IceCube Neutrino Events from Decaying Dark Matter through Neutrino Portal

Yong TANG(汤勇) Korea Institute for Advanced Study

IPMU, Kashiwa 21 Oct, 2015

based on P.Ko, YT, 1508.02500(PLB)

Outline

- Introduction
 - IceCube Neutrino Events
- DM with Neutrino Portal
- Numerical Results
- Summary

The Nobel Prize in Physics 2015

III. N. Elmehed. © Nobel Media AB 2015.

Takaaki Kajita

Super-Kamiokande Collaboration University of Tokyo, Kashiwa, Japan

III. N. Elmehed. © Nobel Media AB 2015.

Arthur B. McDonald

Sudbury Neutrino Observatory Collaboration Queen's University, Kingston, Canada

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

So, apparently, neutrinos are interesting and important.

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

The Nobel Prize in Physics 2015

III. N. Elmehed. © Nobel Media AB 2015.

Takaaki Kajita

Super-Kamiokande Collaboration University of Tokyo, Kashiwa, Japan

III. N. Elmehed. © Nobel Media AB 2015.

Arthur B. McDonald

Sudbury Neutrino Observatory Collaboration Queen's University, Kingston, Canada

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

atmospheric neutrinos, GeV

solar neutrinos, MeV

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

Astrophysical Neutrinos (TeV)

cosmic rays + neutrinos

cosmic rays gamma-rays

- Neutrinos are very important astrophysical messengers
- Charge particles are deflected by magnetic fields
- Gamma rays can be absorbed

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

'5

Neutrino Telescopes for Astrophysical Neutrinos

- Gigaton Neutrino Detector at the Geographic South Pole
- 5160 Digital optical modules(PMT) distributed over 86 strings
- Neutrinos are identified through *Cherenkov light* emission from secondary particles produced in the neutrino interaction with the ice
- Eth>100GeV

IceCube

South Pole Glacier 1 km^3

IPMU

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

Neutrino Telescopes

IceCube Antares NT-200+ DAQ 100 m storey L07 1170 m 1240 m o 1275 m 1310 m Cable to shore Junction Box

> South Pole Glacier 1 km³

Lake Baikal 1/2000 km^3

1/100 km^3 IceCube Events and Decaying Dark Matter

Mediterranean Sea

Yong Tang(KIAS)

Principle of an optical Neutrino Telescope

41°

μ

Milon

Carsten Rott

Muon Neutrino

Array of optical sensors capture the light

> Cherenkov Radiation

Neutrino Signatures

Claudio Kopper, ICRC2015

time

CC Muon Neutrino

track (data)

factor of ≈ 2 energy resolution < 1° angular resolution at high energies Neutral Current / Electron Neutrino

cascade (data)

 ≈ ±15% deposited energy resolution
 ≈ 10° angular resolution (in IceCube) (at energies ≥ 100 TeV)

CC Tau Neutrino

"double-bang" (≥10PeV) and other signatures (simulation)

(not observed yet: τ decay length is 50 m/PeV)

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

Neutrino Events at IceCube

- Full 988-day data
- 30TeV 2 PeV
- 37 events (9+28)
- Muon Background

 $N_{\mu^{\pm}} = 8.4 \pm 4.2$

• Atmospheric neutrino

 $N_{\nu+\bar{\nu}}^{all} = 6.6^{+5.9}_{-1.6} ,$

- reject pure atm, 5.7σ
- Isotropy, equal flavor
- global fit flux

 $E^{2} \frac{dJ_{\nu + \bar{\nu}}}{dE} = (0.95 \pm 0.3) \times 10^{-8} \text{GeV cm}^{-2} \text{ s}^{-1} \text{ sr} \text{Deposited EM-Equivalent Energy in Detector (TeV)}$

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

10

IPMU

IceCube, PRL 113, 101101(2014)

