Generalized Indices for $\mathcal{N}=1$ Theories in Four-Dimensions
 T. Nishioka, IY - arXiv:140\%.8520

Itamar Yaakov
University of Tokyo - Kavli IPMU

MS Seminar
October 14, 2015

Data for a QFT

A Quantum Field Theory can be constructed using a set of "fields" Φ and a real even functional $S[\Phi]$

- Φ could be sections of - or connections for - some bundles over a smooth "spacetime" M. They determine a (super) Hilbert space \mathcal{H} associated to ∂M.
- The charges, equivalently representations, are restricted
- Spin-statistics: odd fields sit in spinor representations of the tangent bundle.
- Anomaly cancelation.
- A family of S's is parametrized by "coupling constants". In modern language: non-dynamical background fields $S\left[\Phi, \Phi_{B}\right]$.
- S determines a linear map between \mathcal{H} 's associated to different components of ∂M in one of two ways
- By determining an operator (the Hamiltonian) H and the propagator exp itH.
- By providing a "measure" for the path integral?

Symmetries

A transformation δ on the fields Φ is said to be a symmetry if

$$
\delta S\left[\Phi, \Phi_{B}\right]=0
$$

Every δ determines a U_{δ} such that

$$
\left[U_{\delta}, H\right]=0
$$

Some standard QFT symmetries when $M=\mathbb{R}^{d}$ (a group $G_{\text {even }}$ with algebra $\mathfrak{g}_{\text {even }}$)
(1) The Lorentz or Euclidean rotation groups ($S O(1, d-1), S O(d))$. The central element of the double cover (e.g. Spin (d)) is denoted $(-1)^{F}$. The Poincare group also includes translations.
(2) Global symmetries - do not act on M. Sometimes called "flavor" if they come from including duplicate fields in Φ.
(3) Conformal symmetry - an extension of 1 .

Supersymmetry and BPS states

An (\mathcal{N} extended) supersymmetry algebra adds odd generators (must be Lorentz spinors)

$$
\left\{Q_{i}, Q_{j}\right\} \subset \mathfrak{g}_{\text {even }}, \quad(-1)^{F} Q_{i}=-Q_{i}(-1)^{F}, \quad i \in\{1 \ldots \mathcal{N}\}
$$

States are paired when $Q^{2} \neq 0$

$$
Q^{2}|\Psi>=(H+\ldots)| \Psi>=\lambda|\Psi>\Rightarrow| \Psi>=Q\left(\left.\frac{Q}{\lambda} \right\rvert\, \Psi>\right)
$$

Note that

$$
\left\lvert\, \Psi>=\binom{\mathrm{B}}{\mathrm{~F}}\right., \quad Q=\left(\begin{array}{ll}
0 & \bullet \\
\bullet & 0
\end{array}\right),(-1)^{F}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Define a state $\mid \Psi>$ is said to be BPS if

$$
Q|\Psi>=0 \quad \Leftrightarrow \quad(H+\ldots)| \Psi>=0 .
$$

The Witten Index

An "index" is a quantity you can calculate in a supersymmetric QFT defined on $\mathbb{R}_{t} \times M_{\text {space }}$.

- Example: Choose a "space" manifold $T^{d-1} . Q$ is odd and Hermitian

$$
Q^{2}=H, \quad Q=\left(\begin{array}{cc}
0 & M^{*} \\
M & 0
\end{array}\right) .
$$

The Witten index is ${ }^{1}$

$$
\mathcal{I}_{\mathrm{W}} \equiv \operatorname{tr}_{\mathcal{H}}(-1)^{F}=\operatorname{dim} \operatorname{ker} M-\operatorname{dim} \operatorname{ker} M^{*}
$$

If $\left[Q, X_{i}\right]=0$, form a "refined" index

$$
\mathcal{I}(\{a\})=\operatorname{tr}_{\mathcal{H}}\left[(-1)^{F} e^{a^{i} X_{i}}\right]
$$

[^0]
Calculating an index by deformation (localization)

Indices are deformation invariant and get contributions only from BPS ("unpaired") states

$$
\begin{gathered}
A=\{Q, V\}, \quad[Q, A]=0 \Rightarrow \\
\operatorname{tr}_{\mathcal{H}}\left[(-1)^{F} e^{a^{i} X_{i}}\right]=\operatorname{tr}_{\mathcal{H}}\left[(-1)^{F} e^{a^{i} X_{i}} e^{-t A}\right] .
\end{gathered}
$$

Specifically, can be calculated at weak coupling $(\beta \rightarrow \infty)$

$$
\operatorname{tr}_{\mathcal{H}}\left[(-1)^{F} e^{a^{i} X_{i}}\right]=\operatorname{tr}_{\mathcal{H}}\left[(-1)^{F} e^{a^{i} X_{i}} e^{-\beta(H+\ldots)}\right]
$$

- Note: interesting deformations (a^{i}) parametrize the Q-cohomology.

