

Two sides of the coin: Combining imaging and spectroscopy to reveal the hidden universe

Jeffrey Newman, U. Pittsburgh / PITT-PACC

Outline

- Unlocking the potential of imaging surveys with spectroscopy: requirements for training photometric redshifts for LSST
- Using imaging and spectroscopy of SDSS galaxies to explore hidden properties of our Galaxy: Milky Way Analogs in SDSS and MaNGA

 See Snowmass white papers on Cross-Correlations and Spectroscopic Needs for Imaging Dark Energy Experiments (http://arxiv.org/abs/ 1309.5384, 1309.5388) and Milky Way papers led by Tim Licquia for much more

A brief review of LSST

- 8m diameter (6.7m effective), f/1.23 telescope, deep imaging in 6 filters (ugrizy)
- 2x15 sec images of 9.6 sq. deg. at a time
 - 900 visits per night, cover visible sky every 3 nights
- 10-year total survey: combine >800 visits per pointing for extremely deep imaging over 50% of sky
- Science enabled:
 - Cosmology (dark matter, dark energy, testing GR, etc.)
 - Mapping the Milky Way
 - Revealing the Transient Universe
 - Inventory of the Solar System

LSST: A dedicated 10-year survey

- 5σ point-source depth (1 visit): 23.9 (u), 25.0 (g), 24.7 (r), 24.0 (i), 23.3 (z), 22.1 (y)
- Depth at end of the survey: 26.3 (u), 27.5 (g), 27.7 (r), 27.0 (i),
 26.2 (z), 24.9 (y)
- 40 trillion observations of 40 billion objects
- Status: construction start approved by NSF & DOE
 - 'First stone' laid last month
- Survey start late 2022

LSST needs multi-object spectroscopy like what PFS can provide

• Matheson et al. white paper analyzed spectroscopic use cases:

Problem ^a	Depthb	$\lambda^{ m d}$	R^{e}	$\Sigma_{\mathrm{Target}}{}^{\mathrm{f}}$
Superluminous SNe	16 < r < 25	$0.4 - 2.5 \mu m$	2000	$0.05~\mathrm{deg^{-2}}$
Cataclysmic variables	16 < r < 25	$0.4 - 2.5 \mu m$	2000	$10 { m deg}^{-2}$
Galaxy stellar dynamics	16 < r < 25	$0.4 - 0.9 \mu m$	2000-5000	
Galaxy stellar abundances:		0.0		
$[Fe/H]$, $[\alpha/Fe]$, $[C/Fe]$	16 < r < 25	$0.37 - 0.9 \mu \mathrm{m}$	2000	
individual α elements	16 < r < 25	$0.37 - 0.9 \mu \mathrm{m}$	5000	
"all" individual elements	16 < r < 25	$0.37 - 0.9 \mu m$	20,000+	
Brown dwarf masses	$K\sim 15$	$1.0 - 1.6 \mu m$	50,000	
Brown dwarf weather	$K\sim 15$	$1.0 - 1.6 \mu m$	5,000	
Massive galaxy survey	20 < i < 25	$0.4 - 1.3 \mu m$	4000	$1000 \ { m deg^{-2}}$
Topology of reionization survey	$z_{AB}\sim 26-27$	$5000 - 1 \mu m$	1000 - 4000	up to 10 arcmin ⁻²
Dwarf satellite galaxies	r < 24	4000 - 9000Å	4000	$10,000 \ \mathrm{deg^{-2}}$
IGM tomography	i < 25 - 26	3500 - 10000 Å	2000	$10 \mathrm{arcmin^{-2}}$
Quasar redshift survey	i < 24	3800 - 12600	1000 - 2000	$500 { m deg^{-2}}$
Reverberation mapping	r < 24	4000 - 10000	> 1000	$1000 \ { m deg^{-2}}$
z > 6 quasars (other rare AGN)	Y < 24	0.8 - $2.5~\mu{\rm m}$	> 2000	single object
Ly α blobs	i < 24	3200 - 6000 Å	2000	single object
Weak Lensing/LSS cross-corr. cal.	20 < i < 23	$0.4 ext{}1.0 \mu\mathrm{m}$	4000	$1000 { m ~deg^{-2}}$
Weak Lensing/LSS photo-z train.	22 < i < 25	$0.4 ext{}2.0 \mu\mathrm{m}$	4000	$1000 \ { m deg^{-2}}$
Weak Lensing/LSS supplemental	$i\sim 25$	$0.4 ext{}2.0 \mu\mathrm{m}$	4000	$10 { m deg}^{-2}$
Cluster Cosmology photo-z cal.	22 < i < 25	$0.4 – 1.5 \mu { m m}$	4000	$100~{ m deg^{-2}}$
Strong Lensing cosmology	$i\sim 25$	$1 ext{-}2\mu\mathrm{m}$	2000	$1/10 { m ~deg^{-2}}$
SNIa Cosmology: SN follow-up	$gri \sim 19$ –24 mag	$0.4 – 1.0 \mu { m m}$	1000	$5 \mathrm{deg^{-2}}$
SNIa Cosmology: Host follow-up	20 < i < 25 mag	$0.4 – 1.0 \mu { m m}$	4000	$30 { m deg}^{-2}$

