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Data for a QFT

A Quantum Field Theory can be constructed using a set of “fields”
Φ and a real even functional S [Φ]

Φ could be sections of - or connections for - some bundles
over a smooth “spacetime” M. They determine a (super)
Hilbert space H associated to ∂M.
The charges, equivalently representations, are restricted

Spin-statistics: odd fields sit in spinor representations of the
tangent bundle.
Anomaly cancelation.

A family of S ’s is parametrized by “coupling constants”. In
modern language: non-dynamical background fields -
S [Φ,ΦB ].
S determines a linear map between H’s associated to different
components of ∂M in one of two ways

By determining an operator (the Hamiltonian) H and the
propagator exp itH.
By providing a “measure” for the path integral.
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Symmetries

A transformation δ on the fields Φ is said to be a symmetry if

δS [Φ,ΦB ] = 0.

Every δ determines a Uδ such that

[Uδ,H] = 0.

Some standard QFT symmetries when M = Rd (a group Geven

with algebra geven)

1 The Lorentz or Euclidean rotation groups
(SO (1, d − 1) , SO(d)). The central element of the double
cover (e.g. Spin (d)) is denoted (−1)F . The Poincare group
also includes translations.

2 Global symmetries - do not act on M. Sometimes called
“flavor” if they come from including duplicate fields in Φ.

3 Conformal symmetry - an extension of 1.
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Supersymmetry and BPS states

An (N extended) supersymmetry algebra adds odd generators
(must be Lorentz spinors)

{Qi ,Qj} ⊂ geven, (−1)F Qi = −Qi (−1)F , i ∈ {1 . . .N}

States are paired when Q2 6= 0

Q2|Ψ >= (H + . . .) |Ψ >= λ|Ψ > ⇒ |Ψ >= Q

(
Q

λ
|Ψ >

)
.

Note that

|Ψ >=

(
B
F

)
, Q =

(
0 •
• 0

)
, (−1)F =

(
1 0
0 −1

)
.

Define a state |Ψ > is said to be BPS if

Q|Ψ >= 0 ⇔ (H + . . .) |Ψ >= 0.
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The Witten Index

An “index” is a quantity you can calculate in a supersymmetric
QFT defined on Rt ×Mspace.

Example: Choose a “space” manifold T d−1. Q is odd and
Hermitian

Q2 = H, Q =

(
0 M∗

M 0

)
.

The Witten index is1

IW ≡ trH (−1)F = dim ker M − dim ker M∗

If [Q,Xi ] = 0, form a “refined” index

I ({a}) = trH

[
(−1)F ea

iXi

]
1Witten (1988)
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Calculating an index by deformation (localization)

Indices are deformation invariant and get contributions only from
BPS (“unpaired”) states

A = {Q,V } , [Q,A] = 0 ⇒

trH

[
(−1)F ea

iXi

]
= trH

[
(−1)F ea

iXi e−tA
]
.

Specifically, can be calculated at weak coupling (β →∞)

trH

[
(−1)F ea

iXi

]
= trH

[
(−1)F ea

iXi e−β(H+...)
]

Note: interesting deformations (ai ) parametrize the
Q-cohomology.
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Indices and path integrals

Path integral formula for an index of states on M3

tr
[
(−1)F ea

iXi e−β(H+...)
]

=

ˆ
D [Φ] exp

(
−S{a},β [Φ]

)
The fields Φ live on S1 ×M3.

Supersymmetry means δQS{a},β [Φ] = 0. Example: (−1)F

picks out the spin structure on the S1 such that fermions are
periodic.

The ai are coordinates on some space of supersymmetric
deformations of S : metrics, background fluxes etc.
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Atiyah-Bott-Berline-Vergne formula

Theorem (Atiyah and Bott - 1984, Berline and Vergne - 1982)

Let Q be an equivariant differential and α a Q-closed equivariant
form on a compact manifold M, then the following holds

ˆ
M
α =

ˆ
KQ

i∗KQ
α

e(NKQ
)

where KQ is the zero set of Q, i∗KQ
is the pullback and e(NKQ

) is
the equivariant Euler class of the normal bundle of KQ in M.