Indices and path integrals

Path integral formula for an index of states on M_{3}

$$
\operatorname{tr}\left[(-1)^{F} e^{a^{i} X_{i}} e^{-\beta(H+\ldots)}\right]=\int \mathcal{D}[\Phi] \exp \left(-S_{\{a\}, \beta}[\Phi]\right)
$$

- The fields Φ live on $S^{1} \times M_{3}$.
- Supersymmetry means $\delta_{Q} S_{\{a\}, \beta}[\Phi]=0$. Example: $(-1)^{F}$ picks out the spin structure on the S^{1} such that fermions are periodic.
- The a_{i} are coordinates on some space of supersymmetric deformations of S : metrics, background fluxes etc.

Atiyah-Bott-Berline-Vergne formula

Theorem (Atiyah and Bott - 1984, Berline and Vergne - 1982)

Let Q be an equivariant differential and α a Q-closed equivariant form on a compact manifold M, then the following holds

$$
\int_{M} \alpha=\int_{\mathcal{K}_{Q}} \frac{i_{\mathcal{K}_{Q}}^{*} \alpha}{e\left(N_{\mathcal{K}_{Q}}\right)}
$$

where \mathcal{K}_{Q} is the zero set of $Q, i_{\mathcal{K}_{\mathcal{Q}}}^{*}$ is the pullback and e $\left(\mathcal{K}_{\mathcal{K}_{Q}}\right)$ is the equivariant Euler class of the normal bundle of \mathcal{K}_{Q} in M.

- Example: Duistermaat-Heckman Formula (1982)

$$
\begin{gathered}
\alpha=\exp [i(H+\Omega)] \\
\int_{M} \Omega^{n} e^{i H}=i^{n} \sum_{p \in R} e^{\frac{i \pi}{4} \operatorname{sgn}(\operatorname{Hess}(H(p)))} \frac{e^{i H(p)}}{\sqrt{\operatorname{det}(\operatorname{Hess}(H(p))}}
\end{gathered}
$$

Localization in supergeometry

Theorem (Schwarz and Zaboronski - 1995)

Let M be a compact supermanifold with volume form dV. Let Q be an odd non-degenerate vector field on M such that
(1) $\operatorname{div}_{d V} Q=0$ (the volume form is Q invariant)
(2) Q^{2} is an even compact vector field on M.

Let \mathcal{K}_{Q} be the zero set of Q and let S be an even Q-invariant function, $\rho(p)$ is the volume density at p, and "sdet" denotes the superdeterminant (Berezinian)

$$
\int_{M} d V e^{i s}=\sum_{p \in \mathcal{K}_{Q}} \frac{\rho(p) e^{i S(p)}}{\sqrt{\operatorname{sdet}(\operatorname{Hess}(S(p))}}
$$

In the DH formula

$$
\int_{M} \Omega^{n} e^{i H} \rightarrow i^{-n} \int_{\Pi T M} \prod_{i=1}^{2 n} d x^{i} d \xi^{i} e^{i\left(H(x)+\Omega_{a b}(x) \xi^{a} \xi^{b}\right)}
$$

Localization for path integrals

Deformation

- Identify an appropriate conserved fermionic charge: Q.
- Choose V such that $\{Q, V\}$ is a positive semi-definite functional (Q should square to 0 on V).
- Deform the action by a total Q variation $S \rightarrow S+t\{Q, V\}$. The resulting path integral is independent of t !
- Add some Q closed operators (Wilson loops, defect operators).

Localization

- Take the limit $t \rightarrow \infty$.
- The measure $\exp (-S)$ is very small for $\{Q, V\} \neq 0$.
- The semi-classical approximation becomes exact, but there may be many saddle points to sum over ("the zero locus").
- Integrate over the zero locus of $\{Q, V\}$ (+ small fluctuations)

Setting up QFT localization

Set up an integral with the odd symmetry Q
(1) Write down a general $S\left[\Phi, \Phi_{B}\right]$ such that $\delta_{Q} S=0$.
(2) Pick background fields Φ_{B} such that $\delta_{Q} \Phi_{B}=0$.