LSST constrains dark energy in many ways... all will rely on redshift information

- 4 major probes of dark energy: weak lensing, baryon acoustic oscillations, cluster counts, & type la supernovae (plus strong lensing, etc.)
- For all of these, we want to measure observables as a function of redshift

LSST Science Book

Spectroscopy provides ideal redshift measurements – but is infeasible for large samples

- At LSST depths (i<25.3), ~190 hours on a 10m telescope to determine a redshift (~75% of time) spectroscopically
- With a next-generation, 5000-fiber spectrograph would take >50,000 10m telescope-years to measure redshifts for LSST "gold" weak lensing sample (4 billion galaxies)!
- Alternative: use broad spectral features to determine z : a photometric redshift
- Advantage: high multiplexing
- Disadvantages: lower precision, calibration uncertainties

Two spectroscopic needs for photo-z work:

training and calibration

Better training of algorithms using objects with spectroscopic redshift measurements shrinks photo-z errors and improves DE constraints, esp. for **BAO** and clusters

Benitez et al. 2009

 Training datasets will contribute to calibration of photo-z's. "Perfect training sets can solve calibration needs.

Two spectroscopic needs for photo-z work:

training and calibration

Better training of algorithms using objects with spectroscopic redshift measurements shrinks photo-z errors and improves DE constraints, esp. for BAO and clusters

Training datasets will contribute to calibration of photo-z's.
 Perfect training sets can solve calibration needs.

Two spectroscopic needs for photo-z work:

training and calibration

For weak lensing and supernovae, individual-object photo-z's do not need high precision, but the calibration must be accurate - i.e., bias and errors need to be extremely well-understood

Newman et al. 2013

- uncertainty in bias, $\sigma(\delta_z) = \sigma(\langle z_p - z_s \rangle)$, and in scatter, $\sigma(\sigma_z) = \sigma(RMS(z_p - z_s))$, must both be $\langle 0.002(1+z) \rangle$ for Stage IV surveys

Biggest concern: incompleteness in training/calibration datasets

- In current deep redshift survey
 (to i~22.5/R~24), 25-60% of
 targets fail to yield secure
 (>95% confidence) redshifts
- Redshift success rate depends on galaxy properties - losses are systematic, not random
- Estimated need 99-99.9%
 completeness to prevent
 systematic errors in calibration
 from missed populations

Data from DEEP2 (Newman et al. 2013) and zCOSMOS (Lilly et al. 2009)

Note: even for 100% complete samples, current falsez rates can compromise calibration accuracy

 Only the highestconfidence redshifts should be useful for precision calibration: lowers spectroscopic completeness further when restrict to only the best