Example: Duistermaat-Heckman Formula (1982)

α = exp [i (H + Ω)]ˆ
M

Ωne iH = in
∑
p∈R

e
iπ
4
sgn(Hess(H(p))) e iH(p)√

det(Hess(H(p))
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Localization in supergeometry

Theorem (Schwarz and Zaboronski - 1995)

Let M be a compact supermanifold with volume form dV . Let Q
be an odd non-degenerate vector field on M such that

1 divdV Q = 0 (the volume form is Q invariant)
2 Q2 is an even compact vector field on M.

Let KQ be the zero set of Q and let S be an even Q-invariant
function, ρ(p) is the volume density at p, and “sdet” denotes the
superdeterminant (Berezinian)ˆ

M
dVe is =

∑
p∈KQ

ρ(p)e iS(p)√
sdet(Hess(S(p))

In the DH formulaˆ
M

Ωne iH → i−n
ˆ

ΠTM

2n∏
i=1

dx idξie i(H(x)+Ωab(x)ξaξb)
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Localization for path integrals

Deformation

Identify an appropriate conserved fermionic charge: Q.

Choose V such that {Q,V } is a positive semi-definite
functional (Q should square to 0 on V).

Deform the action by a total Q variation S → S + t{Q,V }.
The resulting path integral is independent of t!

Add some Q closed operators (Wilson loops, defect operators).

Localization

Take the limit t →∞.

The measure exp(−S) is very small for {Q,V } 6= 0.

The semi-classical approximation becomes exact, but there
may be many saddle points to sum over (”the zero locus”).

Integrate over the zero locus of {Q,V } (+ small fluctuations)
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Setting up QFT localization

Set up an integral with the odd symmetry Q

1 Write down a general S [Φ,ΦB ] such that δQS = 0.

2 Pick background fields ΦB such that δQΦB = 0.

Some susy jargon

Twisting: picking Q and ΦB (g) such that
TEM ≡ dS/dg = {Q,X}. Under mild assumptions, the result
is a (“cohomological” or “Witten type”) TQFT - changing the
metric g results in

d

dg

ˆ
D [Φ] exp (−S) =

ˆ
D [Φ] T exp (−S) = 0.

Moduli space - the set {Φ|δQΦ = 0}.
One loop determinant - the function on moduli space given
by sdet−1/2 [Hess ({Q,V })].
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About the model

The (dynamical) field content

1 U (N) vector multiplet (SYM) - A, λ,D

2 Some chiral multiplets - φi , ψi ,Fi

The action functional (S [A, λ,D, φ, ψ,F ])

Yang Mills action - 1
g2
YM

´
tr (F ∧ ?F )

Kinetic terms and minimal coupling -´
λ̄ /Dλ,

´
ψ̄ /Dψ,

´
Dφ ∧ ?Dφ

A “superpotential” which won’t play a prominent role.

Non-derivative terms in D,F .
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Parameters and symmetries of the model

Some parameters are not background fields

1 The gauge group G (I took U(N)).

2 The representations of the matter fields (chirals).

Spacetime symmetries

1 Poincare - translations + rotations + boosts.

2 N = 1 supersymmetry - a fermionic symmetry with one Weyl
generator.

Global symmetries

1 U (1)R which does not commute with supersymmetry.

2 Some flavor symmetry group F acting on chirals.
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General motivation for N = 1 SYM and SQCD

A lot in common with QCD and electroweak theory

Asymptotic freedom/strongly coupled IR theory, higgs
mechanism.
Confinement of color, chiral symmetry breaking.
Instantons and monopoles.

Many other interesting features

Some exact results: non-renormalization theorem, NSVZ
β-function etc.
Interacting conformal phase.
Seiberg duality.
No “solution” a la Seiberg-Witten for N = 2 (but some partial
results).
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Additional motivation

Exact results for strongly coupled theories are hard to come by.

