Correlation Functions in
Stochastic Inflation

Based on VV & A Starobinsky, arXiv:1506.04732

Vincent Vennin

IPMU Tokyo, 23 June 2015



. University of
1CG Outline 01. ® Portsmoﬁth

Portsmouth

* Quantum State of Cosmological Perturbations
* The Stochastic Inflation Formalism

* Correlation Functions in Stochastic Inflation

* The 6N-stochastic formalism

* The First Passage Time Problem

e Results and Conclusion

June 2015 IPMU Tokyo 0/26



June 2015

Cosmological Inflation

Starobinsky (1980)
Sato (1981)

Guth (1981)
Mukhanov & Chibisov (1981)
Linde (1982)
Albrecht & Steinhardt (1982)

IPMU Tokyo

1/26



Cosmological Inflation

Starobinsky (1980)
Sato (1981)

Guth (1981)
Mukhanov & Chibisov (1981)
Linde (1982)
Albrecht & Steinhardt (1982)

@ Isahigh energy phase of accelerated expansion in the early Universe @ > ()

Dark Energy
Accelerated Expanslon

Afterglow Light
Poattorn Dark Ages Davelopmant of
380,000 yrs., Galaxios, Plancts, otc.

&“ﬁﬁﬁﬁﬂw ;

Fluctuations

181 Stars
about 400 million yrs.

Big Bang Expansion
13.7 billion years

June 2015 IPMU Tokyo 1/26




Cosmological Inflation

Starobinsky (1980)
Sato (1981)

Guth (1981)
Mukhanov & Chibisov (1981)
Linde (1982)
Albrecht & Steinhardt (1982)

@ Isahigh energy phase of accelerated expansion in the early Universe @ > ()

ds* = —dt* + a* (t) dz?

Dark Energy
Accelerated Expansion

Afterglow Light
Poattorn Dark Ages Davelopmant of
380,000 yrs., Galaxios, Plancts, otc.

Fluctuations

181 Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years

June 2015 IPMU Tokyo 1/26



Cosmological Inflation

Starobinsky (1980)
Sato (1981)

Guth (1981)
Mukhanov & Chibisov (1981)
Linde (1982)
Albrecht & Steinhardt (1982)

@ Isahigh energy phase of accelerated expansion in the early Universe @ > ()

I

Paow ~ (10712GeV)”
PBBN == (10 MQV)4
Inflation

PGUT = (1016G6V) !

June 2015 1/26



Cosmological Inflation

Starobinsky (1980)
Sato (1981)

Guth (1981)
Mukhanov & Chibisov (1981)
Linde (1982)
Albrecht & Steinhardt (1982)

@ Isahigh energy phase of accelerated expansion in the early Universe @ > ()

@ Solves the Hot Big Bang horizon and flatness problems

June 2015 IPMU Tokyo 1/26



Cosmological Inflation

Starobinsky (1980)
Sato (1981)

Guth (1981)
Mukhanov & Chibisov (1981)
Linde (1982)
Albrecht & Steinhardt (1982)

@ Isahigh energy phase of accelerated expansion in the early Universe @ > ()

@ Solves the Hot Big Bang horizon and flatness problems

1
6M3,

: a
@ Requires a fluid with negative pressure — —

(p + 3p)

June 2015 IPMU Tokyo 1/26



Cosmological Inflation

Starobinsky (1980)
Sato (1981)

Guth (1981)
Mukhanov & Chibisov (1981)
Linde (1982)
Albrecht & Steinhardt (1982)

@ Isahigh energy phase of accelerated expansion in the early Universe @ > ()

@ Solves the Hot Big Bang horizon and flatness problems

1
6M3,

: a
@ Requires a fluid with negative pressure — —

(p + 3p)

@ Needs to be connected to the subsequent radiation era through a phase of reheating
(driven by the coupling between the inflationary content and other fields)

June 2015 IPMU Tokyo 1/26



Cosmological Inflation

Starobinsky (1980)
Sato (1981)

Guth (1981)
Mukhanov & Chibisov (1981)
Linde (1982)
Albrecht & Steinhardt (1982)

@ Isahigh energy phase of accelerated expansion in the early Universe @ > ()

@ Solves the Hot Big Bang horizon and flatness problems

1
6M3,

: a
@ Requires a fluid with negative pressure — —

(p + 3p)

@ Needs to be connected to the subsequent radiation era through a phase of reheating
(driven by the coupling between the inflationary content and other fields)

@ Combined with QM, accounts for the production of cosmological perturbations
whose features depend on the underlying inflationary model.
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Cosmological Perturbations

