5d/6d SCFTs

and

5-brane (Tao) diagrams

Kim, Sung-Soo

Korea Institute for Advanced Study
2015-12-01

IPMU

This work is based on various collaborations with Hirotaka Hayashi (Instituto de Fisica Teorica), Kimyeong Lee (KIAS), Masato Taki (RIKEN),
Futoshi Yagi (KIAS)

We report

 a new understanding of 5d SCFTs in connection with 6d SCFTs through "Tao web diagrams"
6d SCFTs

$(2,0)$ theory: worldvolume theory of M5 branes but mysterious...
$(1,0)$ theory: F-theory classification.
[Heckman-Morrison-Vafa '13]
[Del Zotto-Heckman-Tomasiello-Vafa '14]
[many more ...]

5d SCFTs (simple example)

$S U(2)$ gauge theory with $\mathbf{N}_{\mathbf{f}}=\mathbf{0 , 1 , \ldots , 7}$ flavors has non-trivial UV fixed point (Superconformal theory)

At UV fixed point, the global symmetry is enhanced
N_{f} flavors

$$
S O\left(2 N_{f}\right) \times U(1)_{I} \subset E_{N_{f}+1}
$$

Topological symmetry from instanton particle

En Flavor Symmetry

$$
\begin{array}{ll}
N_{f}=7 & E_{8} \\
N_{f}=6 & E_{7} \\
N_{f}=5 & E_{6}
\end{array}
$$

$S O\left(2 N_{f}\right) \times U(1)$
$N_{f}=4 \quad E_{5}=S O(10)$
$N_{f}=3 \quad E_{4}=S U(5)$
$N_{f}=2 \quad E_{3}=S U(3) \times S U(2)$
$N_{f}=1 \quad E_{2}=S U(2) \times U(1)$
$N_{f}=0 \quad E_{1}=S U(2)$

5d and 6d relations

6d $N=(2,0)$

A circle compactification of $\mathbf{6 d}(2,0)$ theory
= 5d Maximally supersymmetric Yang-Mills theory

6d $N=(1,0)$

One of the famous examples of $(1,0)$ theory:
E-string theory

E-string theory on a circle $=5 \mathrm{~d} \operatorname{SU}(2)$ theory with $\mathrm{Nf}=8$ KK modes = Instantons

E-string partition function (elliptic genus)

5d SU(2) w/ Nf=8

E-string theory

E-string theory on a circle $=5 \mathrm{~d} \mathrm{SU}(2)$ theory with $\mathrm{Nf}=8$ KK modes = Instantons

UV completion is a 6d SCFT !

Q1: How do we determine what 5d theories have UV completion as 6d SCFTs?

Q1: How do we determine what 5d theories have UV completion as 6d SCFTs?

A1: We developed a diagrammatic way that distinguishes 6d UV completions from 5d UV completions \rightarrow Tao diagram

(p, q) web diagram and 5d SU(2) theory

Type IIB configuration with charge conservation, tension balance: (p, q) web diagram

Flavors = semi infinite D5

5d SU(2) theory via 5-branes and 7-branes

[1,-1] 7-brane

[1,1] 7-brane

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
NS5	-	-	-	-	-	-	.		
D5	-	-	-	-	-	-			
D7	-	-	-	-	.	.	-	-	

5D N=1 SU(2) SYM with $\mathrm{N}_{\mathrm{f}}=1$ flavor

	0	1	2	3	4	5	6	7	8	9
5-brane	-	-	-	-	-	web	\cdots			
7-brane	-	-	-	-	-	\cdots	-	-		

Hanany-Witten transition

5D N=1 SU(2) SYM with $\mathrm{N}_{\mathrm{f}}=1$ flavor

without changing the masses of the theory

Flavors = D7 brane

$\mathrm{Nf}=0$

$\mathrm{Nf}=1$

$\mathrm{Nf}=2$

$\mathbf{N f}=\mathbf{3}$

$\mathrm{Nf}=4$

Five, six, seven flavors seem problematic,

$$
N_{f}=5
$$

$$
N_{f}=6
$$

$$
N_{f}=7
$$

but possible to make sense using 7-brane monodromies

[Benini-Benvenuti-Tachikawa, '09]
finite configuration diagram

5d SCFT

Flavor decoupling of $5 \mathrm{~d} \mathrm{SU}(2)$ theory of $\mathbf{N}_{\mathrm{f}}=\mathbf{8}$
$\mathrm{SU}(2)$ gauge theory with $\mathbf{N}_{\mathbf{f}}=\mathbf{0 , 1 , \ldots , \mathbf { 7 }}$ flavors of 5d UV fixed point (Superconformal theory)
[Seiberg '96]

Brane configuration for 5d SU(2) theory with Nf=8 flavors

By pulling out 7-branes to infinity

Spirally rotating! One revolution: charges remain the same. Infinitely rotating spiral diagram

The shape looks like

We call it Tao diagram...

