf ho
H = cos(B—a)H? —sin( - a)R,
h = sin(B—a)H® + cos(f — a)R.

If we want the lightest CP-even physical scalar h to posses SM-like couplings, we must set
sin(8 — «) = 1, which is the definition of the alignment limit.
Number of free parameters is then reduced by one.
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Global U(1) symmetry

(I>1 — CI>1 , <I>2 — ew@z .

On the quartic terms, this symmetry is realized by putting

which means that the potential now reads

] i)’ i v3\’ ] i vf + 03
V.o = X\ (CI)lCI)l — ?1> + A2 (q)2cb2 — %) + A3 (CI)l(I)l + (132(132 — %)

V1V2 |2

+A4 ((‘I’J{‘I’l)(@;%) - (@1@2)@;@1)) + As "1’1‘1’2 -

v # 0 spontaneously breaks the global symmetry. The A5 terms avoids the appearance of
massless pseudoscalar by explicitly breaking the U(1) symmetry. The psedo-scalar can be
light.

Light A or H, H* can be perfectly accommodated in ‘alignment limit’! This is often called
‘decoupling limit’ - be alert!!
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Stability and Unitarity limits

Conditions for the potential to be bounded from below:

M +A3 >0, A+ A3 >0,
23 + A1 + 2/ (A1 + A3) (A2 + A3) > 0,
2)\3—|—)\5—|—2\/()\1 + A3)(A2 +A3) > 0.

Upper bounds from perturbative unitarity: Scattering amplitudes involving longitudinal gauge
bosons and Higgs bosons comprise the elements of an S-matrix, having 2-particle states as
rows and columns. The eigenvalues are restricted by |ag| < 1.

23 —A4+2/\5) < 167, ‘2>\3 +>\4| < 16,

23 +>\5| < 167, ’2/\3+2>\4 —>\5’ < 167,

30u + A2+ 248) £ /900 — X2)2 + (AAs + A1+ As)2| < 167,

(A1 + Az +2X3) £ /(A1 = A2)2 + (A — )\5)2’ < 167,

(A1 + A2+ 220) & (A1 = A2)| < 167,
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Constraints

Put the following constraints:

N ﬁ—a:w/2and>\5:>\6
9 my, =125GeV

® m . > 100GeV, which is a rough lower bound from direct searches

On top of it put the constraints from oblique electroweak T' parameter:

1
167 sin? 6w MI%V

F(m3 e mip) + F(myy g m?) — Fm,m%)]

with

c+y @y

5 P In(z/y) .

F(:C7y) —

The new physics contribution to the T-parameter as

T =0.051+0.12.
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lots of mass spectra
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Salient features

® |t follows from unitarity and stability

32702

0 < (m% —m?)(tan? B 4 cot? B) + 2m3 <

For tan 8 away from unity, H and A are almost degenerate.

® There is a similar correlation between m  and m g+, but this time without any
dependence on tan S.
Qm%H —m%{ —mi—l—mi < 16702 .
® The unitarity conditions apply on the difference of their squared masses. Any individual
mass can be arbitrarily large. This conclusion crucially depends on the existence of a

U(1) symmetry of the potential. When the symmetry of the potential is only a discrete
Z>, considerations of unitarity do restrict the individual non-standard masses.

® The constraints from the T-parameter are stronger than that from unitarity and stability.
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Diphoton decay width

Only charged scalars provide additional contributions.

opp—~h)  BR(h—=vyy)  T(h—=vy)
oSM(pp — h) BRSM(h — vy)  TSM(h — 4y)

Hyy =

Parametrize the coupling of hk to the charged scalars as

2
gmir

My

9hg+H— =R

Y

Then

4 2
B ‘AW—FgAt—FIﬁAH—}—’
— ‘2

Foy~y
‘AW + %.At

If k saturates to some finite value in the limit when the charged scalar is too heavy, the effect
will not decouple (as Ag . saturates to %).
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Decoupling vs nondecoupling

When the symmetry is Z»

1 2 m2 A5v2
R = ———— m —
2 \UHET 2 2

>

Decoupling can be achieved by tuning miﬁ ~ \5v2 /2.
When the symmetry is U(1)

1 2 2 mi%
K=——7 (mH+_mA+7

Unitarity and T-parameter together restrict the numerator ensuring decoupling.

The key point is that the soft global symmetry breaking parameter A5 is now related to a
physical scalar mass, and mass square differences are constrained. Thus, no tuning is
involved.

For decoupling, there must be a non-SSB component in the mass term of the heavy particle.
When A5 = 0, nondecoupling would restrict the number of additional scalars, strictly when
both scalars receive vevs.
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3HDM scalar potential

S3 or A4 symmetric flavor models are typical examples which employ three Higgs doublets.

Vion =  —H3(o1o1 + dhda) — pdeles
A1 (P11 + dhd2)? + A2 (ol da — dlen)?
s { (9] 62 + 6L61)? + (861 — 0]62)? )

+xa { (8561862 + 9l1) + (#]2)(@]¢1 — 62) + hic. |
FAs(3563) (@161 + Bh) + X6 { (6361)(6]65) + (8562 (8 a) }
A7 { (@]01)(@]1) + (@he2)(@)e2) + he. } + As(@fes)?.

There will be two pairs of charged scalars:

m2
ki = — 1+2mg fori=1,2.

1+
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Global symmetry for S; potential

Assume a global SO(2) symmetry, then A4 = 0, and introduce a soft breaking term

(—p3y0]2). Then

2 2
mh/ — 2:“’12 3

where b/, H and h(= 125) are the three CP even Higgses. i’ coupling is peculiar as it does
not have any h/V'V triliear coupling.

1 2 2 mi)
my, ( 2
2
m
K2 = = (1 + g ) :
2ms
Note that (|m3, — m3,]) is constrained from unitarity.

With an extended global symmetry SO(2) xU(1), together with an extra soft breaking
parameter which is related to m 45, decoupling in k2 can be ensured.
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Outlook

® With increasing LHC Higgs data we are gradually pushed to Alignment limit. But this
can still accommodate light (rather not so heavy) additional scalars.

® Symmetries of the scalar potential and their soft breaking terms play crucial role,
especially in ensuring decoupling.

® Flavor symmetries also decide the scalar structure. New scalars with exotic behavior
are present in 3HDM (S3, S4, Ag, A(27), ---).

® Validity up to high scale puts a constraint on tan S.
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