Few computations for 4d N = 1 theories using localization.

Supersymmetric backgrounds have been worked out recently
and a large class of manifolds preserving two supercharges was
identified.2

Existing examples like the superconformal index3(S1 × S3)
and T 2 × S24 show that the two supercharge case is
particularly nice.

2Dumitrescu, Festuccia, and Seiberg (2012)
3Assel et al (2014)
4Closset and Shamir (2013)
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Indices and partition functions

Indices are Euclidean partition functions that can be interpreted as
a supertrace over the spectrum of a theory quantized on a d − 1
dimensional manifold (usually compact)

The Witten index is a partition function on T d . It counts
supersymmetric ground states with signs.5

The superconformal index counts local BPS operators in a
CFT.6 In 4d

I (p, q, u) = TrS3

(
(−1)F pJ3+J′3−

R
2 qJ3−J′3−

R
2 uQf

)
is equivalently the partition function on a Hopf surface
(topologically S1 × S3) and p, q are complex structure
moduli.7

The lens space index replaces S3 by L (r , 1).8
5Witten (1982)
6Kinney et al (2005), Romelsberger (2005)
7Closset, Dumitrescu, Festuccia, and Komargodski (2013)
8Benini, Nishioka and Yamazaki (2012) Razamat and Willett (2013)
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Overview

The goal: compute partition functions that represent indices for 4d
N = 1 theories

Applicability

The theory must have a conserved U(1)R current.
The manifold should admit an appropriate metric with a
holomorphic torus isometry.
The result is an unambiguous universal quantity which
characterizes the IR CFT.9

Method

Choose a topology and complex structure only. The metric
doesn’t matter!10

Calculate fluctuations using the equivariant index theorem.

9Assel, Cassani, and Martelli (2014)
10Closset, Dumitrescu, Festuccia, and Komargodski (2013)
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Rigid supersymmetry in curved space

New minimal supergravity couples to the R multiplet11 of a 4d
N = 1 theory with a conserved U (1)R

The SUGRA multiplet: gµν , A
(R)
µ , Bµν , ψµ, ψ̃µ

The R multiplet: Tµν , J
(R)
µ , . . .

Rigid supersymmetric backgrounds solve a generalized Killing
spinor equation 12(V ∝ ?dB)

δψµ = (∇µ − i (Aµ − Vµ)− iV νσµν) ε = 0 ,

δψ̃µ = (∇µ + i (Aµ − Vµ) + iV ν σ̄µν) ε̃ = 0 ,

The backgrounds are complex manifolds

Jµν ≡ −
2i

|ε|2
ε†σµνε, JµρJρν = −δµν

11Komargodski and Seiberg (2010)
12Dumitrescu, Festuccia, and Seiberg (2012)
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Backgrounds with both ε and ε̃

When we restrict to backgrounds preserving an ε and an ε̃ we get,
in addition

two commuting complex structures

Jµν = − 2i

|ε|2
ε†σµνε, J̃µν = − 2i

|ε̃|2
ε̃†σ̄µν ε̃,

[
J, J̃
]

= 0

a complex holomorphic Killing vector

Kµ = εσµε̃ .

∇µKν +∇νKµ = 0 , JµνK ν = J̃µνK ν = iKµ ,

the backgrounds are torus fibrations over a Riemann surface.
We’ll restrict to [

K ,K †
]

= 0
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A simple class: M4 ' S1 ×M3

Take M4 to be the total space of a principal elliptic fiber bundle
over a compact orientable Riemann surface Σg

T 2 → M4
π−→ Σg .

M is actually diffeomorphic to S1 ×M3 where M3 is a
principal U(1) bundle over Σg . The topology is determined by
two numbers: the genus (g) and the degree (d).

M is Kähler if and only if d = 0, in which case it is
diffeomorphic to T 2 × Σg .