Neutrino Events at IceCube

- Full 4-year data
- ~30TeV 2 PeV
- 54 events (15+39)
- Muon Background

 $N_{\mu^{\pm}} = 12.6 \pm 5.1$

- Atmospheric neutrino $N_{\nu+\bar{\nu}}^{all} = 9.0^{+8.0}_{-2.2}$
- reject pure atm, 6.5σ

Deposited EM-Equivalent Energy in Detector (TeV)

IceCube Events and Decaying Dark Matter

11

Astrophysical Sources

- Supernova Remnants
- Active Galactic Nuclei
- Gamma-Ray Burst

Usually start with some specific emission spectra and consider py and pp interactions

Ahlers, Bahcall, Beacom, Essey, Kalashev Kusenko, Leob, Murase, Waxman, *et al*

IPMU

IceCube Events and Decaying Dark Matter

Power law

IceCube 1507.03991

Assuming astrophysical flux arrives isotropically

Spectral Fit

- Best fit spectral index $\gamma = 2.58$
- Prefer softer spectrum
- Potential cut-off at about 2-5 PeV

challenge?

1 up-going muon-track event with ~2.6 PeV deposited energy, estimated neutrino energy ~6-10 PeV

γ<2.1–2.3, EG diffuse γ-ray

Claudio Kopper, ICRC2015

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

14

Dark Matter

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

Disclaimer!

- The spectrum is consistent with single power-law arriving neutrino flux
- Astrophysical sources are not definitely clear at the moment, and there is no compelling evidence for dark matter explanation
- Nevertheless, neutrinos from DM decay may have some testable features

Framework

Mixed contributions

DM Interpretations

- PeV dark matter
- late time decay, lifetime 10^27 10^28 s
- Non-thermal production
- For PeV neutrino events, DM could have decay channels to neutrino *directly*.
- It might be possible to explain the "possible" gap (*not statistically significant*) between 0.5 —1 PeV.

Neutrino Portal

- Gauge invariant operator $\overline{L}\widetilde{H}$, couples to dark matter χ through $y\overline{L}\widetilde{H}\chi$.
- To explain the IceCube PeV neutrino events, the yukawa coupling should be around $y \sim 10^{-29}$.

Feldstein, Kusenko, Matsumoto & Yanagida, 1303.7320

 Although incredible small coupling, but still technically natural.

$y\overline{L}\widetilde{H}\chi$ vs lceCube

- Spectrum is very sharp mainly because of two body decay.
- May not be viable any more if considering highly energetic muon tracking event.
- Gamma ray can put strong bounds.

IceCube Events and Decaying Dark Matter

Model Setup

P.Ko, YT, 1508.02500(PLB)

- Right-handed neutrino portal, N
- Dark sector with gauge symmetry
- Assume $U_X(1)$ and χ dark matter, Q' = 1 Φ - dark Higgs, Q' = 1

X - dark photon

Lagrange

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \bar{N}i\partial N - \left(\frac{1}{2}m_N\bar{N}^cN + y\bar{L}\tilde{H}N + \text{h.c.}\right)$ $- \frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{1}{2}\sin\epsilon X_{\mu\nu}F_Y^{\mu\nu} + D_\mu\Phi^\dagger D^\mu\Phi - V(\Phi, H)$ $+ \bar{\chi}\left(i\not D - m_\chi\right)\chi - \left(f\bar{\chi}\Phi N + \text{h.c.}\right),$

IceCube Events and Decaying Dark Matter

Model Setup

P.Ko, YT, 1508.02500(PLB)

- Right-handed neutrino portal, N
- Dark sector with gauge symmetry
- Assume $U_X(1)$ and $\chi \text{dark matter}, Q' = 1$

$$\Phi - \text{dark Higgs}, Q' = 1$$

X - dark photon

• Lagrange

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \bar{N}i\partial N - \left(\frac{1}{2}m_N\bar{N}^cN + y\bar{L}\tilde{H}N + \text{h.c.}\right)$ $- \frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{1}{2}\sin\epsilon X_{\mu\nu}F_Y^{\mu\nu} + D_\mu\Phi^\dagger D^\mu\Phi - V(\Phi, H)$ $+ \bar{\chi}\left(i\not D - m_\chi\right)\chi - \left(f\bar{\chi}\Phi N + \text{h.c.}\right),$

