Introduction to 2-Categorical Homological Algebra

Motivation

Symmetric Categorical Group = categorification of Abelian group

* cf. 'Cohomology theory in 2-categories' in Theory and Appl. Categ.

2-categorical notions

② Bilimits (cf. Borceux, Handbook of categorical algebra)

e.g. pullback $(A_1 \times_B A_2, f'_1, f'_1, \eta)$

i.e. for any (X, x_1, x_2, ξ) , there exists a factorization (x, ξ_1, ξ_2)

compatible with ξ and η

uniquely up to a unique 2-cell.

Symmetric Categorical Group

= symmetric 2-group = Picard category

Definition

A symmetric categorical group

= a symmetric monoidal category $(\mathbb{G}, \otimes, 0)$ category ,

 $\otimes:\mathbb{G}\times\mathbb{G}\to\mathbb{G}$

tensor functor unit object

such that

(i) any morphism $A \xrightarrow{f} B$ has an inverse (ii) any object A has an 'inverse' w.r.t. \otimes i.e. $\forall A \in Ob(\mathbb{G}), \exists A^* \in Ob(\mathbb{G}), \exists \eta_A : 0 \to A \otimes A^*$.

2-category SCG

Symmetric Categorical Group

Locally SCG 2-category

Properties of 1-cells in S

 \mathbf{S} : relatively exact 2-category f: 1-cell in \mathbf{S}

f : faithful	\iff	$f = \ker(\operatorname{cok}(f))$
f : cofaithful	\iff	$f = \operatorname{cok}(\ker(f))$
f : fully faithful	\iff	$\operatorname{Ker}(f) = 0$
f : fully cofaithful	\iff	$\operatorname{Cok}(f) = 0$

f: equivalence $\iff f:$ faithful & fully cofaithful $\iff f:$ cofaithful & fully faithful

Factorization in S

Recall Any morphism f in Abelian category C admits a (monomorphic, epimorphic)-factorization:

 ${\bf S}$: relatively exact 2-category

Any 1-cell f in **S** admit

Factorization in S

In fact,

Caution

(faithful, fully cofaithful)-factorization

= Image factorization

(fully faithful, cofaithful)-factorization

= Coimage factorization

In '2-categorical homological algebra', Image $\not\simeq$ Coimage

Want to define cohomology

Equivalence (1)

$$H_1^{\prime n}(A^{\bullet}) := \operatorname{Cok}(\underline{d^{n-1}}), \quad H_2^{\prime n}(A^{\bullet}) := \operatorname{Ker}(\overline{d^n})$$

$$H'^n(A^{\bullet}) := H'^n(A^{\bullet}) \simeq H'^n(A^{\bullet})$$

Relation: Kernel and Relative kerne

•
$$\operatorname{Ker}(f) = \operatorname{Ker}(f, \operatorname{can})$$

• $\ker(f,\varphi)$ factors through $\operatorname{Ker}(f)$:

• Relative kernel = 'two-step kernel' (3.20)

Relative 2-exactness

Snake Lemma (6.18)

Statement

Reduction (1)

$$\operatorname{Ker}(x_n) = H^n(A^{\bullet}), \operatorname{Cok}(x_n) = H^{n+1}(A^{\bullet})$$

(6.15)

Reduction (2)

So the theorem follows from Snake Lemma !

(Co-)Image

(fully faithful, cofaithful)-factorization = Image factorization $A \xrightarrow{f} B \xrightarrow{\operatorname{cok}(f)} \operatorname{Cok}(f)$ $\operatorname{Im}(f) := \operatorname{Ker}(\operatorname{cok}(f))$ $i(f) \stackrel{\scriptstyle }{\searrow} \uparrow \iota / \underset{\ker(\operatorname{cok}(f))}{\bigwedge}$ $\operatorname{Im}(f)$ $A \xrightarrow{f} B$ i(f) $i \neq ker(cok(f))$ faithful $\operatorname{Im}(f)$ Proposition (4.3, 4.12) i(f): fully cofaithful

$\begin{array}{c|c} \text{Image Factorization} & A & \rightarrow B \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\$

- faithful + fully cofaithful = equivalence
- Lifting property:

$$\begin{array}{ccc} A & & \stackrel{f}{\longrightarrow} B \\ & & & & i: \text{ fully cofaithful} \\ & & & i & m: \text{ faithful} \\ & & & I \end{array}$$

$$\begin{array}{c|c} A & \xrightarrow{i} & I \\ & & \downarrow^{\zeta_i} & \downarrow^{g_i} \\ i(f) & & \downarrow^{t} & \downarrow^{\zeta_m} \\ & & \downarrow^{t} & \downarrow^{\zeta_m} \\ & & & Im(f) & \longrightarrow B \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\$$

$$\implies \exists t : \operatorname{Im}(f) \to I, \ \exists \zeta_i, \ \exists \zeta_m$$
(unique up to a unique 2-cell)
such that
$$\eta \cdot (m \circ \zeta_i) = \iota \cdot (\zeta_m \circ i(f))$$