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model from world sheet Σ to target space X.

Φi : Σ → X

Topological string theory is the most interesting and free of world sheet

anomaly, when the target space X is a Calabi-Yau 3-fold.

• There are two types of topological twistings: A-model and B-model.

We are interested in the topological string partition function

Z = exp(
∞
∑

g=0

λ2g−2F (g)(ti))

where ti are Kahler moduli in the case of A-model, and complex struc-

ture moduli in the case of B-model.

• Topological A-model counts holomorphic curves in target space X,

and has a rigorous mathematical formulation known as Gromov-Witten

theory. Topological B-model is a complex structure deformation theory

known as Kodaira-Spencer theory.
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• Topological strings compute physical couplings, world-sheet instanton

corrections, R2 terms in superstring compactifications, geometrically

engineer 4-d quantum field theory, etc.

• Mirror symmetry relates topological A-model on manifold X to topo-

logical B-model on its mirror manifold. Some very difficult mathemat-

ical problems of enumerative geometry can be easily solved by physical

methods.

• Related to black hole physics according the OSV conjecture.
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• Many techniques have been developed to study topological string the-

ory. For example, topological strings on a class of non-compact toric

Calabi-Yaus are essentially solved to all genera by topological vertex

formalism.

• A long standing problem: How to solve topological strings on compact

Calabi-Yau spaces? Progress are very limited.

• A famous example: the Quintic manifold, a degree 5 hypersurface in

CP
4.

Candelas et al solve the prepotential, i.e. the counting genus zero

curve, using physical idea of mirror symmetry.

The mirror symmetry results are later proven by mathematicians using

Kontsevich’s localization methods, Givental; Lian, Liu, Yau.

At higher genus, the only available approach is the BCOV( Bershadsky,

Cecotti, Ooguri, Vafa) method. One use holomorphic anomaly equa-

tion to compute F (g) recursively in genus g. This was done by BCOV

(in 1993) up to genus 2.
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• An example of BCOV diagrams, at genus 2.
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• However, it is difficult to push the BCOV methods to higher genus.

Two major difficulties are the followings.

1. Holomorphic ambiguity problem. The holomorphic anomaly equa-

tion only determine F (g) recursively in terms of lower genus results

up to a holomorphic ambiguity, a meromorphic function in the mod-

uli space with a finite number of unknown constants. One need find

alternative ways to fix these unknown constants.

2. Computational complexity in BCOV method: the number of dia-

grams grows exponentially with genus. A normal laptop can handle

the diagrams only up to about genus 6, even for the simplest one

parameter models such as the quintic.
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• The calculation was pushed up to genus 3 for the quintic, using further

information from the counting of BPS states known as Gopakumar-

Vafa invariants. Katz, Klemm, Vafa, hep-th/9910181.

• In this talk I report major progress in this question.

1. We solve the holomorphic anomaly equation directly without the

BCOV Feynman diagrams, by using the idea of formulating topolog-

ical strings as polynomials Yamaguchi, Yau, hep-th/0406078. The

computational complexity of the method grows only polynomially in

genus.

2. We discover novel boundary conditions at the conifold point of the

moduli space, i.e. the “gap” condition c.f. Huang, Klemm, hep-

th/0605195, which fix the holomorphic ambiguity to a large extend.

• We are able to solve a class of one-parameter Calabi-Yau models to

very high genus, e.g. genus ∼ 26 (up to genus 51 in principle) for the

quintic.
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• Picard-Fuchs equation, periods, and mirror map.
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• The Kahler potential and metric

K := − log i(X̄iFi −XiF̄i), Gψψ̄ := ∂ψ∂ψ̄K
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Yamaguchi and Yau, hep-th/0406078
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• Define the following generators

Ap :=
(ψ∂ψ)

pGψψ̄

Gψψ̄
, Bp :=

(ψ∂ψ)
pe−K

e−K
, (p = 1,2,3, · · · )

