5d/6d SCFTs and 5-brane (Tao) diagrams

Kim, Sung-Soo Korea Institute for Advanced Study 2015-12-01

IPMU

This work is based on various collaborations with

Hirotaka Hayashi (Instituto de Fisica Teorica), Kimyeong Lee (KIAS), Masato Taki (RIKEN), Futoshi Yagi (KIAS)

> arXiv:1504.03672 arXiv:1505.04439 arXiv:1509.03300

We report a new understanding of 5d SCFTs in connection with 6d SCFTs through "Tao web diagrams"

6d SCFTs

(2,0) theory: worldvolume theory of M5 branes but mysterious...

(1,0) theory: F-theory classification.

[Heckman-Morrison-Vafa '13] [Del Zotto-Heckman-Tomasiello-Vafa '14] [many more ...]

5d SCFTs (simple example)

SU(2) gauge theory with **N**_f = **0,1,...,7** flavors has non-trivial UV fixed point (Superconformal theory) [Seiberg '96]

At UV fixed point, the global symmetry is enhanced

En Flavor Symmetry o __ o __ o __ o __ o __ • $N_f = 7 \quad E_8$ $N_f = 6 \quad E_7$ $N_f = 5 \ E_6$ $N_f = 4 \quad E_5 = SO(10)$ $N_f = 3 \quad E_4 = SU(5)$ $N_f = 2 \quad E_3 = SU(3) \times SU(2)$ $N_f = 1 \quad E_2 = SU(2) \times U(1)$ $N_f = 0 \quad E_1 = SU(2)$

 $SO(2N_f) \times U(1)$

5d and 6d relations

6d N=(2,0)

A circle compactification of **6d** (2,0) theory = 5d **Maximally supersymmetric Yang-Mills** theory

6d N=(1,0)

One of the famous examples of (1,0) theory: E-string theory

E-string theory on a circle = 5d SU(2) theory with Nf=8 KK modes = Instantons

E-string partition function (elliptic genus)

['14 Seok Kim, Joonho Kim, Kimyeong Lee, Jaemo Park, Vafa]

5d SU(2) w/ Nf=8

E-string theory

E-string theory on a circle = 5d SU(2) theory with Nf=8 KK modes = Instantons

UV completion is a 6d SCFT !

Q1: How do we determine what 5d theories have UV completion as 6d SCFTs?

Q1: How do we determine what 5d theories have UV completion as 6d SCFTs?

A1: We developed a diagrammatic way that distinguishes 6d UV completions from 5d UV completions —> Tao diagram

(p,q) web diagram and 5d SU(2) theory

[Aharony-Hanany, '97]

Type IIB configuration with charge conservation, tension balance: (p,q) web diagram

Flavors = semi infinite D5

5d SU(2) theory via 5-branes and 7-branes

5D N=1 SU(2) SYM with N_f=1 flavor

	0	1	2	3	4	56	7	8	9
5-brane	-	-	-	-	-	web			
7-brane	-	-	-	-	-	•	+ -	-	•

Hanany-Witten transition

5D N=1 SU(2) SYM with N_f=1 flavor

without changing the masses of the theory

Flavors = D7 brane

Five, six, seven flavors seem problematic,

but possible to make sense using 7-brane monodromies

e.g., Nf=5

[Benini-Benvenuti-Tachikawa, '09]

finite configuration diagram

5d SCFT

Flavor decoupling of 5d SU(2) theory of $N_f=8$

SU(2) gauge theory with $N_f = 0, 1, ..., 7$ flavors of 5d UV fixed point (Superconformal theory)

[Seiberg '96]

Brane configuration for 5d SU(2) theory with Nf=8 flavors

By pulling out 7-branes to infinity (2,1) (0, 2)(2,1 (-2,-1) (0,2)(-2,-1)

Spirally rotating! One revolution: charges remain the same. Infinitely rotating spiral diagram

The shape looks like

We call it **Tao diagram**... 道

There are various equivalent forms of Tao diagram:

Another Tao diagram for SU(2) gauge theory with 8 flavors

This is more practical and **useful for computations**

Tao diagrams give new perspective on 6d SCFTs

Tao diagram: infinite spirals (KK spectrum) constant period (compactified radius)

 Naturally identified as a 6d theory on a circle (compactification radius emerges...)

- Computational tool: **Partition function**

Topological Vertex formalism

[Vafa et al.]

BPS partition function

 $Z = \cdots$

Topological Vertex formalism

web diagram

BPS partition function

$$Z \stackrel{?}{=} \cdots$$

Compute order-by-order in **q 1-instanton**, **2-instanton**, ... , up to **q**^k order