Based on simulated redshift distributions for ANNz-defined DES bins in mock catalog from Huan Lin, UCL & U Chicago, provided by Jim Annis

Spectroscopic training set requirements

- Goal: make δ_z and $\sigma(\sigma_z)$ so small that systematics are subdominant
- Many estimates of training set requirements (Ma et al. 2006, Bernstein & Huterer 2009, Hearin et al. 2010, LSST Science Book, etc.)
- General consensus that roughly 20k-30k extremely faint galaxy spectra are required to characterize:
 - Typical z_{spec}-z_{phot} error distribution
 - Accurate catastrophic failure rates for all objects with z_{phot} < 2.5
 - Characterize all outlier islands in z_{spec}-z_{phot} plane via targeted campaign (core errors easier to determine)
- Those numbers of redshifts are achievable with GMT, if multiplexing is high enough

- Sensitive spectroscopy of faint objects (to i=23.7 for DES, 25.3 for LSST)
 - Need a combination of large aperture and long exposure times;
 - >20 Keck-nights (=4 GMT-nights) equivalent per target, minimum
- High multiplexing
 - Obtaining large numbers of spectra is infeasible without it

- Coverage of full groundbased window
 - Ideally, from below 4000 Å to ~1.5μm
 - Require multiple features for secure redshift

Comparat et al. 2013, submitted

- Significant resolution (R>~4000) at red end
 - Allows redshifts from [OII] 3727 Å doublet alone, key at z>1

Comparat et al. 2013, submitted

Field diameters > ~20 arcmin

- Need to span several correlation lengths for accurate clustering measurements (key for galaxy evolution science and cross-correlation techniques)

- $r_0 \sim 5 h^{-1}$ Mpc comoving corresponds to ~ 7.5 arcmin at z=1, 13

arcmin at z=0.5

Many fields

- Minimizes impact of sample/cosmic variance.

- e.g., Cunha et al. (2012) estimate that 40-150 ~0.1 deg² fields are needed for DES for sample variance not to impact errors (unless we get clever)

Cunha et al. 2012

Summary of (some!) potential instruments

Telescope / Instrument	$rac{ ext{Collecting Area}}{ ext{(m}^2)}$	Field area (arcmin²)	Multiplex	Limiting factor
Keck / DEIMOS	76	54.25	150	Multiplexing
VLT / MOONS	58	500	500	Multiplexing
Subaru / PFS (≈MSE)	53	4800	2400	# of fields
Mayall 4m / DESI	11.4	25500	5000	# of fields
WHT / WEAVE (≈4MOST)	13	11300	1000	Multiplexing
${ m GMT/MANIFEST+GMACS}$	368	314	420-760	Multiplexing
TMT / WFOS	655	40	100	Multiplexing
E-ELT / MOSAIC	978	39-46	160-240	Multiplexing

Table 2-1. Characteristics of current and anticipated telescope/instrument combinations relevant for obtaining photometric redshift training samples. Assuming that we wish for a survey of ~15 fields of at least 0.09 deg² each yielding a total of at least 30,000 spectra, we also list what the limiting factor that will determine total observation time is for each combination: the multiplexing (number of spectra observed simultaneously); the total number of fields to be surveyed; or the field of view of the selected instrument. For GMT/MANIFEST+GMACS and VLT/OPTIMOS, a number of design decisions have not yet been finalized, so a range based on scenarios currently being considered is given.