Some susy jargon

- Twisting: picking Q and $\Phi_{B}(g)$ such that
$T_{\mathrm{EM}} \equiv d S / d g=\{Q, X\}$. Under mild assumptions, the result is a ("cohomological" or "Witten type") TQFT - changing the metric g results in

$$
\frac{d}{d g} \int \mathcal{D}[\Phi] \exp (-S)=\int \mathcal{D}[\Phi] T \exp (-S)=0
$$

- Moduli space - the set $\left\{\Phi \mid \delta_{Q} \Phi=0\right\}$.
- One loop determinant - the function on moduli space given by $\operatorname{sdet}^{-1 / 2}[\operatorname{Hess}(\{Q, V\})]$.

About the model

The (dynamical) field content
(1) $U(N)$ vector multiplet (SYM) $-A, \lambda, D$
(2) Some chiral multiplets - $\phi_{i}, \psi_{i}, F_{i}$

The action functional $(S[A, \lambda, D, \phi, \psi, F])$

- Yang Mills action $-\frac{1}{g_{Y M}^{2}} \int \operatorname{tr}(F \wedge \star F)$
- Kinetic terms and minimal coupling $\int \bar{\lambda} \not D \lambda, \int \bar{\psi} \not D \psi, \int D \phi \wedge \star D \phi$
- A "superpotential" which won't play a prominent role.
- Non-derivative terms in D, F.

Parameters and symmetries of the model

Some parameters are not background fields
(1) The gauge group $G(I$ took $U(N))$.
(2) The representations of the matter fields (chirals).

Spacetime symmetries
(1) Poincare - translations + rotations + boosts.
(2) $\mathcal{N}=1$ supersymmetry - a fermionic symmetry with one Weyl generator.
Global symmetries
(1) $U(1)_{R}$ which does not commute with supersymmetry.
(2) Some flavor symmetry group F acting on chirals.

General motivation for $\mathcal{N}=1$ SYM and SQCD

- A lot in common with QCD and electroweak theory
- Asymptotic freedom/strongly coupled IR theory, higgs mechanism.
- Confinement of color, chiral symmetry breaking.
- Instantons and monopoles.
- Many other interesting features
- Some exact results: non-renormalization theorem, NSVZ β-function etc.
- Interacting conformal phase.
- Seiberg duality.
- No "solution" a la Seiberg-Witten for $\mathcal{N}=2$ (but some partial results).

Additional motivation

- Exact results for strongly coupled theories are hard to come by.
- Few computations for $4 \mathrm{~d} \mathcal{N}=1$ theories using localization.
- Supersymmetric backgrounds have been worked out recently and a large class of manifolds preserving two supercharges was identified. ${ }^{2}$
- Existing examples like the superconformal index ${ }^{3}\left(S^{1} \times S^{3}\right)$ and $T^{2} \times S^{24}$ show that the two supercharge case is particularly nice.

[^1]
Indices and partition functions

Indices are Euclidean partition functions that can be interpreted as a supertrace over the spectrum of a theory quantized on a $d-1$ dimensional manifold (usually compact)

- The Witten index is a partition function on T^{d}. It counts supersymmetric ground states with signs. ${ }^{5}$
- The superconformal index counts local BPS operators in a CFT. ${ }^{6}$ In 4d

$$
\mathcal{I}(p, q, u)=\operatorname{Tr}_{S^{3}}\left((-1)^{F} p^{J_{3}+J_{3}^{\prime}-\frac{R}{2}} q^{J_{3}-J_{3}^{\prime}-\frac{R}{2}} u^{Q_{f}}\right)
$$

is equivalently the partition function on a Hopf surface (topologically $S^{1} \times S^{3}$) and p, q are complex structure moduli. ${ }^{7}$

- The lens space index replaces S^{3} by $L(r, 1) .{ }^{8}$
${ }^{5}$ Witten (1982)
${ }^{6}$ Kinney et al (2005), Romelsberger (2005)
${ }^{7}$ Closset, Dumitrescu, Festuccia, and Komargodski (2013)
${ }^{8}$ Benini, Nishioka and Yamazaki (2012) Razamat and Willett (2013) \equiv

Overview

The goal: compute partition functions that represent indices for 4d $\mathcal{N}=1$ theories

- Applicability
- The theory must have a conserved $U(1)_{R}$ current.
- The manifold should admit an appropriate metric with a holomorphic torus isometry.
- The result is an unambiguous universal quantity which characterizes the IR CFT. ${ }^{9}$
- Method
- Choose a topology and complex structure only. The metric doesn't matter! ${ }^{10}$
- Calculate fluctuations using the equivariant index theorem.