M has interesting cohomology classes, specifically13

Tor
(
H2 (M4,Z)

)
= π∗

(
H2 (Σg ,Z)

)
' Zd .

13Teleman (1998)
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Complex structure and R symmetry

The localization depends on the topological and holomorphic
properties of the R symmetry line bundle L.

The supersymmetry equations imply that L is “locked” to the
canonical bundle: L−2 ×KM4 is a trivial line bundle.14

For most values of g , d the manifold M4 has a canonical
bundle with properties15

KM4 = π?KΣg ,

and hence

c1 (KM4) = π?c1

(
KΣg

)
= 2g − 2 mod d ∈ Zd ⊂ H2 (M,Z) .

For g = 0 and d ≥ 3 there is a more general possibility16

KM4 =

{
topologically trivial I ,

π?KΣg II .

14Dumitrescu, Festuccia, and Seiberg (2012)
15Hofer (1993)
16Nakagawa (1995)



Introduction to Localization in QFT Indices of N = 1 super-Yang-Mills Setup Computation Results/Conclusions

Supersymmetry on M4

At this point we assume that M admits the right type of metric to
support two supercharges

The complex Killing vector K has non-vanishing components
in the fiber directions and acts freely on them.

The supersymmetry algebra is

{δε, δε̃} =
1

2
δK ,

{δε, δε} = {δε̃, δε̃} = 0 ,

= [δK , δε] = 0 ,

= [δK , δε̃] = 0 ,

δK ≡ LK − irKµA(R)
µ − iqflavor/gaugeKµaµ .

Supersymmetric actions for vector/chiral multiplets are easy
to write down. R charge quantization may be required if L is
non-trivial.
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Localization on M4

We choose a supercharge Q which is a linear combination of
transformation using ε and ε̃

{Q,Q} =
1

2
δK ,

δK = LK − irKµA(R)
µ − iqflavor/gaugeKµaµ .

The localizing functionals are the curved space D terms

L(loc)
gauge =

1

2
FµνFµν + λσµDµλ̃+ λ̃σ̄µDµλ+ D2 ,

L(loc)
matter = Dµφ̃Dµφ+

1

2
ψ̃σ̄µDµψ + . . .

The path integral localizes to flat connections

Fµν = 0 , D = 0, φ = 0 , F = 0,

and we’ll call a linearized operator acting on fluctuations around
this Doe .
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The partition function

ZG ,r ,Mg,d
(τcs, ξFI, af ) =

ˆ
M0

G (g ,d)
e−Sclassical(τcs,ξFI) ×

Z g ,d
gauge (τcs) Z g ,d ,r

matter (τcs, af )

Actually an integral and sum over the moduli space of flat
connections M0

G (g , d). Background flat connections are
included: af .

Dependence on the metric is through the space of complex
structures τCS .

The determinants will be computed using the equivariant
index theorem

ind(Doe) = trKerDoe eδK−trCokerDoe eδK → Zone-loop =
det CokerDoe δK
det KerDoe δK

.
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Moduli space of flat connections I - π1 (M4)

The fundamental group of M4 (g , d) is described by generators

ai , bi , h, x , i ∈ 1, . . . , g ,

and relations

[ai , h] = [bi , h] = [ai , x ] = [bi , x ] = [x , h] = 1 ,

g∏
i=1

[ai , bi ] = hd .

It’s a central extension of π1 (Σg ) plus the decoupled
generator x . For g 6= 1 only the h and x holonomies deform
δK .

For non-trivial values of hd this implies flux on Σg .17 The flux
changes the bundles used in the index theorem for Doe .

17Atiyah and Bott (1983)
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Moduli space of flat connections II - U(N)

This is the simplest case: in the holonomy representation M0
g ,d is

the set of N dim unitary representations of π1 (M4)

Commuting generators can be simultaneously put in the
Cartan.

det hd = 1 so the spectrum of h is discrete - the quantum
number m is the flux. The effect of the degree is
m→ m mod d .