IceCube Events and Decaying Dark Matter

Integrate heavy N

When N is much heavier than dark matter χ , we can integrate N and get effective operators

$$\frac{yf}{m_N}\bar{\chi}\Phi H^{\dagger}L + h.c.,$$

after spontaneous symmetry breaking,

$$H \to \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_H + h(x) \end{pmatrix}$$
 and $\Phi \to \frac{v_{\phi} + \phi(x)}{\sqrt{2}}$.
we have (common factor yf/2)

$$\frac{v_{\phi}v_H}{m_N}\bar{\chi}\nu, \ \frac{v_{\phi}}{m_N}\bar{\chi}h\nu, \ \frac{v_H}{m_N}\bar{\chi}\phi\nu, \ \frac{1}{m_N}\bar{\chi}\phi h\nu,$$

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

23

Mixing

• kinetic mixing leads to

 $(B^{\mu}, W^{\mu}_{3}, X^{\mu}) \to (A^{\mu}, Z^{\mu}, Z'^{\mu})$

• $\lambda_{\Phi H} \Phi^{\dagger} \Phi H^{\dagger} H$ gives

 $(h,\phi) \rightarrow (H_1,H_2)$

• Z' and $H_2(\text{or } X \text{ and } \phi)$ can decay into standard model particle pairs.

Decay Modes

IceCube Events and Decaying Dark Matter

IceCube Events and Decaying Dark Matter

IceCube Events and Decaying Dark Matter

IceCube Events and Decaying Dark Matter

$$\begin{array}{l} & \underbrace{v_{\phi}v_{H}}{m_{N}}\bar{\chi}\nu, \ \frac{v_{\phi}}{m_{N}}\bar{\chi}h\nu, \ \frac{v_{H}}{m_{N}}\bar{\chi}\phi\nu, \ \frac{1}{m_{N}}\bar{\chi}\phih\nu, \\ & \underbrace{\chi \rightarrow W^{\pm}l^{\mp}, Z\nu, h\nu \text{ with BR } \simeq 2:1:1}{\chi \rightarrow Z'\nu, \phi\nu \text{ with BR } \simeq 1:1} \\ & \chi \rightarrow h\nu, \phi\nu \text{ with BR } \simeq v_{\phi}^{2}:v_{H}^{2} \\ & \chi \rightarrow Z'/\phi + h\nu/Z\nu/W^{\pm}l^{\mp} \end{array} \right)^{\text{Goldstone boson equivalence theorem } \overline{\chi}\Phi N \rightarrow \frac{v_{\phi}}{\sqrt{2}}\chi N \\ & \text{Three body decay} \end{array}$$

In principle, all decay channels need to be included.

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

IPMU

3-body decays dominate

$$\frac{\Gamma_3 \left(\chi \to \phi h \nu\right)}{\Gamma_2 \left(\chi \to h \nu, \phi \nu\right)} \simeq \frac{1}{16\pi^2} \frac{m_{\chi}^2}{v_{\phi}^2 + v_H^2} \gg 1$$

• 2-body decays only results from symmetry breaking when $m_N > m_{\chi}$

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \bar{N}i \partial \!\!\!/ N - \left(\frac{1}{2}m_N \bar{N}^c N + y \bar{L} \tilde{H} N + \text{h.c.}\right) - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{1}{2} \sin \epsilon X_{\mu\nu} F_Y^{\mu\nu} + D_\mu \Phi^\dagger D^\mu \Phi - V(\Phi, H) + \bar{\chi} \left(i D - m_\chi\right) \chi - \left(f \bar{\chi} \Phi N + \text{h.c.}\right),$$

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

 $\frac{\Gamma_{2-\text{body}}}{\Gamma_{3-\text{body}}} \sim \frac{v^2}{m_{\gamma}^2}$