[^2]
Rigid supersymmetry in curved space

New minimal supergravity couples to the \mathcal{R} multiplet ${ }^{11}$ of a 4 d $\mathcal{N}=1$ theory with a conserved $U(1)_{R}$

- The SUGRA multiplet: $\quad g_{\mu \nu}, \quad A_{\mu}^{(R)}, \quad B_{\mu \nu}, \quad \psi_{\mu}, \quad \tilde{\psi}_{\mu}$
- The \mathcal{R} multiplet: $\quad T_{\mu \nu}, \quad J_{\mu}^{(R)}, \ldots$

Rigid supersymmetric backgrounds solve a generalized Killing spinor equation ${ }^{12}(V \propto \star d B)$

$$
\begin{aligned}
& \delta \psi_{\mu}=\left(\nabla_{\mu}-i\left(A_{\mu}-V_{\mu}\right)-i V^{\nu} \sigma_{\mu \nu}\right) \epsilon=0, \\
& \delta \tilde{\psi}_{\mu}=\left(\nabla_{\mu}+i\left(A_{\mu}-V_{\mu}\right)+i V^{\nu} \bar{\sigma}_{\mu \nu}\right) \tilde{\epsilon}=0,
\end{aligned}
$$

The backgrounds are complex manifolds

$$
J_{\mu \nu} \equiv-\frac{2 i}{|\epsilon|^{2}} \epsilon^{\dagger} \sigma_{\mu \nu} \epsilon, \quad J_{\rho}^{\mu} J_{\nu}^{\rho}=-\delta_{\nu}^{\mu}
$$

[^3]
Backgrounds with both ϵ and $\tilde{\epsilon}$

When we restrict to backgrounds preserving an ϵ and an $\tilde{\epsilon}$ we get, in addition

- two commuting complex structures

$$
J_{\mu \nu}=-\frac{2 i}{|\epsilon|^{2}} \epsilon^{\dagger} \sigma_{\mu \nu} \epsilon, \quad \tilde{J}_{\mu \nu}=-\frac{2 i}{|\tilde{\epsilon}|^{2}} \tilde{\epsilon}^{\dagger} \bar{\sigma}_{\mu \nu} \tilde{\epsilon}, \quad[J, \tilde{J}]=0
$$

- a complex holomorphic Killing vector

$$
\begin{gathered}
K^{\mu}=\epsilon \sigma^{\mu} \tilde{\epsilon} \\
\nabla_{\mu} K_{\nu}+\nabla_{\nu} K_{\mu}=0, \quad J_{\nu}^{\mu} K^{\nu}=\tilde{J}_{\nu}^{\mu} K^{\nu}=i K^{\mu}
\end{gathered}
$$

- the backgrounds are torus fibrations over a Riemann surface. We'll restrict to

$$
\left[K, K^{\dagger}\right]=0
$$

A simple class: $M_{4} \simeq S^{1} \times M_{3}$

Take M_{4} to be the total space of a principal elliptic fiber bundle over a compact orientable Riemann surface Σ_{g}

$$
T^{2} \rightarrow M_{4} \xrightarrow{\pi} \Sigma_{g} .
$$

- M is actually diffeomorphic to $S^{1} \times M_{3}$ where M_{3} is a principal $U(1)$ bundle over Σ_{g}. The topology is determined by two numbers: the genus (g) and the degree (d).
- M is Kähler if and only if $d=0$, in which case it is diffeomorphic to $T^{2} \times \Sigma_{g}$.
- M has interesting cohomology classes, specifically ${ }^{13}$

$$
\operatorname{Tor}\left(H^{2}\left(M_{4}, \mathbb{Z}\right)\right)=\pi^{*}\left(H^{2}\left(\Sigma_{g}, \mathbb{Z}\right)\right) \simeq \mathbb{Z}_{d}
$$

Complex structure and R symmetry

The localization depends on the topological and holomorphic properties of the R symmetry line bundle L.