道

There are various equivalent forms of Tao diagram:
Another Tao diagram for SU(2) gauge theory with 8 flavors

This is more practical and useful for computations

spiral with a constant period

spiral with a constant period d

$m_{(n)}=m_{(0)}+n d$

KK spectrum

spiral with a constant period

period = instanton $\sim \mathbf{R}^{-1}$

Tao diagrams give new perspective on 6d SCFTs

Tao diagram: infinite spirals (KK spectrum) constant period (compactified radius)

- Naturally identified as a 6d theory on a circle (compactification radius emerges...)
- Computational tool:

Partition function

Topological Vertex formalism

[Vafa et al.]

web diagram

Topological Vertex formalism

web diagram

BPS partition function
$Z \stackrel{?}{=} \ldots$

Compute order-by-order in \mathbf{q} 1-instanton, 2-instanton, ... , up to $\mathbf{q}^{\mathbf{k}}$ order

Partition function from Tao diagram

$$
\begin{align*}
Z_{E \text {-string }} & =\mathrm{PE}\left[\sum_{m=0}^{\infty} \mathcal{F}_{m}(y, A, q) \mathfrak{q}^{m}\right]=\mathrm{PE}\left[\frac{1}{(1-q)\left(1-q^{-1}\right)} \sum_{n=1}^{\infty} \tilde{f}_{n} A^{n}\right] \\
\tilde{f}_{1}= & \chi^{(1)}+\chi_{\mathrm{c}} \mathfrak{q}+\left(2 \chi_{\mathbf{2}}(q) \chi^{(1)}+\chi^{(3)}+\chi^{(1)}\right) \mathfrak{q}^{2}+\left(\chi^{(1)} \chi_{\mathrm{s}}+2 \chi_{\mathbf{2}}(q) \chi_{\mathrm{c}}\right) \mathfrak{q}^{3} \\
& \left.+\left(3 \chi_{3}(q)+4 \chi_{2}(q)+2\right) \chi^{(1)}+2 \chi_{2}(q) \chi^{(3)}+\chi^{(5)}+\chi^{(1)} \chi^{(2)}\right) \mathfrak{q}^{4}+\mathcal{O}\left(\mathfrak{q}^{5}\right), \tag{4.54}\\
\tilde{f}_{2}= & -2-2 \chi_{\mathrm{s}} \mathfrak{q}-\left(2 \chi^{(4)}+\left(3 \chi_{\mathbf{2}}(q)+2\right) \chi^{(2)}+4\left(\chi_{\mathbf{3}}(q)+\chi_{\mathbf{2}}(q)+1\right)\right) \mathfrak{q}^{2} \\
& -\left(2 \chi^{(2)} \chi_{\mathrm{s}}+3 \chi_{\mathbf{2}}(q) \chi^{(1)} \chi_{\mathrm{c}}+4\left(\chi_{\mathbf{3}}(q)+\chi_{\mathbf{2}}(q)+1\right) \chi_{\mathrm{s}}\right) \mathfrak{q}^{3} \\
& +\left(\left(5 \chi_{4}(q)+6 \chi_{3}(q)+11 \chi_{2}(q)+8\right) \chi^{(2)}+\left(4 \chi_{3}(q)+4 \chi_{2}(q)\right) \chi^{(4)}+\left(3 \chi_{2}(q)-2\right) \chi^{(6)}\right. \\
& \quad+\left(4 \chi_{3}(q)+3 \chi_{2}(q)+2\right)\left(\chi^{(1)}\right)^{2}+3 \chi_{2}(q) \chi^{(1)} \chi^{(3)}+2 \chi^{(1)} \chi^{(5)}+2\left(\chi^{(2)}\right)^{2}+2\left(\chi_{s}\right)^{2} \\
& \left.+\left(6 \chi_{5}(q)+8 \chi_{4}(q)+16 \chi_{3}(q)+20 \chi_{2}(q)+10\right)\right) \mathfrak{q}^{4}+\mathcal{O}\left(\mathfrak{q}^{5}\right) .
\end{align*}
$$

New understandings of 5d/6d SCFTs : Summary (Part I)

Many more Tao web diagrams

5d SU(N) $\quad \mathrm{Nf}=2 \mathrm{~N}+4$

Quiver type

Claim:

Tao web diagrams imply that a 5d theory has UV completion as a 6d SCFT

Preview (Part II)

5d SCFTs

Tao diagram

Many more diagrams

Various dualities

- $5 \mathrm{~d} \operatorname{SU}(\mathrm{~N}) \mathrm{w} / \mathrm{Nf}=2 \mathrm{~N}+4$
- 5d UV dualities

Tao diagrams connecting 5d and 6d SCFTs

Tao diagram: infinite spirals (KK spectrum) constant period (compactified radius)

- Naturally identified as a 6d theory on a circle (compactification radius emerges...)
- Computational tool: Partition function

Many more Tao web diagrams

$N=2$

\longrightarrow
$S U(4), N_{f}=12$

Many more Tao web diagrams

5d SU(N) $\quad \mathrm{Nf}=2 \mathrm{~N}+4$

What is 6d SCFT for this Tao?