30

Parameter Estimation

• We can estimate

$$\begin{split} \Gamma_3 \left(\chi \to \phi h \nu \right) &\sim \frac{m_\chi^3}{96 \pi^3} \left(\frac{yf}{m_N} \right)^2 \sim \frac{1}{10^{28} \text{sec}} \\ &\Rightarrow \frac{yf}{m_N} \sim 10^{-36} \text{GeV}^{-1}, \end{split}$$

- small y and f but technically natural
- If N is responsible for active neutrino mass through type-I seesaw $y \sim 10^{-5} \sqrt{\frac{m_N}{\text{PeV}}}$ then we shall have

 $y \sim 1, f \sim 10^{-22}$ for $m_N \sim 10^{14} \text{GeV}$

 $y \sim 10^{-5}, f \sim 10^{-25}$ for $m_N \sim \text{PeV}$

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

• Spectrum is given by $\frac{dN}{dE}(x \to \nu) = \int \frac{1}{\Gamma} \frac{d\Gamma}{dE_{\pi}} \frac{dN_{\nu}(E_{x})}{dE} dE_{x}, \quad \checkmark$

• We calculate the differential decay width

where $x = \nu, h, W, Z, Z', \phi$

$$\frac{1}{\Gamma} \frac{d\Gamma}{dE_{\nu}} \simeq 24E_{\nu}^2/m_{\chi}^3, \ 0 < E_{\nu} < m_{\chi}/2,$$
$$\frac{1}{\Gamma} \frac{d\Gamma}{dE_h} \simeq 12E_h \left(m_{\chi} - E_h\right)/m_{\chi}^3, \ 0 < E_h < m_{\chi}/2,$$
$$\frac{1}{\Gamma} \frac{d\Gamma}{dE_{\phi}} \simeq 12E_{\phi} \left(m_{\chi} - E_{\phi}\right)/m_{\chi}^3, \ 0 < E_{\phi} < m_{\chi}/2.$$

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

Neutrino Spectrum Spectrum is given by χ $\frac{dN}{dE}\left(x \to \nu\right) = \int \frac{1}{\Gamma} \frac{d\Gamma}{dE_x} \frac{dN_{\nu}\left(E_x\right)}{dE} dE_x,$ where $x = \nu, h, W, Z, Z', \phi$ Pythia, PPPC4DM We calculate the differential decay width Massless limit $M_i \ll M_{\chi}$ $\frac{1}{\Gamma} \frac{d\Gamma}{dE_{\nu}} \simeq 24E_{\nu}^2/m_{\chi}^3, \ 0 < E_{\nu} < m_{\chi}/2,$ $\frac{1}{\Gamma} \frac{d\Gamma}{dE_h} \simeq 12 E_h \left(m_{\chi} - E_h \right) / m_{\chi}^3, \ 0 < E_h < m_{\chi}/2,$

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

 $\frac{1}{\Gamma} \frac{d\Gamma}{dE_{\star}} \simeq 12 E_{\phi} \left(m_{\chi} - E_{\phi} \right) / m_{\chi}^3, \ 0 < E_{\phi} < m_{\chi}/2.$

33

Spectrum at production

- Decay channels
 with neutrino are
 most important for
 high energy
- Low energy part is most contributed by other states.
- The are one order of magnitude difference between high and low parts.

34

Neutrino Flux at Earth

- Both Galactic and Extragalactic flux included,
- galactic

 $\frac{d\Phi_{\nu}^{EG}}{dE_{\nu}}\Big|_{E_{\nu}=E} = \frac{\rho_c \Omega_{\chi}}{4\pi m_{\chi}} \sum_i \Gamma_i \int_0^\infty \frac{dz}{\mathcal{H}} \left. \frac{dN_{\nu}^i}{dE_{\nu}} \right|_{E_{\nu}=(1+z)E},$ 35