Lifshitz (1946), Grishchuk (1974)
Starobinsky (1979, 1982)
Bardeen (1980)
Mukhanov and Chibisov (1981)
Hawking (1982)

Guth and Pi (1982)
Kodama & Sasaki (1984)

Quantized fluctuations evolved over an
expanding, homogeneous and isotropic background

Theyare: @  Combined perturbations U of the metric
and of the inflaton scalar field

@  Of quantum nature ¢

@  Amplified through parametric oscillations

A

5 )
@  The seeds of the CMB temperature fluctuations T X ( x
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Quantum State of Cosmological Perturbations

Quantization in the 2 Rely (77) 1/4 R.1\2
Schroédinger picture U(n, UE’I) = e~ 2 () ('“k )
(reciprocal space) 7T
d|PE) - Dy




Quantum State of Cosmological Perturbations

: a
Number.o.f Particles Sub-Hubble limit: w2(k, 77) _ L2 _}W
and Initial State /€1

harmonic oscillator

fk = Ake_ikn + Bkeikn
Ap = aldr = 1 + gvk -+ pk
g 2 2 2w
. O\ Agl”
() = /d’vk‘l’k(vk)nk W (vr) = Bl A

vacuum state —» Ak =0 — f X eikn — Qk — k/2



Quantum State of Cosmological Perturbations

Quantization in the I 2 ReCl(n) i R.I) 2
Schrodinger picture \11(77, 'U,P:’ ) — e_Qk(”) (Uk )
(reciprocal space) T

dr _ T i
Wigner Function W (vk, Pk) :/ﬁqj (v — 5) e Pk \P(Uk‘|‘§)



Quantum State of Cosmological Perturbations

dz x : x
Wigner Function W (vg, pr) = / ﬁqj*(vk — 5) e PRT W (vg + 5)

0
Q Evolution Equation aW (U,p, t) - — {W (pra t) ) H (vapa t)}Poisson Bracket

for quadratic Hamiltonian
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Quantum State of Cosmological Perturbations

dz x : X
Wigner Function W(Ukapk) — / ﬁqj*(vk — 5) e PEY \IJ(Uk + 5)

0
Q Evolution Equation aW (’U,p, t) = — {W (U,p, t) ’ H (Uapv t)}Poisson Bracket

for quadratic Hamiltonian

@  Quantum Mean Value and Stochastic Average

S (0@w) = / W (v,p) O (v, p) dvdp

in the high squeezing limit

quan
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Quantum State of Cosmological Perturbations

dz x : X
Wigner Function W(Ukapk) — / ﬁqj*(vk — 5) e PEY \IJ(Uk + 5)

0
Q Evolution Equation aW (’U,p, t) = — {W (U,p, t) ’ H (Uapv t)}Poisson Bracket

for quadratic Hamiltonian

@  Quantum Mean Value and Stochastic Average

<(9 (@,ﬁ)> = / W (v,p) O (v,p) dvdp
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quan

1
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Quantum State of Cosmological Perturbations

dz T

: T
Wigner Function W(Ukapk) — / ﬁqj*(vk - 5) e kY \P(Uk T 5)

0
Q Evolution Equation aW (U,p, t) - — {W (Uapa t) ) H (Uapa t)}Poisson Bracket

for quadratic Hamiltonian

@  Quantum Mean Value and Stochastic Average

<0 (0, ﬁ)> = / W (v,p) O (v,p) dvdp

b 4 in the high squeezing limit

INENISIAISS

S e i
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O
s

quan

& N Stochastic distribution
v of classical processes
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Stochastic Formalism

The physical scales probed in the CMB are super-Hubble at the end of inflation

. . dk k -
PE) = Geg / (2m)*/? v (aaH> 9 (t) 7 + el

Upshot: derive a (stochastic and classical) effective theory for the coarse-
grained part of the field, integrating out the small wavelength modes.

At the level of the action, this can be done using the Schwinger-Keldysh formalism

Morikawa, 1990
Hu & Sinha, 1995
Matarrese, Musso & Riotto, 2003
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Stochastic Formalism

Heuristically, this can be done at the level of the equation of motion

Starobinsky, 1984, 1986, see also 1982
Rey, 1987
Goncharov, Linde & Mukhanov, 1987
Nakao, Nambu & Sasaki, 1988

Let us insert the decomposition

. . dk k -
PE) = Geg / (2#)3/2 v (aaH) 9% (0 T+ he

In the Klein-Gordon equation of motion

A

qg—FSHQg—I—V/ (Qb) — () andexpandin ¢_¢cg
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Stochastic Formalism

At leading order in slow roll:

s V)

with

&1 = —/ (2:)]2/2 gt [W (JH)] (pk (t) e ay, + h.c.]