5d SU(N) $\quad \mathrm{Nf}=2 \mathrm{~N}+4$
arXiv:1505.04439

Conjecture

5d $\mathrm{N}=1 \mathrm{SU}(\mathrm{N}) \mathbf{w / ~ N f = 2 N + 4}$ has 6d UV fixed point

M5-brane probing DN+2 singularity "(DN+2, DN+2) conformal matter"
[Del Zotto - Heckman - Tomasiello - Vafa '14]

M5-brane probing D_{N+2} singularity

Tensor branch

$$
\begin{aligned}
6 \mathrm{~d} \mathcal{N} & =(1,0) S p(N-2) \text { gauge theory } \\
N_{f} & =2 N+4, \mathrm{w} / \text { tensor multiplet }
\end{aligned}
$$

$08(2 N+4) D 8$

[Brunner, Karch '97, Hanany, Zaffaroni '97]

Diagrammatic "Derivation"

Diagrammatic "Derivation"

Therefore, we showed that

M5-brane probing
DN+2 singularity
$5 \mathrm{~d} S U(N) N_{f}=2 N+4$
Tao diagrams

"Sp-SU duality"

$6 \mathrm{~d} \operatorname{Sp}(\mathrm{~N}-1)$ theory with $\mathrm{Nf}=\mathbf{2 N + 4}$, a tensor

5d SU(N) theory with $\mathrm{Nf}=\mathbf{2 N + 4}$

ex: $N=1->6 d S p(1)$ with $N f=10$

[Hayashi-SSK-Lee-Taki-Yagi '15] [Yonekura '15]

5d $\mathrm{Sp}(\mathrm{N}-1)$ theory with $\mathrm{Nf}=\mathbf{2 N + 4}$

Resolving only one 07:

We thus have
5d $\mathrm{SU}(\mathrm{N})$ theory with $\mathrm{Nf}=\mathbf{2 N + 4}$

5d $\mathrm{Sp}(\mathrm{N}-1)$ theory with $\mathrm{Nf}=\mathbf{2 N + 4}$

Flavor decoupling -> 5d dualities
[Hayashi-SSK-Lee-Yagi '15]

$5 \mathrm{~d} \operatorname{sp}(2)$ with $\mathrm{Nf}=10$

[Hee-Cheol Kim's talk] [Gaiotto-Kim '15]

Quiver type?

$k=2 n+1$
$6 \mathrm{~d} S p\left(N^{\prime}\right)-S U\left(2 N^{\prime}+8\right)-S U\left(2 N^{\prime}+16\right)-\cdots-S U\left(2 N^{\prime}+8(n-1)\right)-\left[2 N^{\prime}+8 n\right]$ $N^{\prime}=N-2 n$
$k=2 n$
$6 \mathrm{~d}[A]-S U\left(N^{\prime}\right)-S U\left(N^{\prime}+8\right)-S U\left(N^{\prime}+16\right)-\cdots S U\left(N^{\prime}+8(n-1)-\left[N^{\prime}+8 n+8\right]\right.$
hypermultiplet in

$$
N^{\prime}=2(N-2 n+1)
$$

antisymmetric representation

$$
\begin{aligned}
5 \mathrm{~d}[N+3]-S U(N) & -S U(N-1)-S U(N-2)-\cdots-S U(3)-S U(2)-[3] \\
& \text { ("Tao-nization" of } \left.5 \mathrm{~d} T_{N}\right)
\end{aligned}
$$

'15 Zafrir
' 15 Ohmori, Shimizu

$$
\begin{array}{ll}
N=3 n: & 6 \mathrm{~d} S U(0)-S U(9)-\cdots-S U(9 n)-[9 n+9] \\
N=3 n+1: & 6 \mathrm{~d} S U(3)-S U(12)-\cdots-S U(3+9(n-1))-[3+9 n] \\
N=3 n+2: & 6 \mathrm{~d}\left[\frac{1}{2}\right]_{\Lambda^{3}}-S U(6)-S U(15)-\cdots-S U(6+9(n-1))-[6+9 n]
\end{array}
$$

"UV dualities"

5d [6]-SU(4)-SU(4)-[6]

6d [A]-SU(6)-[14]

S-duality

5d [6]-SU(4)-SU(4)-[6]
5d (?)-SU(3)-SU(3)-SU(3)-(?)

6d [A]-SU(6)-[14]

S-duality

5d [6]-SU(4)-SU(4)-[6] 5d [5]-SU(3)-SU(3)-SU(3)-[5]

6d [A]-SU(6)-[14]
[6]-SU(4)-SU(4)-[6]
[5]-SU(3)-SU(3)-SU(3)-[5]

S-duality

6d $S U(6)$ theory with $\mathrm{Nf}=14, \mathrm{Na}=1$
various 5d quivers
(depending on
D5, D7 distributions)

New understandings of 5d/6d SCFTs : Summary

Tao diagram

- 5d SU(N) w/ Nf=2N+4
- 5d UV dualities