- The supersymmetry equations imply that L is "locked" to the canonical bundle: $L^{-2} \times \mathcal{K}_{M_{4}}$ is a trivial line bundle. ${ }^{14}$
- For most values of g, d the manifold M_{4} has a canonical bundle with properties ${ }^{15}$

$$
\mathcal{K}_{M_{4}}=\pi^{\star} \mathcal{K}_{\Sigma_{g}},
$$

and hence

$$
c_{1}\left(\mathcal{K}_{M_{4}}\right)=\pi^{\star} c_{1}\left(\mathcal{K}_{\Sigma_{g}}\right)=2 g-2 \bmod d \in \mathbb{Z}_{d} \subset H^{2}(M, \mathbb{Z})
$$

- For $g=0$ and $d \geq 3$ there is a more general possibility ${ }^{16}$

$$
\mathcal{K}_{M_{4}}= \begin{cases}\text { topologically trivial } & \mathrm{I} \\ \pi^{\star} \mathcal{K}_{\Sigma_{g}} & \mathrm{II} .\end{cases}
$$

[^4]${ }^{15}$ Hofer (1993)
${ }^{16}$ Nakacawa (1905)

Supersymmetry on M_{4}

At this point we assume that M admits the right type of metric to support two supercharges

- The complex Killing vector K has non-vanishing components in the fiber directions and acts freely on them.
- The supersymmetry algebra is

$$
\begin{aligned}
&\left\{\delta_{\epsilon}, \delta_{\tilde{\epsilon}}\right\}=\frac{1}{2} \delta_{K}, \\
&\left\{\delta_{\epsilon}, \delta_{\epsilon}\right\}=\left\{\delta_{\tilde{\epsilon}}, \delta_{\tilde{\epsilon}}\right\}=0, \\
&=\left[\delta_{K}, \delta_{\epsilon}\right]=0, \\
&=\left[\delta_{K}, \delta_{\tilde{\epsilon}}\right]=0, \\
& \delta_{K} \equiv \mathcal{L}_{K}-i r K^{\mu} A_{\mu}^{(R)}-i q_{\text {flavor/gauge }} K^{\mu} a_{\mu} .
\end{aligned}
$$

- Supersymmetric actions for vector/chiral multiplets are easy to write down. R charge quantization may be required if L is non-trivial.

Localization on M_{4}

We choose a supercharge Q which is a linear combination of transformation using ϵ and $\tilde{\epsilon}$

$$
\begin{gathered}
\{Q, Q\}=\frac{1}{2} \delta_{K} \\
\delta_{K}=\mathcal{L}_{K}-i r K^{\mu} A_{\mu}^{(R)}-i q_{\text {flavor/gauge }} K^{\mu} a_{\mu}
\end{gathered}
$$

The localizing functionals are the curved space D terms

$$
\begin{gathered}
\mathcal{L}_{\text {gauge }}^{(\text {loc })}=\frac{1}{2} F_{\mu \nu} F^{\mu \nu}+\lambda \sigma^{\mu} D_{\mu} \tilde{\lambda}+\tilde{\lambda} \bar{\sigma}^{\mu} D_{\mu} \lambda+D^{2} \\
\mathcal{L}_{\text {matter }}^{(\text {loc })}=D_{\mu} \tilde{\phi} D^{\mu} \phi+\frac{1}{2} \tilde{\psi} \bar{\sigma}^{\mu} D_{\mu} \psi+\ldots
\end{gathered}
$$

The path integral localizes to flat connections

$$
F_{\mu \nu}=0, \quad D=0, \quad \phi=0, \quad F=0
$$

and we'll call a linearized operator acting on fluctuations around this $D_{o e}$.

The partition function

$$
\begin{array}{r}
Z_{G, r, M_{g, d}}\left(\tau_{\mathrm{cs}}, \xi_{\mathrm{FI}}, a_{f}\right)=\int_{\mathcal{M}_{G}^{0}(g, d)} e^{-S_{\mathrm{classical}}\left(\tau_{c s}, \xi_{\mathrm{FI}}\right)} \times \\
Z_{\text {gauge }}^{g, d}\left(\tau_{\mathrm{cs}}\right) Z_{\text {matter }}^{g, d, r}\left(\tau_{\mathrm{cs}}, a_{f}\right)
\end{array}
$$