IPMU

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

Neutrino Flux at Earth

Astrophysical Flux

Astrophysical neutrinos are responsible for the low energy spectrum

Two Cases:

i) Unbroken Power Law (UPL):

$$E_{\nu}^{2} \frac{\mathrm{d}J_{\mathrm{Ast}}}{\mathrm{d}E_{\nu}} \left(E_{\nu}\right) = J_{0} \left(\frac{E_{\nu}}{100 \,\mathrm{TeV}}\right)^{-\gamma} ,$$

ii) Broken Power Law (BPL):

$$E_{\nu}^{2} \frac{\mathrm{d}J_{\mathrm{Ast}}}{\mathrm{d}E_{\nu}} \left(E_{\nu}\right) = J_{0} \left(\frac{E_{\nu}}{100 \,\mathrm{TeV}}\right)^{-\gamma} \exp\left(-\frac{E_{\nu}}{E_{0}}\right) \,,$$

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

3-year spectrum

P.Ko, YT, 1508.02500

4-year spectrum

P.Ko, YT, 1508.02500

Heavier DM

P.Ko, YT, 1508.02500

Direct Detection

 Direct detection constrains the DM-nucleon scattering cross section

$$\sigma_{\chi N} \sim \left(\frac{m_Z^2}{m_{Z'}^2}\right)^2 \sin^2 \epsilon \times 10^{-39} \text{cm}^2$$

 Currently, the most stringent bound is from LUX limit

$$\sigma_{\chi N} < 10^{-45} \mathrm{cm}^2 \times \frac{m_{\chi}}{100 \mathrm{GeV}},$$

• which can be easily satisfied for TeVZ' and

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

Other Indirect Signals

- Charged particles, like positrons, and gammaray are also produced,
- For decaying PeV DM, lifetime ~ 10^28s is still allowed
 10⁻⁶ Galactic - EG - ICS - Sum

Discussion-I

• Model with discrete symmetry

 $\begin{array}{l} \chi \to -\chi \\ \phi \to -\phi \end{array}$

Lagrangian

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \bar{N}i\partial \!\!\!/ N - \left(\frac{1}{2}m_N\bar{N}^cN + y\bar{L}\tilde{H}N + \text{h.c.}\right) \\ + \frac{1}{2}\partial_\mu\phi\partial^\mu\phi + \bar{\chi}\left(i\partial \!\!\!/ - m_\chi\right)\chi - (f\bar{\chi}\phi N + \text{h.c.}) - V(\phi, H),$$

Similar for IceCube but no signal for direct detection

Yong Tang(KIAS) Ic

IceCube Events and Decaying Dark Matter

Discussion-II

- We can generalize to a wide class of models,
- charge assignment $(Q_{\chi}, Q_{\psi}, Q_{\Phi}) = (2, 1, 1).$

- with $(f\bar{\chi}\Phi\psi + g_I\bar{\psi}\Phi N_I + h.c.)$ $\lambda_{\text{eff}} \sim \frac{yfg}{4\sqrt{2}}\frac{m_{\chi}}{m_{\psi}}\frac{m_{\chi}}{m_N} \sim 10^{-29}$
- 4-body > 3-body > 2-body, again due to symmetry br.

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

44

Discussion-III

 If the DM mass is small enough, its dominant decay channels are twobody decays.

$$rac{\Gamma_{3-\mathrm{body}}}{\Gamma_{2-\mathrm{body}}} \propto rac{1}{(4\pi)^2} rac{m_{\chi}^2}{v_H^2}.$$

• For TeV scale DM, it might explain the AMS02 positron excess.

P. Ko, YT, 1410.7657(PLB)

IceCube Events and Decaying Dark Matter

Summary

- IceCube has definitely observed astrophysical neutrinos, with several PeV events.
- Interesting explanations include dark matter and astrophysics.
- PeV events could be due to heavy dark matter decay with $m_{\chi} \sim 5~{
 m PeV}, \tau_{\chi} \sim 10^{28}{
 m s}$
- We propose a DM model based on U(1) gauge symmetry and right-handed neutrino portal, DM's three-body-decay could be responsible for the observed PeV events.

Thanks for your attention.

IceCube Events and Decaying Dark Matter