C := Cψψψψ
3, X :=

1

1 − ψ

These generators satisfy the derivative relations

ψ∂ψAp = Ap+1 − A1Ap, ψ∂ψBp = Bp+1 −B1Bp, ψ∂ψX = X(X − 1)

• The independent generators are (A1, B1, B2, B3, X). One can use the

Picard-Fuchs equation and special geometry relation to show B4 and

A2 are polynomials of (A1 ≡ A,B1 ≡ B,B2, B3, X).
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• Define a change of variable

(A,B,B2, B3, X) → (u, v1, v2, v3, X)

by the followings

B = u, A = v1 − 1 − 2u, B2 = v2 + uv1,

B3 = v3 − uv2 + uv1X − 2

5
uX
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• The Main Proposition: Each Pg, (g ≥ 2) is a degree 3g − 3 inhomoge-

neous polynomial of v1, v2, v3, X, where one assigns the degree 1,2,3,1

for v1, v2, v3, X, respectively. Yamaguchi and Yau.

• The number of terms ng in Pg grows polynomially with genus g.

ng � (3g − 3)4
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• The generators (Ai, Bi, X) are modular functions of the monodromy

group of the quintic, a subgroup of Sp(4, Z).

• We use the holomorphic anomaly equation to compute the Pg recur-

sively, up to a holomorphic ambiguity

f(g) =
3g−3
∑

i=0

ciX
i

The degree is fixed by the maximal degree of the poles at the conifold

point.

• There are 3g − 2 unknown constants at each genus g.
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• We can expand the topological strings around these singular points. In

the holomorphic limit, the Kahler potential and metric go like

e−K ∼ ω0, Gψψ̄ ∼ ∂ψt,
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• The period ω0 and mirror map t can be solved asymptotically at each

singular point of the moduli space by the Picard-Fuchs equation.
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• The topological string amplitudes are

F
(g)
orbifold = lim

ψ̄→0
ω

2(g−1)
0 (

1 − ψ

ψ
)g−1Pg ∼

Pg

ψ
3
5(g−1)

We expect F
(g)
orbifold to be regular at the orbifold point, based on earlier

works (e.g. Katz, Klemm , Vafa).

• Pg is a power series of ψ, starting from a constant. This imposes

⌈3
5
(g − 1)⌉

number of conditions on the holomorphic ambiguity in Pg.



• Boundary condition at the conifold point ψ = 1. Picard-Fuchs equation

around z = ψ − 1 have four solutions that go like

~Π =











ω0
ω1
ω2
ω3











=













1 + O(z)

z+ O(z2)

z2 + O(z3)

ω1 log(z) + O(z4)















• Boundary condition at the conifold point ψ = 1. Picard-Fuchs equation

around z = ψ − 1 have four solutions that go like

~Π =











ω0
ω1
ω2
ω3











=













1 + O(z)

z+ O(z2)

z2 + O(z3)

ω1 log(z) + O(z4)













• We define a dual mirror map tD = ω1
ω0

. We find the topological strings

around the conifold point has a “gap” structure in the tD coordinate

F
(g)
conifold = lim

z̄→0
ω

2(g−1)
0 (

1 − ψ

ψ
)g−1Pg

=
(−1)g−1B2g

2g(2g − 2)t
2g−2
D

+ O(t0D),

This fixes 2g − 2 coefficients in the holomorphic ambiguity.



• Boundary condition at the conifold point ψ = 1. Picard-Fuchs equation

around z = ψ − 1 have four solutions that go like

~Π =











ω0
ω1
ω2
ω3











=













1 + O(z)

z+ O(z2)

z2 + O(z3)

ω1 log(z) + O(z4)













• We define a dual mirror map tD = ω1
ω0

. We find the topological strings

around the conifold point has a “gap” structure in the tD coordinate

F
(g)
conifold = lim

z̄→0
ω

2(g−1)
0 (

1 − ψ

ψ
)g−1Pg

=
(−1)g−1B2g

2g(2g − 2)t
2g−2
D

+ O(t0D),

This fixes 2g − 2 coefficients in the holomorphic ambiguity.