- Actually an integral and sum over the moduli space of flat connections $\mathcal{M}_{G}^{0}(g, d)$. Background flat connections are included: a_{f}.
- Dependence on the metric is through the space of complex structures $\tau_{C S}$.
- The determinants will be computed using the equivariant index theorem

$$
\operatorname{ind}\left(D_{o e}\right)=\operatorname{tr}_{\text {Ker } D_{o e}} e^{\delta K}-\operatorname{tr}_{\text {Coker } D_{o e}} e^{\delta K} \rightarrow Z_{\text {one-loop }}=\frac{\operatorname{det} \operatorname{Coker} D_{o e} \delta_{K}}{\operatorname{det}_{\text {Ker } D_{o e}} \delta_{K}}
$$

Moduli space of flat connections I $-\pi_{1}\left(M_{4}\right)$

The fundamental group of $M_{4}(g, d)$ is described by generators

$$
a_{i}, b_{i}, h, x, \quad i \in 1, \ldots, g
$$

and relations
$\left[a_{i}, h\right]=\left[b_{i}, h\right]=\left[a_{i}, x\right]=\left[b_{i}, x\right]=[x, h]=1$,

$$
\prod_{i=1}^{g}\left[a_{i}, b_{i}\right]=h^{d}
$$

- It's a central extension of $\pi_{1}\left(\Sigma_{g}\right)$ plus the decoupled generator x. For $g \neq 1$ only the h and x holonomies deform δ_{K}.
- For non-trivial values of h^{d} this implies flux on Σ_{g}. ${ }^{17}$ The flux changes the bundles used in the index theorem for $D_{o e}$.

Moduli space of flat connections II $-U(N)$

This is the simplest case: in the holonomy representation $\mathcal{M}_{g, d}^{0}$ is the set of N dim unitary representations of $\pi_{1}\left(M_{4}\right)$

- Commuting generators can be simultaneously put in the Cartan.
- $\operatorname{det} h^{d}=1$ so the spectrum of h is discrete - the quantum number m is the flux. The effect of the degree is $m \rightarrow m \bmod d$.
- In an irrep of $\prod_{i=1}^{g}\left[a_{i}, b_{i}\right]=h^{d}$ the additional holonomy x must be scalar. A general representation breaks

$$
U(N) \rightarrow U\left(N_{1}\right) \times U\left(N_{2}\right) \times \cdots \times U\left(N_{p}\right)
$$

and has p fluxes.

Gaugino zero modes

The Killing spinor equations and the eom for the gaugino are similar

$$
\begin{aligned}
\bar{\sigma}^{\mu}\left(\nabla_{\mu}-i\left(A_{\mu}^{(R)}+\frac{1}{2} V_{\mu}\right)\right) \epsilon & =0, \\
\bar{\sigma}^{\mu}\left(\nabla_{\mu}-i\left(A_{\mu}^{(R)}+a_{\mu}^{\text {gauge }}-\frac{3}{2} V_{\mu}\right)\right) \lambda & =0 .
\end{aligned}
$$

- The background has $\chi\left(M_{4}\right)=\sigma\left(M_{4}\right)=0$ and all the gauge fields satisfy $c_{1}^{2}=c_{2}=0$ so the index theorem for the Dirac operator gives 0 .
- If $V_{\mu}=0$, i.e. Kähler manifolds with $d=0$ and $M_{4} \simeq T^{2} \times \Sigma_{g}$, then gauginos in the same Cartan as the holonomies have an obvious zero mode: ϵ.
- Under some assumptions $d>0$ guarantees no gaugino zero modes.

Equivariant index for $d>0$

The index is a function (density) on the abelian group of "symmetries" \mathcal{S} or chemical potentials

$$
\operatorname{ind}\left(D_{o e}\right)=\operatorname{tr}_{K_{\operatorname{Ker}} D_{o e}} e^{\delta_{K}}-\operatorname{tr}_{\text {Coker } D_{o e}} e^{\delta_{K}},
$$

which can be used to compute the one loop determinants by the rule

$$
\operatorname{ind}\left(D_{o e}\right)=\sum_{\alpha} c_{\alpha} e^{t w_{\alpha}} \quad \longrightarrow \quad Z_{\text {one-loop }}=\prod_{\alpha} w_{\alpha}^{-c_{\alpha}}
$$

- w_{α} are weights in the representation in which the field sits. c_{α} is the multiplicity.
- \mathcal{S} includes the geometric action of \mathcal{L}_{K}, dynamical/background gauge transformations, and R symmetry transformations.
- The structure of M_{4} allows us to reduce to Σ_{g}. For a chiral, $D_{o e}$ is the pullback of a Dirac operator on Σ_{g} and its index will be calculated using the Atiyah Singer index theorem (transversally elliptic version). The gauge sector is similar.

