Cosmological Reionization Simulations for LOFAR

Rajat Mani Thomas

People involved: The *Core* **LOFAR**-EOR Core

Saleem Zaroubi Vibor Jelic, Panos Labropoulos, Geraint Harker Leon Koopmans, Sarod Yatawatta, Ger de Bruyn, V. Pandey, Andre Offringa, Gianni Bernardi, Michiel Brentjens,

Joop Schaye, Benedetta Ciardi, Garrelt Mellema,

Leiden Observatory MPA Garching Stockholm University

09/24/09

y university of groningen

Outline

- Introduction
 - Glossary of the relevant physics and the astrophysics
- "The goal"
- Implementation & Results
- What comes next?

Glossary

- Brief history of the Universe
- Observable: 21-cm spin-flip transition

Brightness temperature

Radiative transfer basics

COSMIC MICROWAVE BACKGROUND

DARK AGES

EPOCH OF REIONIZATION

EXTRAGALACTIC FOREGROUNDS

GALACTIC FOREGROUNDS

IONOSPHERE

LOFAR TELESCOPE

BLUEGENE STELLA

21-cm Physics

21cm Physics: Spin Temp

$$T_s = \frac{T_{CMB} + y_k T_k + y_\alpha T_\alpha}{1 + y_k + y_\alpha}$$

Field: 1958

 $K \rightarrow kinetic and \alpha \rightarrow light$

We assume $T_k = T_\alpha$

If y_k or $y_\alpha >> 1$ then $T_s = T_k$

If y_k and $y_\alpha << 1$ then $T_s = T_{CMB}$

Remember!!

It is very well possible;

 $T_k < T_{CMB}$

δTb: Brightness temperature

The Goal

Develop an efficient *radiative transfer* scheme to explore the various plausible reionization scenarios and predict the nature of the redshifted **21-cm signal** from the **Epoch of Reionization**specially for the **LOFAR case**.

Where do we start?

Study the effect of various types of sources on ionization and temperature of their surrounding IGM

09/24/09

/ university of groningen

Problems studied • (Mini)qsos: Mass range of BH: 1000 – 10° M_o

SED: $E^{-\alpha}$. $E_{low} < E < 10^4 \text{ eV}$ $E_{low} = 10.4 \text{ or } 200 \text{ eV}$ Luminosity : Eddington X Efficiency

• Stars:

Mass range: $10 - 10^4 M_{\odot}$ SED: Blackbody at 50000 K. Luminosity : Schaerer (2004)

09/24/09Densities: IGM

university of groningen

Why X-ray heats

UV photons

Large cross section but ejected electron has low energy

X-ray photons

Low cross section but ejected electron has high energy

09/24/09

/ university of groningen

RT-Equations

Thomas & Zaroubi, 2008, MNRAS

Rate equations:

$$n_i \rightarrow HII$$
 , HeII, HeIII

$$\frac{d_{i}n}{dt} = \Gamma(T) - \alpha(T) \qquad \begin{cases} \Gamma \rightarrow \text{ lonizations} \\ \alpha \rightarrow \text{ Recombinations} \end{cases}$$

• Temperature evolution:

$$\frac{d}{d} = H_{P_t}^T + H_{Ec} \qquad -\frac{1}{o}C_{c\ m} - C_{\mu m} - C_{\mu p e} - U_{e b l} - U_{fc l}$$

university of groningen

Details : Fukugita & Kawasaki (1994)

Ionization

Temperature

$$\frac{\mathrm{d}}{\mathrm{dt}} \left[\frac{n(\mathrm{H} \mathrm{II})}{n_{\mathrm{H}}} \right] = \frac{R_{1c}n(\mathrm{H} \mathrm{I})}{n_{\mathrm{H}}} - \frac{\alpha_{2,\mathrm{H}\mathrm{II}}n_{\mathrm{e}}^{2}}{n_{\mathrm{H}}} \cdot \frac{3}{2} \frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{n(\mathrm{H} \mathrm{II})}{n_{\mathrm{H}}} \right)$$