Modes smaller than the coarse-graining scale are constantly escaping
the Hubble radius and source the coarse-grained sector.



Stochastic Formalism

Large Squeezing Approximation: 51 ? 51

quantum operator stochastic variable

51 is @ Gaussian stochastic variable with two-point correlation

(& (x, t)E (2, 1)) = <§1(I,t)51($',t/)>qu

sin (caH |z — x'|) 0° H”

2 /
/:7 caH|r — 2’| 272%a3 Prle=oand ({ = 1)

— 1 if xand x" are in the same Hubble patch (H/QW)Q for a step

— 0 if x and X’ are in different Hubble patches _ _ window function
in de Sitter (Markovian)

OPcq Vi H | N R
Dea | Vs = ore wn (E(N)EN')) = 6(N — N')
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Separate Universe Picture
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Separate Universe Picture
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Separate Universe Picture
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Stochastic Inflation
o6 V' H
ON 32 %g

What Physics does it model?

The quantum correction to the super-horizon dynamics
sourced by the sub-horizon modes, collected in an effective noise term

What observational effect does this have?

* During one efold, Ad, = V'/3H*and A, = H/2n

Aggu _ 3H’ Small effect |
~ _ /P~ 104 mall effect in
A¢pa 27V’ P 0 the observational window?

e Shifts the location of the observational window



Stochastic Inflation
Hybrid Inflation

V (¢, x) =A"

Linde, 1994
Copeland, Liddle, Lyth, Stewart, Wands, 1994

W2\ @2 %2 ANV (¢,9) /A
(1_W) +u2+2¢%M2] \

d¢  2A%¢ 14 2% 1
dN  3HZ2p?2 P2 M?

dy — 4A* ¢ —¢o | Y?
av ~ s’ ( )
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Stochastic Inflation
Hybrid Inflation

V (¢, x) =A"

Linde, 1994
Copeland, Liddle, Lyth, Stewart, Wands, 1994

M2 ,UJZ + ng M2

’ 4
(1 _ ¢_2) LB 8 ] ANV (6, 0) /A

do _ 20 (1 . 2w2u2)

AN~ 3H2?u? G2 M
H
dy — 4A? o> — g7 Y
dN _3H2M2¢ ( 02 + W)
H
+%§¢ (N).
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Stochastic Inflation
Hybrid Inflation

? 4
Vo =at | (122 L2 g0t V@A
| M2) M \
0.040
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0.0301 |
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= 00| in/de = 1.0001
& J—
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Stochastic Inflation
Hybrid Inflation

V (¢, x) =A"
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Stochastic Inflation
0%, v H
ON 3H2 2x

What Physics does it model?

The quantum correction to the super-horizon dynamics
sourced by the sub-horizon modes, collected in an effective noise term

What observational effect does this have?

* During one efold, Ad, = V'/3H*and A, = H/2n

Aggu _ 3H’ Small effect |
~ _ /P~ 104 mall effect in
A¢pa 27V’ P 0 the observational window?

e Shifts the location of the observational window

* Concretely, what features does it add to the standard predictions?

l How do we calculate correlation functions of
: cosmological perturbations in stochastic inflation?



Correlation Functions in Stochastic Inflation

Test Fields « Scalar field on inflationary background: Starobinsky, Yokoyama, 1994
Finelli, Marozzi, Starobinsky, Vacca, Venturi, 2008 & 2010
Garbrecht, Rigopoulos and Zhu, 2013

e Purely Gravitational Systems: Tsamis, Woodard, 2005

e Scalar electrodynamics: Prokopec, Tsamis, Woodard, 2007 &2008
L. Standard QFT results recovered for <¢p?>

Perturbative Expansion @ = @¢1 + 0@

Martin, Musso, 2005 caH
Kunze, 2006 (0¢*) = / Pse(k)dlog k

Finelli, Marozzi, Starobinsky,

Vacca, Venturi, 2008 . Standard result recovered at leading order for P,

Replica Field Theory = Kuhnel and Schwarz, 2008  (test scalar field in de-Sitter)

Stochastic- 6N formalism  Enqvist, Nurmi, Podolsky, Rigopoulos, 2008
Fujita, Kawasaki, Tada, Takesako, 2013 & 2014
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The &N formalism

Starobinsky, 1982 & 1985
Sasaki, Stewart, 1996

Sasaki, Tanaka, 1998

Wands, Malik, Lyth, Liddle, 2000

Lt

/ uniform density slice 6p(x)=0
X

r = const.

tin /\\/\/

spatially flat slice W(x)=0

On large scales, the curvature perturbation on the uniform density surface is equal to the
perturbation in the number of e-folds between the uniform density surface and the initial flat slice

((t,x) = N (t,x) — No(t) =N

June 2015 IPMU Tokyo 15/26



The stochastic-ON formalism

* Location of the observational window: k — ¢* (]{3)
* Number of e-folds: N(¢*)

June 2015
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The stochastic-6N formalism

* Location of the observational window: k — ¢* (]{3)
+ Number of e-folds: A (¢p) — SN2 = (N?) — (N)?