Equivariant index $-g>1$

The computation simplifies because there are no isometries on Σ_{g}.

- The holonomies on the base do not deform the equivariant complex.
- We can use the usual Atiyah Singer index theorem for the Dirac operator

$$
\operatorname{ind}\left(D_{\text {Dirac }} ; E\right)=\int_{X} \hat{A}(T X) \operatorname{ch}(E)=\int_{\Sigma} 1 \cdot c_{1}(E)=\operatorname{deg}(E) .
$$

The bundle on the base is geometric+gauge+R symmetry. The index and determinant are

$$
\begin{aligned}
& \operatorname{ind}\left(D_{\mathrm{oe}}\right)=\sum_{\rho \in \mathfrak{R}, n, l \in \mathbb{Z}}\left(-(r-1) \frac{\chi(\Sigma)}{2}+d l+\rho(m)\right) x^{n} y^{d l-(r-1) \frac{\chi(\Sigma)}{2}} u \\
& Z_{\text {matter }}^{(r, \rho)}=\prod_{n, l \in \mathbb{Z}}^{\rho \in \mathfrak{R}}\left(n+\tau d\left(I-(r-1) \frac{\chi(\Sigma)}{2 d}\right)+\rho\left(a_{w}\right)\right)^{-(r-1) \frac{\chi(\Sigma)}{2}+d l+\rho(m)}
\end{aligned}
$$

Equivariant index $-\mathrm{g}=0$

This is the lens space index ${ }^{18}$ for which we use the Atiyah Bott fixed point formula on $\Sigma_{0}=S^{2}$

$$
\operatorname{ind}_{T}(D)=\sum_{p \in F} \frac{\operatorname{tr}_{E_{e}(p)} t-\operatorname{tr}_{E_{o}(p)} t}{\operatorname{det}_{T X_{p}}(1-t)}
$$

The index and determinant are
$\operatorname{ind}\left(D_{\mathrm{oe}}\right)=\sum_{\rho \in \mathfrak{R}, n, l \in \mathbb{Z}} t^{-r / 2} \frac{t^{(d l+\rho(m)) / 2}-t^{-(d l+\rho(m)) / 2}}{1-t^{-1}} x^{n} y^{d l+\rho(m)} u$,
$Z_{\text {matter }}^{(r, \rho)}(m, u)=e^{i \pi \mathcal{E}^{(r)}(\rho(m), u)} \Gamma\left(u(p q)^{r / 2} q^{d-\rho(m)} ; q^{d}, p q\right)\binom{p \leftrightarrow q}{\rho \rightarrow d-\rho}$

- $e^{i \pi \mathcal{E}^{(r)}(\rho(m), u)}$ is an interesting zero point energy.
${ }^{18}$ Benini, Nishioka and Yamazaki (2012) Razamat and Willett (2013)

Equivariant index $-g=1$

An interesting case

- $\chi(\Sigma)=0$ implies that there is no R charge quantization for any d.
- There are isometries on the base torus, but no fixed points.
- General arguments imply that the base complex structure does not affect the partition function, but it seems like the holonomies do.

Classical contributions

Fayet-Iliopoulos terms for $U(1)$ factors exist in curved space

$$
\xi \int\left(D-i V^{\mu} a_{\mu}\right),
$$

- After localizing to flat connections only $K^{\mu} a_{\mu}$ contributes due to

$$
V_{\mu}=-\frac{1}{2} \nabla^{\nu} J_{\nu \mu}+\kappa K_{\mu}, \quad K^{\mu} \partial_{\mu} \kappa=0
$$

- ξ must be quantized to keep this invariant under large gauge transformations. This may not make sense for arbitrary g, d and an arbitrary complex structure.
- The result is trivial if $V=\star d B$ for a well defined B, hence we must have a non trivial three form flux in $H^{1,2}\left(M_{4}\right)$.
- The expression is equivalent to a sort of smeared supersymmetric abelian Wilson loop. Is there a non-abelian analogue?

Aspects of the partition function - I

$$
\begin{aligned}
& Z_{G, r, M_{g, d}}\left(\tau_{\mathrm{cs}}, \xi_{\mathrm{Fl}}, a_{f}\right)=\frac{1}{|\mathcal{W}|} \int_{\mathcal{M}_{G}^{0}(g, d)} e^{-S_{\mathrm{classical}}\left(\tau_{\mathrm{cs}}, \xi_{\mathrm{FI}}\right)} \times \\
& Z_{\text {gauge }}^{g, d}\left(\tau_{\mathrm{cs}}\right) Z_{\text {matter }}^{g, d, r}\left(\tau_{\mathrm{cs}}, a_{f}\right)
\end{aligned}
$$

- The restriction on R charges is

$$
r(g-1 \bmod d) \in \mathbb{Z}
$$

This does not apply to the (usual) lens space index.