• An arbitrary change of the basis ω0 → ω0 + b1ω1 + b2ω2 does not affect

this gap like structure.
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• Near the conifold point of the moduli space, a D3-brane wrapping

a vanishing 3-cycle appears as a charged, BPS, extremal, and nearly

massless black hole in space-time, Strominger, hep-th/9504090.

• A physical explanation of the gap condition: Integrating out the mass-

less black hole state in a graviphoton background...
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integrate out a charged BPS hypermultiplet of e = m = t
λ
, and Lorentz

Group SO(4) = SU(2)L × SU(2)R representation

[(
1

2
,0) + 2(0,0)]

⊗

(jL, jR)

in a graviphoton background where the self-dual part of the graviphoton

field strength is F+ = λ.

• The Gopakumar-Vafa-Schwinger Computation generates the following

term in the effective action

S =

∫

d4xF(t, λ)R2
+,

where F(t, λ) =

∫ ∞

ǫ

ds

s

Tr (−1)F exp(−st) exp(−2sλσL)

(2 sin(sλ2 ))2

• In type IIB compactification near the conifold, there is only one light

particle: the massless black hole.



• The topological string near the conifold should be, (up to regular terms

of the period t),

F(λ, t) =

∫ ∞

ǫ

ds

s

exp(−st)
(2 sin(sλ2 ))2

=
∑

(
λ

t
)2g−2(−1)g−1B2g

2g(2g − 2)
+ O(t0)

This is precisely the gap condition.
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of manifold M , Faber, Pandharipande, math.ag/9810173,

lim
t→∞

F
(g)
A-model =

(−1)g−1B2gB2g−2

4g(2g − 2)(2g − 2)!
χ(M)

• The world sheet instanton corrections

F
(g)
instanton =

∑

β∈H2(M,Z)

r
(g)
β exp(2πitβ)

where r
(g)
β are rational numbers, known as the Gromov-Witten invari-

ants of holomorphic maps.

• Re-organize the world sheet instanton contributions

∞
∑

g=0

λ2g−2F
(g)
instanton =

∞
∑

g=0

∑

β

∞
∑

m=1

n
(g)
β (

e2πitβm

m
)(2 sin

mλ

2
)2g−2
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• The Gopakumar-Vafa invariants n
(g)
β are integers counting BPS D0-D2

brane bound states.

• The quintic example: one kahler modulus, β = d is the degree of the

holomorphic map. The GV invariants

g d=1 d=2 d=3 d=4 d=5

0 2875 609250 317206375 242467530000 229305888887625
1 0 0 609250 3721431625 12129909700200
2 0 0 0 534750 75478987900
3 0 0 0 8625 -15663750
4 0 0 0 0 49250
5 0 0 0 0 1100
6 0 0 0 0 10
7 0 0 0 0 0

• Boundary condition: at each genus, the Gopakumar-Vafa invariants

vanish n
(g)
d = 0 for low degree d holomorphic maps.
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vanishing GV invariants at genus g, sensitive to specific models.



Summary of Boundary Conditions at genus g

• Holomorphic ambiguity: 3g − 2 unknown constants.

• The expansion around orbifold point ψ = 0 provides ⌈35(g−1)⌉ boundary

conditions.

The expansion around conifold point ψ = 1 provides 2g − 2 boundary

conditions.

The large complex structure modulus/large volume limit ψ = ∞ pro-

vides ag+1 boundary conditions, where ag is the number of low degree

vanishing GV invariants at genus g, sensitive to specific models.

• Count the number of unknown constants

3g − 2 − (⌈3
5
(g − 1)⌉ + 2g − 2 + 1 + ag) = [

2

5
(g − 1)] − ag



• We have enough/redundant data to compute topological strings if

ag ≥ [
2

5
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• We have enough/redundant data to compute topological strings if

ag ≥ [
2

5
(g − 1)]

• This is true for low genus, (up to g ∼ 51 for the quintic) . However,

asymptotically

ag ∼ √
g, when g → ∞

So far our calculation is limited only by the power of our computational

facilities.
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• The analysis can be straightforwardly generalized to one-parameter

Calabi-Yau models, realized as hypersurfaces or complete intersections
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• We solve all these 13 models to very high genus. The singular behaviors

around the conifold point is universal.

