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An overview of the resurgence program in physics

Main motivations:

>

>

>

>

Asymptotic analysis of QFT / QM / string theory / ...
Understanding of non-BPS saddles / configurations
Renormalon puzzle in asymptotically free QFTs
Non-perturbative, continuum definition of QFT

Real time path integrals — non-equilibrium physics
Analytical continuation of path integrals

ODEs, PDEs, difference equations, dynamical systems

resurgence: semi-classics — “exact semi-classics”



An overview of the resurgence program in physics

Many expansions in physics are divergent-asymptotic:

f(h) = chhn ,  Cp~nl
n=0

QM, QFT, strings, hydrodynamics, QNMs, ...
some examples: (beware! highly incomplete list)

> quartic/cubic oscillator, Mathieu, Zeeman, Stark, ...

> Dyson instability, weak field Euler-Heisenberg, QFT in dS/AdS
background, large N, ...

> topological genus expansion (cy ~ (29)!) [Shenker]

» boost invariant conformal hydrodynamics [Heller,Spalinski; GB, Dunne]

How can we assign a value to an asymptotic series?



Overview: Borel summation

Introduce the Borel transform of the series f(h):

This new series typically has finite radius of convergence.

Borel resummation of the original asymptotic series:
1 o
S0 =5 [ Blfl(s)e s
0

But BJ[f](s) in general can have singularities in the s plane.
They can be on R

How to deal with those singularities?



Overview: Borel singularities
We can avoid the singularities on R*:

Lateral Borel summation:

1 6

Sl(h) = ¢ / " Blf)(s)e s

Go above/below the singularity, s = s*, = 0%?
= ambiguous imaginary part: +ime=s"/h

= Instability?

Yes (cubic oscl., Stark, E, ...) No (double well., Zeeman, B, ... )
idea: non-perturbative physics resolves the ambiguity!

resurgence: relations between perturbative &
non-perturbative expansions



Overview: Trans-series

f(n)

v

oo oo k-1 l
n c1\* 1
= g g g Cnka (exp [—fD In [£+—
=0 k=0 I=1 g # h

nEUR=D = perturbative fluctuations —

k—instantons  ;a6i zero-modes

trans-series: closed under [, 9, inversion, composition
[Bealle, °s0] (32, cnh™ isn’t!) Trans-series are ubiquitous.

trans-monomials, i, e~ /" log(%bl), have physical
meanings

respects global symmetries of the original function =
analytical continuation

= exact definition of the function

resurgence: ¢y s are stringently related



Overview: Trans-series

“resurgent functions display
at each of their singular
points a behaviour closely
related to their behaviour at
the origin. Loosely speaking,
these functions resurrect, or
surge up - in a slightly
different guise, as it were - at
their singularities”

J. Ecalle

Resurgence and transseries in

quantum, gauge and string theories,
CERN, 2014 [Photo: J. Edelstein]|



Overview Resurgence and Stokes” phenomenon

A function may have different asymptotic
expansions depending on the direction of the

expansion in complex plane.

An exponentially small correction might become comparable
with the original series as one rotates in complex plane.

This new term “is born” when a Stokes line is crossed.

Borel plane:
Stokes line < Line of singularities / branch points

resurgence: keeps track of all the Stokes jumps
(bridge equations)



Overview: a trans-series example

Stirling expansion for ¢(z) = % InT(z):

i1 ., 1 1 . ., 174611
Y(142) ~Inz+o — 5+ 55 — w5 T g600.0 -

>

>

>

functional relation: (1 +2) = ¢(2) +1 v

z
reflection formula: ¢(1+2) —¢(1—2) = L — 7 cot(r 2)
formal series = Im(1+iy) ~ 7% +I
reflection = Im(1 4 dy) ~ _% + 47 chzl e—2mky

“raw” asymptotics inconsistent with analytic continuation

resurgence fixes this: series — trans-series = global
properties v’

infinite number of exponential terms in trans-series



An overview of the resurgence program in physics

>

>

EC&HG,S ideaS iIl QM [Pham, Delabaere, Dilinger, Voros, Zinn-Justin |
Hyperasymptotics [Dingle, Berry, Howls|