In an irrep of
∏g

i=1 [ai , bi ] = hd the additional holonomy x
must be scalar. A general representation breaks

U (N)→ U (N1)× U (N2)× · · · × U (Np)

and has p fluxes.
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Gaugino zero modes

The Killing spinor equations and the eom for the gaugino are
similar

σ̄µ
(
∇µ − i

(
A(R)
µ +

1

2
Vµ

))
ε = 0 ,

σ̄µ
(
∇µ − i

(
A(R)
µ + agauge

µ − 3

2
Vµ

))
λ = 0 .

The background has χ (M4) = σ (M4) = 0 and all the gauge
fields satisfy c1

2 = c2 = 0 so the index theorem for the Dirac
operator gives 0.

If Vµ = 0, i.e. Kähler manifolds with d = 0 and
M4 ' T 2 × Σg , then gauginos in the same Cartan as the
holonomies have an obvious zero mode: ε.

Under some assumptions d > 0 guarantees no gaugino zero
modes.
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Equivariant index for d > 0

The index is a function (density) on the abelian group of
“symmetries”S or chemical potentials

ind(Doe) = trKerDoe eδK − trCokerDoe eδK ,

which can be used to compute the one loop determinants by the
rule

ind(Doe) =
∑
α

cαetwα −→ Zone-loop =
∏
α

w−cαα .

wα are weights in the representation in which the field sits. cα
is the multiplicity.
S includes the geometric action of LK , dynamical/background
gauge transformations, and R symmetry transformations.
The structure of M4 allows us to reduce to Σg . For a chiral,
Doe is the pullback of a Dirac operator on Σg and its index
will be calculated using the Atiyah Singer index theorem
(transversally elliptic version). The gauge sector is similar.



Introduction to Localization in QFT Indices of N = 1 super-Yang-Mills Setup Computation Results/Conclusions

Equivariant index - g > 1

The computation simplifies because there are no isometries on Σg .

The holonomies on the base do not deform the equivariant
complex.

We can use the usual Atiyah Singer index theorem for the
Dirac operator

ind(DDirac; E ) =

ˆ
X

Â(TX ) ch(E ) =

ˆ
Σ

1 · c1(E ) = deg(E ) .

The bundle on the base is geometric+gauge+R symmetry. The
index and determinant are

ind(Doe) =
∑

ρ∈R,n,l∈Z

(
−(r − 1)

χ(Σ)

2
+ dl + ρ(m)

)
xnydl−(r−1)χ(Σ)

2 u ,

Z
(r ,ρ)
matter =

ρ∈R∏
n,l∈Z

(
n + τd

(
l − (r − 1)

χ(Σ)

2d

)
+ ρ(aw )

)−(r−1)χ(Σ)
2

+dl+ρ(m)

.
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Equivariant index - g = 0

This is the lens space index18 for which we use the Atiyah Bott
fixed point formula on Σ0 = S2

indT (D) =
∑
p∈F

trEe(p)t − trEo(p)t

detTXp(1− t)
.

The index and determinant are

ind(Doe) =
∑

ρ∈R,n,l∈Z
t−r/2 t(dl+ρ(m))/2 − t−(dl+ρ(m))/2

1− t−1
xnydl+ρ(m)u ,

Z
(r ,ρ)
matter(m, u) = e iπE

(r)(ρ(m),u) Γ(u(pq)r/2qd−ρ(m); qd , pq)

 p ↔ q
ρ→ d − ρ

 .

e iπE
(r)(ρ(m),u) is an interesting zero point energy.

18Benini, Nishioka and Yamazaki (2012) Razamat and Willett (2013)
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Equivariant index - g = 1

An interesting case

χ (Σ) = 0 implies that there is no R charge quantization for
any d .

There are isometries on the base torus, but no fixed points.