• On the other hand, we discover a rich variety of singularity structures

around the orbifold point. The 13 models fall into 4 classes.
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(2). One massless charged state. The F g exhibit the “gap structure”

similar to the conifold point, imposing boundary conditions. This in-

cludes models X4,2(1
6), X6,2(1

5,3).

(3). Two massless charged states. The interactions between mass-

less states destroy the “gap structure”, no boundary conditions at the

orbifold point. This includes models X3,2,2(1
7).

(4). Multiple massless charged states. The F g are singular with no

obvious structures at the orbifold point. However the scaling of masses

of these light states imposes some boundary conditions. This includes

the model X4,3(1
5,2), X6,4(1

3,22,3).
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• We make many predictions for the Gopakumar-Vafa invariants. The

counting of BPS states of a degree d can be calculated from the coho-

mology of the moduli space M of the D0-D2 brane bound states. This

algebraic geometric counting is known as Castelnuovo’s theory. (Katz,

Klemm, Vafa, 1999)

• The “top genus” numbers are the easiest to calculate.

n
g
d = (−1)dim(M)χ(M)

• Examples from the quintic:

1. Genus g = 6, degree d = 5: n6
5 = 10, n

g
5 = 0 (g ≥ 7).

2. Genus g = 16, degree d = 10: n16
10 = −50, n

g
10 = 0 (g ≥ 17).
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dim(Pk) = k, χ(Pk) = k+ 1,
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G(k, n). The complex dimension and Euler number are

dim(Pk) = k, χ(Pk) = k+ 1,

dim(G(k, n)) = (k+ 1)(n− k), χ(G(k, n)) =

(

n+ 1
k+ 1

)

• Consider a complete intersection of degree (1,1,5) in P4. This is a

curve of genus 6, degree 5. The moduli space of curves in the quintic

is Grassmannian G(2,4), so we recover the BPS number

n6
5 = (−1)3·2

(

5
3

)

= 10

• Similarly, consider a complete intersection of degree (1,2,5) in P4. This

is a curve of genus 16, degree 10. The moduli space of curves in the

quintic is P4 × P9, so we recover the BPS number

n16
10 = (−1)4+95 · 10 = −50



Applications for black hole physics

• Compactify M-theory on a compact Calabi-Yau 3-fold. The 5-D super-

gravity has a BPS black hole solution (BMPV black hole) with gravipho-

ton charge Q, angular momentum J of the SU(2)L ⊂ SO(4). The

classical entropy of the black hole is one quarter of the horizon area

S = 2π

√

Q3 − J2
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• An open problem: How to count the black hole microstates? Much

more difficult than the Strominger-Vafa black hole.



• Katz, Klemm, Vafa (KKV), 1999: The black hole microstates are

counted by topological strings. For a black hole with 2-brane charge d

and SU(2)L angular momentum J = m, the number of states are

Nm
d =

∑

r
nrd

(

2r+ 2

r+ 1 +m

)

The graviphoton charge are related by the supergravity attractor equa-

tion Q = (2
9)

1
3 d√

κ
, where κ is the intersection number.
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• Katz, Klemm, Vafa (KKV), 1999: The black hole microstates are

counted by topological strings. For a black hole with 2-brane charge d

and SU(2)L angular momentum J = m, the number of states are

Nm
d =

∑

r
nrd

(

2r+ 2

r+ 1 +m

)

The graviphoton charge are related by the supergravity attractor equa-

tion Q = (2
9)

1
3 d√

κ
, where κ is the intersection number.

• This is a very natural proposal since the Gopakumar-Vafa invariant nrd
is a supersymmetric index that remains constant in the moduli space.

