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§1. Cartan eigenvectors and Toda masses

Let g be a simple finite dimensional complex Lie algebra ; (, ) will denote
the Killing form on g. We fix a Cartan subalgebra h ⊂ g ; let R ⊂ h∗ be
the root system of g with respect to h, {α1, . . . , αr} ⊂ R a base of
simple roots,

g = (⊕α<0gα)⊕ h⊕ (⊕α>0gα)

the root decomposition. Let

θ =
r∑

i=1

niαi

be the longest root ; we set

α0 := −θ, n0 := 1.

The number

h =
r∑

i=0

ni
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is the Coxeter number of g ; set ζ = exp(2πi/h).

For each α ∈ R choose a base vector Eα ∈ gα.

Let A = (〈αi , α
∨
j 〉)r

i ,j=1 be the Cartan matrix of R .

The eigenvalues of A are

λi = 2(1− cos(2kiπ/h)), 1 ≤ i ≤ r .

where
1 = k1 < k2 < . . . < kr = h − 1

are the exponents of R .

The coordinates of the eigenvectors of A have an important meaning in
the physics of integrable systems : namely, these numbers appear as the
masses of particles (or, dually, as the energy of solitons) in affine Toda
field theories, cf. [F], [D].

Historically, the first example of the system of type E8 appeared in the
pioneering papers [Z] on the 2D critical Ising model in a magnetic field.
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The aim of this talk is a study of these numbers, and of their
q-deformations.

Principal element and principal gradation. Let ρ∨ ∈ h be defined by

〈αi , ρ
∨〉 = 1, i = 1, . . . , r .

Let G denote the adjoint group of g, and

exp : g −→ G

the exponential map.

We set
P := exp(2πiρ∨/h) ∈ G .

Thus, AdP defines a Z/hZ-grading on g,

g = ⊕h−1
k=0 gk , gk = {x ∈ g| AdP(x) = ζkx}.

We have g0 = h.
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Fix complex numbers mi 6= 0, i = 0, . . . , r , m0 = 1 and define an element

E =
r∑

i=0

miEαi ,

We have E ∈ g1 ; Kostant calls E a cyclic element.

We define, with Konstant, [K], the subspace

h′ := Z (E ) ⊂ g

It is proven in [K], Thm. 6.7, that h′ is a Cartan subalgebra of g, called
the Cartan subalgebra in apposition to h with respect to the principal
element P .

The subspace h′ ∩ gi is nonzero iff i ∈ {k1, k2, . . . , kr} where
1 = k1 < k2 < . . . < kr = h − 1 are the exponents of ˇ. We have
ki + kr+1−i = h.

Set
h′(i) := h′ ∩ gki , 1 ≤ i ≤ r ;

CARTAN EIGENVECTORS



these are the subspaces of dimension 1.

Pick a nonzero vector e(i) ∈ h′(i) for all 1 ≤ i ≤ r , for example e(1) = E .

The operators ade(i) ade(h−i) preserve h ; let

M̃(i) := ade(i) ade(h−i) |h : h −→ h

denote its restriction to h.
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Theorem. For each 1 ≤ i ≤ r there exists a unique operator
M(i) ∈ gl(h) whose square is equal to M̃(i) such that the column vector
of its eigenvalues in the approriate numbering

µ(i) := (µ
(i)
1 , . . . , µ

(i)
r )t

is an eigenvector of the Cartan matrix A with eigenvalue

λi := 2(1− cos(2kiπ/h)).

The operators M(1), . . . ,M(r) commute with each other.

The proof is based on a relation between the Cartan matrix A and the
Coxeter element of our root system which will be discussed later.
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Relation to affine Toda field theories

Consider a classical field theory whose fields are smooth functions
φ : X −→ h where X = R2 (”space - time”), with coordinates x1, x2.

The Lagrangian density Le(φ) of the theory depends on an element
e ∈ h′ where h′ is a Cartan algebra in apposition to h.

We fix a C-antilinear Cartan involution ∗ : g
∼−→ g such that

h′(i)∗ = h′r−i).

We set

Le(φ) =
1
2

2∑
a=1

(∂aφ, ∂aφ)−m2(Adexp(φ)(e), e∗).

Here ∂a := ∂/∂xa, (, ) denotes the Killing form on g.

The Euler - Lagrange equations of motion are

De(φ) := ∆φ + m2[Adexp(φ)(e), e∗] = 0, (EL)
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where ∆φ =
∑2

a=1 ∂
2
aφ. It is a system of r nonlinear differential

equations of the second order.

The linear approximation to the nonlinear equation (EL) is a Klein -
Gordon equation

∆eφ := ∆φ + m2 ade ade∗(φ) = 0 (ELL)

It admits r ”normal mode” solutions

φj(x1, x2) = e i(kjx1+ωjx2)yj , k2
j + ω2

j = m2µ2
j ,

1 ≤ j ≤ r , where µ2
j are the eigenvalues of the square mass operator

M2
e := ade ade∗ : h −→ h

and yj are the corresponding eigenvectors.