June 2015
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¢end
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The stochastic-ON formalism
* Location of the observational window: k — q5*(]{7)

+ Number of e-folds: A (¢p) — SN2 = (N?) — (N)?

Kend dk,
+ Integrated Power: O\ (k) — / Psn (k) -
k



The stochastic-6N formalism

* Location of the observational window: ]C — ¢*(k)
+ Number of e-folds: A (¢p) — SN2 = (N?) — (N)?

kend dk.
* Integrated Power: 5N2 (k) = / 775]\[ (k) —
k

k
In keng
— / PsndN
Inkeng— (N)Y(1—€14++-)
doN?
* Scalar Power Spectrum: PC (k) = Psn (k) = T <N>
B d5N2/dqb*
d (N) /do.

L—> Requires to compute <N> (Qb*) and 5N2 (¢*)



First Passage Time

09 %4 H 0 0 |V 92 [ H2
= —Lrp - P(¢,N)
Langevin equation Fokker-Planck equation

First Passage Time: Louis Bachelier, 1900 ‘CI’P . <N> (gb*) — ].
<N>//U — <N>/ m — —1 where v = V/(247T2M€§1)

b dx [® dy 1 1 1
N = e ), Vo) P [v@)‘v(x)]

“=—===> How do we recover the classical result?
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First Passage Time
Saddle Point Approximation

b dx [® dy 1 1 1
o el
N sonq Mp1 ), Mprv(y) _p

Classical result First order correction
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Scalar Power Spectrum

Q_Sda: 1

1 1 -
Pri6.)= 2{ o My v(@) " [v«f:) ) v(qm” "

/: Aiw { j A(}y v<1y> = [ <1y> K <1a:>] } — [ <1x> ) véa*)]\

- . . U”U2
Saddle Point Approximation 2v0 — 5| < 1
v
3 v 2
2 v°(d+) 07 (Px) V" (@)
PC ((b*) [1+5v (qb ) — 4 -+
M2 v'? (¢, v (¢4)
Classical result First order correction
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First Passage Time
Higher Moments

Lip - (NP) (¢.) = p(NP7L) (¢,)

_2/¢dd:1;/ dy(N exp{vy) le)]
—6/¢ ddx/ dy (N

o0 = [ e [ a0 N 04— 1) 00 ) 6N )] e [ -

=== Analytical expression for all moments !
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Scalar Power Spectrum

2

m
Example 1: Large Field Inflation V' = 7¢2

1015
103
101
10°
107
10°
103

10t

10-1
10713

June 2015
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T T T T T T T T T
v, = V(¢.)/ (2472 M)

1012
T

10710 10=®% 10¢ 10=* 102 10° 102 10*
T T T T T T T

Jl

7)C|d

10°
¢end

10
¢50
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Scalar Power Spectrum

2
Example 2: Small Field Inflation V' = M* (1 — %

1,02 /02
|21)* —vlv2 vl ’

*

1.9 x 10? 3.0 48 x107%  7.7x107% 14x10°®

v, = V(¢.)/ (247 M)

108 2.0822 2.0822 2.0822 2.0819 1.9071

106 -
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100 -

1074 [
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Conclusions
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Conclusions

Making use of the 6N formalism, we have derived all the n-point correlation
functions of scalar perturbations in stochastic inflation

The classical results arise as a saddle-point limit
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Conclusions

e Making use of the 6N formalism, we have derived all the n-point correlation
functions of scalar perturbations in stochastic inflation

* The classical results arise as a saddle-point limit

1,2

* A new classicality criterion has been derived: |2v — <1

2
,U/

L guantum gravity effect ... but not only!

v v? €9
* Can we see the stochastic effects? 2¢ — o = P (61 + Z)
v
* Primordial Black Holes Physics?
* What about the higher moments?
2 2 2
5 5 ?}/ ,U// ,U/ ,U// U/H ,U//

 What about tensor perturbations?



Thank you for your attention!
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First Passage Time

2
Example 2: Small Field Inflation V' = M* (1 — <?>
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The &N formalism

Usual Calculation:

(t, >—6N~8—N6¢

/\

\/261Mp1 5

classical trajectory

Power Spectrum:

P~ o |

(standard result)
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