Topological string theory, matrix models, localization

[Marino, Schiappa, Weiss, Aniceto, Edelstein, Couso-Santamaria, Vaz, Vonk|

Renormalon puzzle in 2d ¢ models [cherman, Dobrowski, Dorigoni,
Dunne, Unsal] and 4d ga.uge theories [Argyres, Unsal]

Quantum integrable models, SUSY gauge theories [oB, Dunne;

Gorsky, Milekhin; Krefl; Kashani-Poor, Troost]

related:

Lefschetz thimbles [Pham; Fedoryuk; Howls; Witten et. al.; Tanizaki et. al., ... |

Lefschetz thimbles < Monte Carlo [Scorzato et. al.; Aarts et. al.; GB,
Bedaque, Alexandru]

Thimbles and new saddles in QM [Behtash, Schaefer, Sulejmanpasic, Unsal|

More mathematically [Garoufalidis, Costin, Getmanenko, Kontsevich, ...]



Overview: Resurgence and QFT; renormalon puzzle

In QFT: extra singularities due to momentum space integrals of
Green’s functions “Renormalons” [t Hoott]

Borel plane
instanton/anti instanton ~ 25,

N

UV renormalons ~-n/p, IR renormalons ~ n/p,

Claim: semiclassical realization of IR renormalons < non-BPS defects
with S ~ %

v

semi-class. deformed Yang-Mills (bions) [Argyres, Unsal]

v

SUSY gauge theories [Dunne, Shifman, Uns‘dl]

v

CPYN (fractional instantons) [Dunne, Unsall

v

PCM (no instantons!) (fmctional unitons} [Cherman, Dorigoni, Dunne, Unsa]]

O(N) (no instantons!) (S = S/ﬂo = S/(N — 2)) [Dunne, Unsal|

v



1D quantum mechanical systems

This talk: 1D quantum mechanical systems

—— —+V(2)Y=u(N,h)¢

> One can derive trans-series from first principles
» Prototype for some phenomena in QFTs
» Arise upon compactification of o models R* = R x S}

> Relevant for SUSY gauge theories in D=2,4 [Nekrasov, Shatashvili]
Quantum integrable systems < SUSY gauge theories

> ODE = 2D integrable mOdels [Dorey, Tateo; Voros; Bazhanov, Fateev,

Lukyanov, Zamolodchikov; ...|



1D quantum mechanical systems

This talk: (for concreteness)

e (mostly) Mathieu equation (cs, bunne; 1501.05671)

» Most of the conclusions are more general

» Encodes the vacua of N'= 2, SU(2) theory in its spectrum
u < tr{®2), moduli space coord.


http://inspirehep.net/record/1340869?ln=en

1D quantum mechanical systems

e Lamé equation

REd¥p 1/ ., h? 2
_2dz2+8<M ‘4>@(2+“)¢—W

» potential is doubly periodic, tunneling can occur along each
period

» additional instantons —“ghost instantons” Sy < 0

» N =2* SU(2) theory: M=adjoint scalar mass
N=4+0<M<oo—->N=2



Mathieu equation



Spectrum of Mathieu equation (with Bloch b.c.)

u(h)
2.5
2.0

1.5

1.0f

0.5

-0.5

-1.0

> u ~ —1: small bands, tightly bound states (dyonic)
> u ~ 1: gaps ~ bands , crossover region (magnetic)

> u > 1: small gaps, plane waves (electric)



Spectral regions and expansions

2 expansion parameters: N, h. Let A= Nh/2
» 3 spectral regions and gauge theory interpretations
» u ~ —1 “dyonic” : A < 1 asymptotic, trans-series
» u ~ 1 “magnetic” : A\ ~ 1 crossover region
> u > 1 “electric” : A > 1 convergent, poles

» Will show both in weak coupling and in strong coupling
expansions there are “instanton-like” (semi-classical)

contributions to u that are @(e~N/*) and O(e2Nlog),
» Instanton,/ anti-instanton < Borel poles