- $\tau_{\text {CS }}$ consists of the complex structure parameter for the torus fiber (τ), an additional complex number for the fibration (σ) when $g=0$, and possibly the complex structure on the base for $g=1$.
- $Z_{\text {matter }}^{g, d, r}\left(\tau_{c s}, a_{f}\right)$ and $Z_{\text {gauge }}^{g, d}\left(\tau_{c s}\right)$ are elliptic gamma (type) functions.
- An overall factor is included to account for the residual Weyl

Aspects of the partition function - II

The parameters entering the partition function are split between ${ }^{19}$
(1) Parameters and deformations of the theory
(1) The gauge/flavor groups and the matter representations. This is where the superpotential comes in.
(2) A set of admissible Fayet-lliopoulos terms ξ, one for each independent $U(1)$ factor in G.
(3) An element of the moduli space of flat connections on M of the flavor symmetry group F.
(2) Parameters of M
(1) The genus, g, of the underlying Riemann surface and the first Chern class, d, of the circle bundle whose total space is M_{3}.
(2) A point in the complex structure moduli space on M admitting a holomorphic Killing vector K. This may include a discrete choice in the case $g=0$.
(3) A choice of $W \in H^{1,2}(M)$.

[^5]
Issues/caveats

The interpretation of the index is complicated by
(1) Accidental symmetries may prevent us from correctly identifying the IR R charge.
(2) A metric supporting the necessary holomorphic Killing vector may not exist for all $g, d, \tau_{C S}$.
The computation itself has a few shortcomings
(1) The integral over the moduli space of flat connections is complicated and involves an unresolved quantity

$$
\int_{\mathcal{M}_{G}^{0}(g, d)}=\sum_{\text {partitions }} \prod_{N}^{p}\left(\sum_{m_{j} \in 0, \ldots, d N_{j}-1} V\left[\mathcal{M}_{N_{j}, m_{j}}^{g}\right] \int_{0}^{1} \frac{d x_{j}}{2 \pi}\right)
$$

(2) Exclusion of fermionic zero modes required some assumptions.

Applications

A few standard applications for exact calculations
(1) Checking dualities: this involved a complicated calculation in the case of Seiberg duality and the superconformal index $\left(S^{1} \times S^{3}\right) .{ }^{20}$ The more intricate topology of M_{4} can help check some global issues like discrete theta angles. ${ }^{21}$ Mapping of operators would be more ambitious.
(2) Holography and large N : this potentially sidesteps some of the intricacies of the moduli space of flat connections.

Some more recent applications
(1) Extracting trace anomalies from supersymmetric partition functions at "high temperature". ${ }^{22}$
(2) Constructing integrable lattice models. ${ }^{23}$
${ }^{20}$ Spiridonov and Vartanov (2009)
${ }^{21}$ Razamat and Willett (2013)
${ }^{22}$ Di Pietro and Komargodski (2014)
${ }^{23}$ Yamazaki (2013)

Future directions

Extending the results to include

- Manifolds where K acts with finite isotropy groups. The same basic techniques can be used.
- Looking for supersymmetric operators/defects.

More challenging options

- Manifolds with gaugino zero modes.
- Backgrounds preserving one supercharge: localization to the instanton moduli space.

Thank you!

[^0]: ${ }^{1}$ Witten (1988)

[^1]: ${ }^{2}$ Dumitrescu, Festuccia, and Seiberg (2012)
 ${ }^{3}$ Assel et al (2014)
 ${ }^{4}$ Closset and Shamir (2013)

[^2]: ${ }^{9}$ Assel, Cassani, and Martelli (2014)
 ${ }^{10}$ Closset, Dumitrescu, Festuccia, and Komargodski (2013)

[^3]: ${ }^{11}$ Komargodski and Seiberg (2010)
 ${ }^{12}$ Dumitrescu, Festuccia, and Seiberg (2012)

[^4]: ${ }^{14}$ Dumitrescu, Festuccia, and Seiberg (2012)

[^5]: ${ }^{19}$ In agreement with Closset et al. (2014)