General arguments imply that the base complex structure does
not affect the partition function, but it seems like the
holonomies do.
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Classical contributions

Fayet-Iliopoulos terms for U (1) factors exist in curved space

ξ

ˆ
(D − iV µaµ) ,

After localizing to flat connections only Kµaµ contributes due
to

Vµ = −1

2
∇νJνµ + κKµ , Kµ∂µκ = 0.

ξ must be quantized to keep this invariant under large gauge
transformations. This may not make sense for arbitrary g , d
and an arbitrary complex structure.

The result is trivial if V = ?dB for a well defined B, hence we
must have a non trivial three form flux in H1,2 (M4).

The expression is equivalent to a sort of smeared
supersymmetric abelian Wilson loop. Is there a non-abelian
analogue?
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Aspects of the partition function - I

ZG ,r ,Mg,d
(τcs, ξFI, af ) =

1

|W|

ˆ
M0

G (g ,d)
e−Sclassical(τcs,ξFI) ×

Z g ,d
gauge (τcs) Z g ,d ,r

matter (τcs, af )

The restriction on R charges is

r (g − 1 mod d) ∈ Z .

This does not apply to the (usual) lens space index.
τCS consists of the complex structure parameter for the torus
fiber (τ), an additional complex number for the fibration (σ)
when g = 0, and possibly the complex structure on the base
for g = 1.
Z g ,d ,r

matter (τcs, af ) and Z g ,d
gauge (τcs) are elliptic gamma (type)

functions.
An overall factor is included to account for the residual Weyl
group.
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Aspects of the partition function - II

The parameters entering the partition function are split between19

1 Parameters and deformations of the theory

1 The gauge/flavor groups and the matter representations. This
is where the superpotential comes in.

2 A set of admissible Fayet-Iliopoulos terms ξ, one for each
independent U(1) factor in G .

3 An element of the moduli space of flat connections on M of
the flavor symmetry group F .

2 Parameters of M

1 The genus, g , of the underlying Riemann surface and the first
Chern class, d , of the circle bundle whose total space is M3.

2 A point in the complex structure moduli space on M admitting
a holomorphic Killing vector K . This may include a discrete
choice in the case g = 0.

3 A choice of W ∈ H1,2 (M).

19In agreement with Closset et al. (2014)



Introduction to Localization in QFT Indices of N = 1 super-Yang-Mills Setup Computation Results/Conclusions

Issues/caveats

The interpretation of the index is complicated by

1 Accidental symmetries may prevent us from correctly
identifying the IR R charge.

2 A metric supporting the necessary holomorphic Killing vector
may not exist for all g , d , τCS .

The computation itself has a few shortcomings

1 The integral over the moduli space of flat connections is
complicated and involves an unresolved quantity

ˆ
M0

G (g ,d)
=

∑
partitions N

p∏
j=1

 ∑
mj∈0,...,dNj−1

V
[
Mg

Nj ,mj

] ˆ 1

0

dxj
2π

 .

2 Exclusion of fermionic zero modes required some assumptions.
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Applications

A few standard applications for exact calculations

1 Checking dualities: this involved a complicated calculation in
the case of Seiberg duality and the superconformal index
(S1 × S3).20 The more intricate topology of M4 can help
check some global issues like discrete theta angles.21 Mapping
of operators would be more ambitious.

2 Holography and large N: this potentially sidesteps some of the
intricacies of the moduli space of flat connections.

Some more recent applications

1 Extracting trace anomalies from supersymmetric partition
functions at “high temperature”.22

2 Constructing integrable lattice models.23

20Spiridonov and Vartanov (2009)
21Razamat and Willett (2013)
22Di Pietro and Komargodski (2014)
23Yamazaki (2013)
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Future directions

Extending the results to include

Manifolds where K acts with finite isotropy groups. The same
basic techniques can be used.

Looking for supersymmetric operators/defects.

More challenging options

Manifolds with gaugino zero modes.

Backgrounds preserving one supercharge: localization to the
instanton moduli space.
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Thank you!
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