» complex instantons< poles in convergent expansions for u

A remark: Similar phenomenon ABJM at large N: non-perturbative
effects «» complex space-time instantons <+ poles in the 't Hooft expansion

[Drukker, Marino, Putrov; Grassi, Hatsuda, Marifio, ... |



Spectrum of Mathieu equation

u(h)
25
2.0
1.5

1.0

0.5

-0.5

—1.0M%

i)
Weak coupling expansion: Nh < 1



Weak coupling expansion (x < 1) : trans-series

localized states at minima, tunneling is exponentially suppressed

1] n2 1\? 1
ﬁ3

1\* 3 1
N+ Z SN+ Z
162 ( +2> +4( +2>

+£6(1+ O(R)) cos® + 2 (f1(N,h) 4 cos 20 fo(N, h))

1—instanton order 2—instanton order

+...

N-1/2
2 25 (352) /

> anstanton fugacity: & = /=g exp [7%}

» wu has a trans-series expansion. trans-monomaials:
R™ (perturbative fluctuations), £&¥ (multi instantons),
log(—1/h)! (quasi zero modes, start at O(£2): in f1, f»)



Resurgence relations

large order growth of perturbative series:
5 1 13 1
I TT AR S N

instanton anti-instanton fluctuations: (leading ambiguity)

5 (h\? 13 /h\*
7 ~ me2Simfp 2 () 2 ()
mu(0, h) Te ( 5 (16) 3 (16> )

This is just the first step of an infinite tower of
perturbative- nonperturbative cancellations!



Graded resurgence triangle (pune, tnsay

f(0,0)
e‘iﬁl“gf(l.m ) e_i’{_wfu’—l)
67%+2i0f(2,2) ei%f@,o) 67%7%0]0(2-*2)
e_sil +3mf(3,3) 6_%“9]’1(3,1) T 6_3i1 _wf(ii-fl) 6_%_31'9]8(37*3)
67%+2i0f(4,2) ei%fﬂﬁ) 67%721‘91&4-*2)

Resurgent cancellations happen at every instanton order and are
graded by the topological charge.



Exact quantization and trans series

Trans-series can be constructed from the exact quantization
relations. Morally: all orders Bohr-Sommerfeld

(32)‘3 A/ B (32)‘3 e A/ \F
- =71 5 tT¢€ - 7 v = \/ —cost
I I'(5—B) h I'(5+B) m

Need two functions A(u, i) and B(u, h)

v

v

B(u, h): local perturbative series, easy to compute
(Rayleigh-Schrodinger)

v

A(u, h): instanton fluctuations, quite hard to compute !

v

Conjectured by Zinn-Justin & Jentschura (‘05)

v

Can be derived via uniform WKB [Dunne, tnsall



Perturbative Non-perturbative connection

A(u, h) and B(u, h) are in fact related!

B 2 A(B
8“( ) _|_ h_ (2B —|— ha < )> = 0 [Dunne, Unsa]]

0B 16 Oh

» Knowledge of B(u, /) from ordinary perturbation
theory is enough to reconstruct the whole trans-series!.
Perturbation series encodes all the information!

» This is a constructive equation.
first n terms of p.t. =first n terms of instanton
fluctuations



A geometric picture

» In this form, the P <+ NP relation is somehow
mysterious. But there is a simple geometrical
interpretation. To see it, we need to go to the
Bohr-Sommerfeld picture.

» Set i =0 for now. Classically the (complex) phase
space can be identified with the moduli space of
complex tori.