Partition function from Tao diagram

$$Z_{E\text{-string}} = \operatorname{PE}\left[\sum_{m=0}^{\infty} \mathcal{F}_m(y, A, q)\mathfrak{q}^m\right] = \operatorname{PE}\left[\frac{1}{(1-q)(1-q^{-1})}\sum_{n=1}^{\infty} \tilde{f}_n A^n\right]$$

$$\begin{split} \tilde{f}_{1} &= \chi^{(1)} + \chi_{c} \,\mathfrak{q} + \left(2\chi_{2}(q)\chi^{(1)} + \chi^{(3)} + \chi^{(1)}\right)\mathfrak{q}^{2} + \left(\chi^{(1)}\chi_{s} + 2\chi_{2}(q)\chi_{c}\right)\mathfrak{q}^{3} \\ &+ \left(3\chi_{3}(q) + 4\chi_{2}(q) + 2)\chi^{(1)} + 2\chi_{2}(q)\chi^{(3)} + \chi^{(5)} + \chi^{(1)}\chi^{(2)}\right)\mathfrak{q}^{4} + \mathcal{O}(\mathfrak{q}^{5}), \quad (4.54) \\ \tilde{f}_{2} &= -2 - 2\chi_{s} \,\mathfrak{q} - \left(2\chi^{(4)} + (3\chi_{2}(q) + 2)\chi^{(2)} + 4(\chi_{3}(q) + \chi_{2}(q) + 1)\right)\mathfrak{q}^{2} \\ &- \left(2\chi^{(2)}\chi_{s} + 3\chi_{2}(q)\chi^{(1)}\chi_{c} + 4(\chi_{3}(q) + \chi_{2}(q) + 1)\chi_{s}\right)\mathfrak{q}^{3} \\ &+ \left((5\chi_{4}(q) + 6\chi_{3}(q) + 11\chi_{2}(q) + 8)\chi^{(2)} + (4\chi_{3}(q) + 4\chi_{2}(q))\chi^{(4)} + (3\chi_{2}(q) - 2)\chi^{(6)} \\ &+ (4\chi_{3}(q) + 3\chi_{2}(q) + 2)(\chi^{(1)})^{2} + 3\chi_{2}(q)\chi^{(1)}\chi^{(3)} + 2\chi^{(1)}\chi^{(5)} + 2(\chi^{(2)})^{2} + 2(\chi_{s})^{2} \\ &+ (6\chi_{5}(q) + 8\chi_{4}(q) + 16\chi_{3}(q) + 20\chi_{2}(q) + 10)\right)\mathfrak{q}^{4} + \mathcal{O}(\mathfrak{q}^{5}). \end{split}$$

reproduces the E-string partition function (elliptic genus)

by (up to 4 instantons)

['14 Kim, Kim, Lee, Park, Vafa]

Tao diagram indeed sees the E-string theory on a circle

New understandings of 5d/6d SCFTs : Summary (Part I)

Many more Tao web diagrams

5d SU(N) Nf=2N+4

Quiver type

Claim: Tao web diagrams imply that a 5d theory has UV completion as a 6d SCFT

Preview (Part II)

• 5d UV dualities

Tao diagrams connecting 5d and 6d SCFTs

Tao diagram: infinite spirals (KK spectrum) constant period (compactified radius)

- Naturally identified as a 6d theory on a circle (compactification radius emerges...)
- Computational tool: **Partition function**

Many more Tao web diagrams

N = 2

N = 4

 $SU(4), N_f = 12$

Many more Tao web diagrams

5d SU(N) Nf=2N+4

What is 6d SCFT for this Tao?

5d SU(N) Nf=2N+4

arXiv:1505.04439

Conjecture

5d N=1 SU(N) w/ Nf=2N+4 has 6d UV fixed point

M5-brane probing DN+2 singularity "(DN+2, DN+2) conformal matter"

[Del Zotto - Heckman - Tomasiello - Vafa '14]

M5-brane probing D_{N+2} singularity

Tensor branch

6d $\mathcal{N} = (1,0) Sp(N-2)$ gauge theory $N_f = 2N + 4$, w/tensor multiplet

Diagrammatic "Derivation"

Diagrammatic "Derivation"

Therefore, we showed that

"Sp-SU duality"

6d Sp(N-1) theory with Nf= 2N+4, a tensor

5d SU(N) theory with Nf= 2N+4

[Hayashi-**SSK**-Lee-Taki-Yagi '15] [Yonekura '15]

5d Sp(N-1) theory with Nf= 2N+4

Resolving **only one 07**:

[Hayashi-SSK-Lee-Yagi '15]

5d Sp(2) with Nf=10

We thus have

5d SU(N) theory with Nf= 2N+4

5d Sp(N-1) theory with Nf= 2N+4

Flavor decoupling -> 5d dualities

[Hee-Cheol Kim's talk]

[Gaiotto-Kim '15]

Quiver type?

$$k = 2n + 1$$

$$k = 2n$$

5d $[N+3] - SU(N) - SU(N-1) - SU(N-2) - \dots - SU(3) - SU(2) - [3]$ ("Tao-nization" of 5d T_N)

> '15 Zafrir '15 Ohmori, Shimizu

$$N = 3n: \qquad 6d \ SU(0) - SU(9) - \dots - SU(9n) - [9n+9]$$

$$N = 3n+1: \qquad 6d \ SU(3) - SU(12) - \dots - SU(3+9(n-1)) - [3+9n]$$

$$N = 3n+2: \qquad 6d \ \left[\frac{1}{2}\right]_{\Lambda^3} - SU(6) - SU(15) - \dots - SU(6+9(n-1)) - [6+9n]$$

"UV dualities"

5d [6]-SU(4)-SU(4)-[6] 1 6d [A]-SU(6)-[14]

5d [6]-SU(4)-SU(4)-[6] 5d (?)-SU(3)-SU(3)-SU(3)-(?) f 6d [A]-SU(6)-[14]

S-duality

6d SU(6) theory with Nf=14, Na=1

various 5d quivers (depending on D5, D7 distributions)

IX

New understandings of 5d/6d SCFTs : Summary

• 5d UV dualities