Time required for each instrument

Telescope / Instrument	$egin{array}{l} ext{Total time(y),} \ ext{DES} \ / \ 75\% \ ext{complete} \end{array}$	Total time(y), LSST / 75% complete	$egin{array}{l} ext{Total time(y),} \ ext{DES } / \ 90\% \ ext{complete} \end{array}$	Total time(y), LSST / 90% complete
Keck / DEIMOS	0.51	10.22	3.19	63.89
VLT / MOONS	0.20	4.00	1.25	25.03
Subaru / PFS (≈MSE)	0.05	1.10	0.34	6.87
Mayall 4m / DESI	0.26	5.11	1.60	31.95
WHT / WEAVE (≈4MOST)	0.45	8.96	2.80	56.03
${ m GMT/MANIFEST+GMACS}$	0.02 - 0.04	0.42 - 0.75	0.13 - 0.24	2.60 - 4.71
TMT / WFOS	0.09	1.78	0.56	11.12
E-ELT / MOSAIC	0.02 - 0.04	0.50 - 0.74	0.16 - 0.23	3.10 - 4.65

Table 2-2. Estimates of required total survey time for a variety of current and anticipated telescope/instrument combinations relevant for obtaining photometric redshift training samples. Calculations assume that we wish for a survey of ~15 fields of at least 0.09 deg² each, yielding a total of at least 30,000 spectra. Survey time depends on both the desired depth (i=23.7 for DES, i=25.3 for LSST) and completeness (75% and 90% are considered here). Exposure times are estimated by requiring equivalent signal-to-noise to 1-hour Keck/DEIMOS spectroscopy at i~22.5. GMT / MANIFEST + GMACS estimates assume that the full optical window may be covered simultaneously at sufficiently high spectral resolution; in some design scenarios currently being considered, that would not be the case, increasing required time accordingly.

Wide-field MOS surveys also enable photo-z calibration via cross-correlations

- Galaxies of all types cluster together: trace same dark matter distribution
- Enables reconstruction of z distributions via spectroscopic/ photometric cross-correlations (Newman 2008)
- For LSST calibration, require
 100k objects over >100 deg²,
 spanning full z range
- •>500 degrees of overlap with DESIlike survey would meet LSST science requirements (>3000 sq deg of overlap expected).

Snowmass White Paper:
Spectroscopic Needs for Imaging DE
Experiments

Exploring the Milky Way via its extragalactic analogs

Licquia and Newman, 2015; Licquia, Newman, & Brichmann, submitted; Licquia & Newman 2015a,b in prep.

Image: A face-on MW analog of typical color, SDSS J083909.27+450747.7

MOSAIC camera, 4m Mayall telescope at Kitt Peak

Armin Rest (STScI) & Brittany McDonald (McMaster University)

Color and luminosity are key tools for classifying galaxies

- The easiest (often only) attributes we can measure for most galaxies: need only redshift + photometry
- Depend primarily on a galaxy's history of star formation

Redder

Color and luminosity are key tools for classifying galaxies

- Most galaxies are too far away to see detailed shapes.
- We can still classify them by color: quiescent "red sequence", starforming "blue cloud", and transitional "green valley"
- Where would the Milky Way fall on this diagram?

Brighter -----

Our location within the Milky Way makes determining its overall color difficult

 Note colors in this photographic panorama: MW looks white at night because low-light vision is black-and-white

Inspiration: Mutch et al. 2011

New method: find analogs of the Milky Way and measure their colors

- We identify galaxies in SDSS sample matching Milky Way (given uncertainties) in total mass of stars (M*) and rate of making new stars (SFR)
- Then we can determine their color and luminosity
- The first problem: there are many estimates of the MW M* and SFR...

Images from SDSS; colored to highlight contrasts, not what eye would see

We combine these measurements with a Hierarchical Bayesian meta-analysis

Yahoo! Search: "Comet Holmes"

Orbit reconstruction

Dustin Lang & David Hogg (2011)

Meta-Analysis of SFR Values

Compilation of MW SFR values on same normalization from Chomiuk & Povich (2010)

Meta-Analysis of Stellar Mass Values

Aggregate Result:

$$M_{\star,B} = 0.91 \pm 0.07 \times 10^{10} M_{\odot}$$

- We compiled bulge mass measurements and remapped them to common assumptions
- We combine this with the Bovy & Rix (2013) disk, remapped to the same R₀ & definition of stellar mass used for other galaxies:

$$M_{\star,D} = 5.17 \pm 1.11 \times 10^{10} M_{\odot}$$
 to get:

$$M_{\star} = 6.08 \pm 1.14 \times 10^{10} M_{\odot}$$
 $B/T = 0.15 \pm 0.02$

Selecting Milky Way analogs

SDSS Galaxy
Measurements

Total Stellar Mass (M_★)