1

H = §p2 +cosz=u— y2 = (wQ —1)(x — u) : g=1 elliptic curve



A geometric picture

» Semi-classical Bohr-Sommerfeld actions: integrals of abelian
differentials over the two independent cycles of torus

ao(u):gj/\/u—V(z)dz:\f/”f:;dx
vy ¥

ﬂ \/5 fu—x
aé)(u):T - \/U—V(Z)dzz7 o md.’]}

s



A geometric picture

» leading order BS differentials <> Seiberg-Witten
diﬁerentials: ap < scalar v.e.v. (up to monodromy),

Mn,m = ‘nao + ma()Dl, etc. |Gorsky, Krichever, Marshakhov, Mironov, Morozov]|

> ag(u, h) = A(N + 1/2): determines the location of the band,
generates perturbative expansion <> B

» a}’: determines the width of the band o e o e=S1/h,
non-perturbative: instanton + fluctuations < A

> ag and al are related via Riemann bilinear identity

D
o200 pdao _ 20 _ 151
du 0 du ™ 2T
T = 27 = period of the harm. oscll. at the bottom of the well

_ 2% _is



A geometric picture

» For h # 0, higher order corrections:
a(u, h) = ag(u) +h2ai(u)+... aP(u,h) = af (u) +h%aP (u)+. ..

» The bilinear identity gets modified in a very special way

[GB, Dunne]
B\ (0PN a2
“""on) ou oh ) ou =

> “quantum Riemann bilinear identity”

» From this equation one can get the Dunne-Unsal P < NP
relation. But this equation is valid everywhere in the
spectrum!

» It can be proven via Matone’s relation [Gorsky, Milekhin; GB,

Dunne |



Spectrum of Mathieu equation

Strong coupling expansion: Nh > 1
u(h) ' U’




Strong coupling expansion (A > 1): convergent series

expansion around a free particle on a circle. For N > 1:

u (N, R)  ~ %2 <N2 " m (2)4 * 32(N2S—NIQ):(;2 -9 (2)8 +>

" P,(N)
8 4 T, (N2 _kQ)QL%J

—Q™ . Q=4/n°

» u has a convergent expansion in 1/h%.
» Hill’s determinant: cosmv = 1 — 2A(0) sin®(m+/2u/h2)

» can be derived from continued fractions

2Qu — N? — Q _ Q?
< 2Qu-(N=202— g (N42)2-2Qu- o —
» for given N only good up to the level @2V ~ 1/A*N due to

poles



Strong coupling expansion (A > 1): convergent series

gauge theO?”y detOU?” [Alday, Gaiotto, Tachikawa; Marshakov et. al.; ...]

00 2n
. A? _
Zznst.(a; 61,62) — § : <6162> QAI(D”], [ln])’ QA(Y,Y') = (A|Ly L_y/|A)

n=0

» from AGT: A = L (a2 _ (€1+4€2)2> ., c=1-— 6(e1+e2)?

€1€2 €1€2

> ¢ — 0 limit = twisted superpotential: [Nekrasov, Shatashvili]

W]’ygt (a;€1) = —% 6121310 € log (Zinst. (a, 1, 62))

» identify €y = h, a = Nh/2

i OWNsh W 8A* 8A® (5N% +17) N
27 9A 8 \ (V2

- —1)7i4+(N2—4) (N2 —1)*n8



Strong coupling expansion (A > 1): convergent series

back to QM: level splitting
» In the limit A > 1 there are small gaps in the spectrum
» u°f (N, h) determines the center of the gap
» at large N the gaps are exponentially small

> gap width:

h2 1 2\ 2V 2\*
A gap Text “ 1 “
N 4 (N-1(N — 1)) <h> o (<ﬁ)
NR / e \2N
~ 5 (w7) , N>1

Is there a semi-classical interpretation of the exponentially small
gaps at strong coupling, similar to the instantons for the case of
exponentially small bands at weak coupling ?


Gokce Basar
Text


Strong coupling expansion: complex instantons

Is there a semi-classical interpretation of the exponentially small
gaps at strong coupling, similar to the instantons for the case of
exponentially small bands at weak coupling?

YES! complex instantons
» For v > 1, the turning points are complex.
» aP goes around these complex turning points.

» At the limit 7 < 1 and N > h~! which corresponds to the
spectral region u > 1, semi-classical approximation can be
used:

gap 2 usf —2°TmaP N h2 e \2N
Auy”™ ~ 2 e & (%)

T ON 27

=

2

UN%QNQ-F...:%_F... , mIm[aP] ~ v2u (In(8u) — 2) + ...