$$\frac{\mathrm{d}}{2} \frac{\mathrm{d}}{\mathrm{dt}} \left[\frac{n(\mathrm{H} \mathrm{II})}{n_{\mathrm{H}\mathrm{e}}} \right] = \frac{n(\mathrm{H} \mathrm{II})}{n_{\mathrm{H}\mathrm{e}}} \int_{\varepsilon_{2,\mathrm{H}\mathrm{II}}} c\sigma_{2f,\mathrm{H}\mathrm{I}} n_{\gamma}(\varepsilon_{\gamma}) \, \mathrm{d}\varepsilon_{\gamma},$$

$$\frac{\mathrm{d}}{\mathrm{dt}} \left[\frac{n(\mathrm{H} \mathrm{II})}{n_{\mathrm{H}\mathrm{e}}} \right] = \frac{n(\mathrm{H} \mathrm{II})}{n_{\mathrm{H}\mathrm{e}}} \int_{\varepsilon_{\mathrm{H}\mathrm{e}\mathrm{II}}} \mathrm{d}\varepsilon_{\gamma} \sigma_{\mathrm{bf, \mathrm{H}\mathrm{e}\mathrm{I}}} cn_{\gamma}(\varepsilon_{\gamma})$$

$$+ \beta_{\mathrm{H}\mathrm{e}\mathrm{I}} n_{\mathrm{e}} \frac{n(\mathrm{H} \mathrm{E}\mathrm{II})}{n_{\mathrm{H}\mathrm{e}}} - \beta_{\mathrm{H}\mathrm{e}\mathrm{II}} n_{\mathrm{e}} \frac{n(\mathrm{H} \mathrm{E}\mathrm{II})}{n_{\mathrm{H}\mathrm{e}}}$$

$$- \alpha_{\mathrm{H}\mathrm{e}\mathrm{II}} n_{\mathrm{e}} \frac{n(\mathrm{H} \mathrm{E}\mathrm{II})}{n_{\mathrm{H}\mathrm{e}}} + \alpha_{\mathrm{H}\mathrm{e}\mathrm{III}} n_{\mathrm{e}} \frac{n(\mathrm{H} \mathrm{E}\mathrm{III})}{n_{\mathrm{H}\mathrm{e}}}$$

$$- \xi_{\mathrm{H}\mathrm{e}\mathrm{II}} n_{\mathrm{e}} \frac{n(\mathrm{H} \mathrm{E}\mathrm{II})}{n_{\mathrm{H}\mathrm{e}}},$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{n(\mathrm{H} \mathrm{E}\mathrm{III})}{n_{\mathrm{H}\mathrm{e}}} \right] = \frac{n(\mathrm{H} \mathrm{E}\mathrm{II})}{n_{\mathrm{H}\mathrm{e}}} \int_{\varepsilon_{\mathrm{H}\mathrm{e}\mathrm{II}}} \mathrm{d}\varepsilon_{\gamma} \sigma_{\mathrm{bf, H}\mathrm{e}\mathrm{II}} cn_{\gamma}(\varepsilon_{\gamma})$$

$$+ \beta_{\mathrm{H}\mathrm{e}\mathrm{II}} n_{\mathrm{H}\mathrm{e}} \frac{n(\mathrm{H} \mathrm{E}\mathrm{II})}{n_{\mathrm{H}\mathrm{e}}} - \alpha_{\mathrm{H}\mathrm{e}\mathrm{III}} n_{\mathrm{e}} \frac{n(\mathrm{H} \mathrm{E}\mathrm{III})}{n_{\mathrm{H}\mathrm{e}}},$$

$$\frac{kT_{e}n_{B}}{\mu} = \sum_{i=H_{I}, He_{I}, He_{I}} n(i) c \int (\varepsilon_{\gamma} - \varepsilon_{i}) n_{\gamma} \sigma_{bf, i} d\varepsilon_{\gamma}$$
$$- \sum_{i=H_{I}, He_{I}, He_{I}} \zeta_{i} n_{e} n(i)$$
$$- \sum_{i=H_{I}, He_{I}, He_{II}} \eta_{i} n_{e} n(i)$$
$$- \omega_{He_{II}} n_{e} n(He_{III})$$
$$- \sum_{i=H_{I}, He_{I}, He_{II}} \psi_{i} n_{e} n(i)$$
$$- \lambda_{c}$$
$$- \theta_{ff} [n(H_{II}) + n(He_{II}) + 4n(He_{III})] n_{e}$$
$$- \frac{15}{2} \frac{\dot{a}}{a} \left(\frac{kT_{e}n_{B}}{\mu} \right),$$

IPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Benchmarking RT CODE

800 700 Radius [kpc] 00 00 00 00 400 300 0.5 Error 0.0 2 -0.5100 200 300 400 500 time [Myr]

Stromgen sphere

Shapiro & Giroux: expanding Universe

Miniqso: Ionization

Miniqso: Heating

$$E_{low} = 200 eV$$

 $E_{low} = 10.4 eV$

Ionization

09/24/09

Heating

Stars

Quasars: ionization Interesting.... 1.0 1.0 10² M_e 0.8 10' M_⊗ 0.B 10² M_® 10¹ M, 0.6 D. 6 (XHI) XHII) XHAI) XHAII) XHAII) (IIIeHX4IIIIX4IIIIX4IIIX4IIIX4IIIX 0.4 0.4 0.2 0.2 0.0 0.0 0,8 10⁴ м_е 0,8 10³ M 10³ M_e 10⁴ M_© 0.6 0.6 0.4 0.4 Species-Fraction Species-Fraction 0.2 0.2 0.0 0.D 8.0 0.B 0.6 10⁵ M_o 10⁴ M_o 0.6 10⁵ M_☉ 10⁶ M_o 0.4 0.4 0.2 0.2 0.0 0.0 100 10 100 1 1 Radial Distance (Kpc) Radial Distance (Kpc) He front 09/24/09 HE LE homas & Zaroubi, in prep 20 s and groningen

MATHEMATICS OF THE UNIVERSE

09/24/09

Uncertainties encountered

- Energy spectrum
 - Span of energies
- Lya coupling issumption
 Simulated dentes
 Redshift of turn-Obssible
 National States

Thomas et al., 2008, MNRAS

/ university of groningen

Why should this approach work?

6<z<12 : The Universe is still considerably homogeneous and isotropic even at small scales.

Overdensity around the source is corrected for.

09/24/09

/ university of groningen

Correction for overlap: Photon conservation

Observing Frequency (MHz)

Inclusion of temperature

Previously the spin temperature was assumed to decoupled from the CMB.

$$\delta T_b = (20 \text{ mK}) \left(1 + \delta\right) \left(\frac{X_{HI}}{h}\right) \left(1 - \frac{T_{CMB}}{T_{spin}}\right) \left(\frac{\Omega_b h^2}{0.0223}\right) \left[\left(\frac{1 + z}{10}\right) \left(\frac{0.24}{\Omega_m}\right)\right]^{1/2}$$

The IGM in the Universe can be heated very differently depending on the sources.

• Therefore we need a self-consistent manner of including the temperature.

Quasars: Temperature

Stars: Temperature

Combi : Temperature

Spin Temperatures

Qsos

EoR Histories - I

EoR Histories - II

To summarize

- Soft X-ray background is not a very strict constrain.
- Influence of Qsos on heating the IGM is significant.
- Various SEDs manifests themselves differently in the ionization and heating profiles around them. (a 1-D CODE will suffice to study these properties)
- We need to span a very large parameter space to get begin to get an idea of the numerous plausible reionization signals.
- BEARS is a good approximation to perform radiative transfer at high redshifts
- Tracking the temperature (spin) evolution self-consistently does make a lot of difference.

Looking forward...

- LOFAR field: 5° X 5° ... translates to about 1 Gpc-comoving at EoR redshifts which will allow the measurement of:
 - Matter power spectrum at large z
 - Sources of ionization and heating
 - The speed at which ionization occurs
 - Influence of reionization on galaxy formation at later stages.
- Cross-correlations studies.... not good to patch-up smaller boxes.
- Thinking of newer ways to accomplish larger boxes and better resolutions.

Thank you!

Stay tuned First fringes from LOFAR CORE in 2009

/ university of groningen