• Difficulty: For non-compact Calabi-Yaus, the KKV formula can not be

reliably applied to count 5D black hole microstates, since this is not

really a compactification to 5D supergravity. There were not much

computations of the Gopakumar-Vafa invariants for compact Calabi-

Yau available (before our paper).



• We use our new results and the KKV formula the count micro-states.

Consider e.g. angular momentum m = 0,

S = log(N0
d ) =
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• We use our new results and the KKV formula the count micro-states.

Consider e.g. angular momentum m = 0,

S = log(N0
d ) =

4π

3
√
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1
2)

Topological string data provide the values

f(d) =
log(N0
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3
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=
4π

3
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+
b2

d2
+ · · ·

for d up to a finite degree.

• The quintic example

2 4 6 8 10 12
d

3

4

5

6

f HdL
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• For all 13 models, the KKV formula for counting micro-states con-

firms the macroscopic black hole prediction of leading coefficient with

impressively small error of 1∼ 3 % .



Scaling behavior of Donaldson-Thomas invariants

• The scaling behavior of Donaldson-Thomas invariants D(λ2d,λ3n) has

important implication for OSV conjecture. Study the scaling behavior

log(Dλ2d,λ3n) ∼ λk, λ → ∞.

Naively the scaling exponent k = 3, but the OSV conjecture likely

implies k = 2. (F. Denef and G. W. Moore, hep-th/0702146)
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• The scaling behavior of Donaldson-Thomas invariants D(λ2d,λ3n) has

important implication for OSV conjecture. Study the scaling behavior

log(Dλ2d,λ3n) ∼ λk, λ → ∞.

Naively the scaling exponent k = 3, but the OSV conjecture likely

implies k = 2. (F. Denef and G. W. Moore, hep-th/0702146)

• Our analysis indicates that the value of k is indeed universal and close

to k = 2. This strongly suggests that the “mysterious cancellations”

that eventually make possible to extend the OSV conjecture to small

coupling, actually take place.



A matrix model description?



A matrix model description?

• Recently, Eynard and Orantin, math-ph/0702045 propose a formalism

to compute topological expasions associated with an algebraic curve,

based on matrix models. This formalism can be used to compute

topological strings on certain non-compact toric Calabi-Yau spaces that

can be constructed from an algebraic curve (Bouchard, Klemm, Marino,

Pasquetti).



A matrix model description?

• Recently, Eynard and Orantin, math-ph/0702045 propose a formalism

to compute topological expasions associated with an algebraic curve,

based on matrix models. This formalism can be used to compute

topological strings on certain non-compact toric Calabi-Yau spaces that

can be constructed from an algebraic curve (Bouchard, Klemm, Marino,

Pasquetti).

• Our boundary condition at the conifold point is reminiscent of a matrix

model expansion. However the matrix model method can be applied to

non-compact Calabi-Yau manifolds at the moment.
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• Recently, Eynard and Orantin, math-ph/0702045 propose a formalism

to compute topological expasions associated with an algebraic curve,

based on matrix models. This formalism can be used to compute

topological strings on certain non-compact toric Calabi-Yau spaces that

can be constructed from an algebraic curve (Bouchard, Klemm, Marino,

Pasquetti).

• Our boundary condition at the conifold point is reminiscent of a matrix

model expansion. However the matrix model method can be applied to

non-compact Calabi-Yau manifolds at the moment.

• We use this method to study gravitational couplings in the N = 2

SU(2) Seiberg-Witten theory, and compare the results with Nekrasov’s

formulae. The matrix model method is more complicated than the

BCOV method, but without ambiguity in the recursion relations. It

also provides additional insight into open topological string amplitudes.
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Conclusion and Future Directions

• We have made significant progress in solving topological strings on

compact Calabi-Yau spaces. It would be interesting to see whether

one can completely solve it.

• It would be interesting to develop algebraic geometric theory to sys-

tematically verify or prove our predictions.

• Continue to explore the fascinating implications for the OSV conjec-

ture and black hole physics, higher curvature corrections to black hole

entropy.
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