Strong coupling expansion: complex instantons

A physical analogy:
Schwinger effect in monochromatic electric field & cos(wt)
» Pair production rate behaves differently for different ws
= mw

> ="z

> v < 14 constant field, v > 1 <+ multi-photon limit

>In0uranalogy:hz% ., u=—14292 N=7
m2
2 T <l
PQEDzei g"rg('Y)N
7ﬁil 4 4m/w
A 2 ()

» in the worldline formalism:
v < 1 4= real instantons, v > 1 <+ complex instantons



Fluctuations around complex instantons

» use the “quantum bilinear identity” to relate u¢/ (N, h) with
Aufi?, similar to the P <> NP relation in the weak
coupling regime

v~ T (Nf"_(ii)zml (&)
S (1) g v = Pl ()

» The level splitting term (“gap width”) has the same
structure with the leading pertrurbative expansion.

> PTL (N), Rn(N) are related! [GB, Dunne, Unsal, in prep]

» New results for Mathieu equation!!



Weak and strong coupling expansions

weak coupling expansion, Nh < 1: deep down in the well,
tightly bound states, multi instantons and fluctuations around
them, trans-series

S n < < N_1/2 -8 oo n
uE (N, B) ~ 300 en (N + 5 (%) e n 3% dn(N)R™ +

» Borel poles at two-instanton location

strong coupling expansion, Nh > 1: far above the barrier, plane
waves, degenerate p.t., convergent series

(2 2N

2N2 —~N—-1 an(N 2 N—1 B,(N)
WV = BN e 2 (R N s

» Poles at two- complex instanton location

crossover: At the barrier top when N/ ~ 1 the instantons
proliferate. The bands and gaps are of comparable widths.



The crossover region (A ~ 1)

» when N/ ~ 8/7 the tightly bound states transform into
plane waves.

» Approached from below the barrier, the real instantons
proliferate.

tayonie ~ —1+ £ [1= & — L (8)* = .| + 0(n) =1+ O(h)

s

» Approached from above the barrier, the complex instantons
proliferate.

Uelectric ™ % [(A)Z + % (%)2 +.. } + O(h) =1+ O(h)

™

» In the gauge theory side, it is where low energy effective
theory is that of weakly coupled monopoles (i.e. aé) — 0).



Mathieu spectrum; full picture

weak coupling expansion, Nh < 1: resurgent trans-series:

o0 . N—-1/2 _ 8 oo n
uE (N B) ~ 0 en(N)A" + 22 (32) e h 2% dn(N)R" +

» asymptotic, Borel poles at two-instanton location

strong coupling expansion, NA > 1: convergent series
2N

2N2 ~N—1 a, (N 2 N—1 Bn(N
WV, ) = BXESNdal) 2 (1(1)V o SN B

» Poles at two- complex instanton location

crossover, Nh ~ % proliferation of instantons

CN ﬂ‘2 2
WE 1 Ty (@-m (W1 . ev~o0()



Lamé equation



Lamé equation and ghost instantons

(GB, Dunne, Unsal; 1308.1108)

REd¥ 1/ ., h? 2
_2d,22+8<M ‘4>@(2+“)¢—W

Weierstrass elliptic function: Doubly periodic, meromorphic

1 1 1
o) = 5+ 3 (5 x)

AEA
A = {nw; + mws|(n,m) € Z2/(0,0)}

(for gauge theory: M=adjoint scalar mass ,
N =4+ 0< M <oo— N =2, u<+>moduli space coordinate, )


http://inspirehep.net/record/1246808?ln=en

Lamé equation and ghost instantons

2iK’

» The potential is doubly periodic.

» Set the periods to be along real and imaginary axes

» Tunneling along real and imaginary axes:

Real and ghost instantons

G R4
G

N

NN

2K

actions:

Sz(m)  2sin”'(y/m) 22
h B hvmm!  — h
Sg(m)  2sin”H(v/m) - 2

h hvmm/ — h
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Lamé equation and ghost instantons
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Lamé equation and ghost instantons
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Lamé equation and ghost instantons
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Lamé equation and ghost instantons
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Lamé equation and ghost instantons
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Lamé equation and ghost instantons

2iK’
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Lamé equation and ghost instantons

The ghost instantons have negative actions. We do not
include them in the path integral.