Star Formation Rate (M_{\star})

Total Stellar Mass (M_★)

MPA-JHU

Star Formation Rate (M₊)

MPA-JHU

ugriz mags & colors

ugriz mags & colors

The Mass Properties of the Milky Way

5,000 SDSS galaxies whose distribution of masses & SFRs match the Galactic posterior PDFs

The Milky Way on the CMD

-19

0.4

0.3

-18

This work

-21

-22

van der Kruit (1986)

-20

 $^{0}M_{r}-5\log h$

New Constraints
on Milky Way
Photometric
Properties

(corrected for systematics)

The Milky Way on the CMD

 We can predict any property for the MW that we can measure in SDSS: absolute magnitudes, colors, AGN duty cycles, pseudobulge rate, etc. E.g.,

$${}^{0.1}M_r - 5\log h = -21.07^{+0.40}_{-0.33}$$
$${}^{0.1}(g - r) = 0.703^{+0.071}_{-0.061}$$

 Compare to luminosity of typical bright galaxy:

$$^{0.1}M_{*,r} - 5\log h = -20.73$$

Is the Milky Way a Green Valley galaxy?

Redder

diagram

The Milky Way vs. the Tully-Fisher Relation

V_{rot} measured from 21cm linewidths (SFI++ catalog, Springob+07)

The Milky Way vs. the Tully-Fisher Relation

V_{rot} measured from 21cm linewidths (SFI++ catalog, Springob+07)

The Milky Way is typical in TFR space!

Licquia & Newman 2015a: Hierarchical Bayesian meta-analysis of scale length measurements

Ultimately, we find the Galactic scale length to be $L_d=2.71\pm0.23$ kpc measured from starlight in the visible, $L_d=2.50^{+0.17}_{-0.14}$ kpc measured from starlight in the IR, and $L_d=2.61\pm0.15$ kpc when combining data from both wavelength regimes.

vs. mass scale length from Bovy & Rix: 2.15 +/- 0.14 kpc

The Milky Way is somewhat off the Luminosity-Velocity-Size relation of spirals

- The Milky Way disk scale length is roughly half of what you would expect for its luminosity/ mass and v_{circ}
- It is further from the relation than 87-92% of galaxies (depending on band or mass measure used): a bit $<2\sigma$ off

Milky Way Analogs in MaNGA

Up to 25 ancillary IFUs

~50 MWAs total

https://trac.sdss.org/wiki/MANGA/Survey/ AncillaryPrograms2014/Newman_MWAnalogs

Stars and gas: Star formation history

Star formation efficiency

Kinematics

Asymmetric Drift

Ionized gas: Metallicity gradients

Ionization state

Kinematics

Spectral bulge/disk decompositions: pseudobulges vs. classical bulges?

Conclusions

- Photo-z's are critical for dark energy experiments
- Incompleteness or incorrect redshifts in spectroscopic samples will cause systematic errors in photo-z applications
- Cross-correlation methods can calibrate photometric redshifts even using incomplete samples of only bright galaxies & QSOs
- Minimum LSST photo-z training survey, ~75% complete:
 - 15 widely-separated pointings, ~30,000 spectra to i = 25.3,
 ~1.1 years on PFS (can do galaxy evolution science simultaneously!)
- The Milky Way is an ~L* galaxy with an SFR below the starforming main sequence; it is compact by a factor of ~2 compared to its peers
- See Snowmass white papers on Cross-Correlations and Spectroscopic Needs for Imaging Dark Energy Experiments, http://arxiv.org/abs/1309.5384, 1309.5388; Licquia & Newman 2015, http://arxiv.org/abs/1407.1078