> Gl et i
k

Nevertheless they do have influence on physical
quantities:

» They contribute to large order perturbation series.

» They can be important for extending the theory to
complex /negative couplings.

» They can play a role in quantum phase transitions.



Lamé equation and ghost instantons

The large order growth of perturbation theory

ratio (d=1)

naive ratio (d=1)

!

. 1100

| # ¥ i i ﬁ il ” H ‘
2 1 T 20T n 0.2
5 T 715 | ‘1201 K \”‘
-1 L 5015 20 255
without ghost instantons with ghost instantons

N_En 1 B ( 1)n+1
anlm) ~ = '((Sﬁ<m>>n+1 |sgg-<m>\n+1>



Lamé equation and ghost instantons

The large order growth of perturbation theory

ratio (d=1)

naive ratio (d=1)

VR ) AL “M‘ R R
S0l | Ezo\i K w”\
. I :

e

02

10 15 20 5"

without ghost instantons

16

an(m) ~ ——nl!

1

with ghost instantons

(-1

™

((Szf(m))”“

|5gg‘(m)\"“>

Notice the leading singularity is at [ZZ] or [GG]



Lamé equation and ghost instantons

Borel plane:

u plane n-0
—e ° o— o oo B
28,5  Seg S;7 28,738,748, m=1/4
—e ® ° ° ® ° m=1/2
—0—0—0—20 ° P m=3/4
oo o m=1

» The distance of the singularity to origin determines the
how dominant its contribution to the large order
growth is.



Lamé equation and ghost instantons

Quantum phase transition:

self-duality for the Hamiltonian

d? 1 _ d? 1
+ 5 V(zlm) 22 H,y = + 5 V(zlm’)

Hy =2 4
m dz?2 h dz?2 h

m : parameter that controls the period

_log m,

non-analytic at origin



lesson: take all the saddles seriously, even though they
seem unphysical

«0O)>» «F>r «=>»

<

it
N
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Resurgence and Hydrodynamics [Heller, Spalinski; GB, Dunne [1509.05046] |

» resurgence: generic feature of differential equations
» boost invariant conformal hydrodynamics

» second-order hydrodynamics: TH = £ ut u” + T'"

d& 4
e
T 35-1-
dd 4 41 LA 9
@ 20 g Thg Mg
g 37 3T 2 n?

[Baier, Romatschke, Son, Starinets, Stephanov |

asymptotic hydro expansion: £ ~ 74% ( - % + .. )

» formal series — trans-series

En~ <‘§pert—Hzfé’V72/:5 x (fluc) + e 25T (fluc) + ...

» non-hydro modes clearly visible in the asymptotic hydro
series



Resurgence and Hydrodynamics [Heller, Spalinski; GB, Dunne [1509.05046] |

study large-order behavior:

I'(k+p) Sy S%cip
€Ok~ 51 o TR (Cl’°+ FAA—1 (k+B-Dk+5-2)

Co,n (large order)

& 1-term @ 3-terms Hydro. expansion Borel plane
Co,n (exact)
’ 05
1.0},
1,001\
-20 -10 3T 20
0.99 A
—05 2Crt
0.98
100 200 300 400 500" -1.0

» resurgent large-order behavior and Borel structure verified
to 4-instanton level

» = trans-series for metric coefficients in AdS 7



Conclusions

» Resurgence provides a concrete relation between
perturbative and non-perturbative expansions in a vast
class of physical problems

» Trans-series contains all the information to construct the
underlying function and its global properties

» Different limits of the problem might have different
expansions, similar perturbative-non perturbative relations
exist

» In large N matrix models, string theory and QFTs there
are very similar phenomena described here

» In QM how general is this construction? geometric
construction? relation to complex integrable models?

» Formulation in terms of Picard-Lefschetz theory