In other words, (ELL) decouples into r equations describing scalar
particles of masses µj , which explains the name ”masses” for them.
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Due to commutativity of h′, for all e, e ′ ∈ h′,

[∆e ,∆e′] = 0.
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§2. Vanishing cycles, Sebastiani - Thom product, and E8.

2.1. Here we recall some classical constructions from the singularity
theory.

Let f : (CN , 0) −→ (C, 0) be the germ of a holomorphic function with
an isolated critical point at 0, with f (0) = 0.

A Milnor fiber is
Vz = f −1(z) ∩ B̄ρ

where
B̄ρ = {(x1, . . . , xN)|

∑
|xi |2 ≤ ρ}

for 1� ρ� |z | > 0.

For z belonging to a small disc Dε = {z ∈ C| |z | < ε}, the space Vz is a
complex manifold with boundary, homotopically equivalent to a bouquet
∨SN−1 of µ spheres, where

µ = dimC Miln(f , 0),
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Miln(f , 0) = C[[x1, . . . , xN ]]/(∂1f , . . . , ∂N f ).

The family of free abelian groups

Q(f ; z) := H̃N−1(Vz ;Z)
∼
= Zµ, z ∈

•
Dε := Dε \ {0},

(H̃ means that we take the reduced homology for N = 1), carries a flat
Gauss - Manin conection.

Take t ∈ R>0 ∩
•
Dε ; the lattice Q(f ; t) does not depend, up to a

canonical isomorphism, on the choice of t. Let us call this lattice Q(f ).
The linear operator

T (f ) : Q(f )
∼−→ Q(f )

induced by the path p(θ) = e iθt, 0 ≤ θ ≤ 2π, is called the classical
monodromy of the germ (f , 0).

2.2. Morse deformations. The C-vector space Miln(f , 0) may be
identified with the tangent space to the base B of the miniversal
defomation of f . For

λ ∈ B0 = B \∆
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where ∆ ⊂ B is an analytic subset of codimension 1, the corresponding
function fλ : CN −→ C has µ nondegenerate Morse critical points with
distinct critical values, and the algebra Miln(fλ) is semisimple, isomorphic
to Cµ.

Let 0 ∈ B denote the point corresponding to f itself, so that f = f0, and

pick t ∈ R>0 ∩
•
Dε as in 1.1.

Afterwards pick λ ∈ B0 close to 0 in such a way that the critical values
z1, . . . zµ of fλ have absolute values << t.

As in 2.1, for each
z ∈ D̃ε := Dε \ {z1, . . . zµ}

the Milnor fiber Vz has the homotopy type of a bouquet ∨SN−1 of µ
spheres, and we will be interested in the middle homology

Q(fλ; z) = H̃N−1(Vz ;Z)
∼
= Zµ

The lattices Q(fλ; z) carry a natural bilinear product induced by the cup
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product in the homology which is symmetric (resp. skew-symmetric)
when N is odd (resp. even).

The collection of these lattices, when z ∈ D̃ε varies, carries a flat Gauss -
Manin connection.

Consider an ”octopus”
Oct(t) ⊂ C

with the head at t : a collection of non-intersecting paths pi (”tentacles”)
connecting t with zi and not meeting the critical values zj otherwise. It
gives rise to a base

{b1, . . . , bµ} ⊂ Q(fλ) := Q(fλ; t)

(called ”distinguished”) where bi is the cycle vanishing when being
transferred from t to zi along the tentacle pi , cf. [Gab], [AGV].

The Picard - Lefschetz formula describe the action of the fundamental
group π1(D̃ε; t) on Q(fλ) with respect to this basis. Namely, consider a
loop γi which turns around zi along the tentacle pi , then the
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corresponding transformation of Q(fλ) is the reflection (or transvection)
si := sbi , cf. [Lef], Théorème fondamental, Ch. II, p. 23.

The loops γi generate the fundamental group π1(D̃ε). Let

ρ : π1(D̃ε; t) −→ GL(Q(fλ))

denote the monodromy representation. The image of ρ, denoted by
G (fλ), is called the monodromy group of fλ.

The subgroup G (fλ) is generated by si , 1 ≤ i ≤ µ.

As in 2.1, we have the monodromy operator

T (fλ) ∈ G (fλ),

the image by ρ of the path p ⊂ D̃ε starting at t and going around all
points z1, . . . , zµ.

This operator T (fλ) is now a product of µ simple reflections

T (fλ) = s1s2 . . . sµ.
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One can identify the relative (reduced) homology H̃N−1(Vt , ∂Vt ;Z) with
the dual group H̃N−1(Vt ;Z)∗, and one defines a map

var : H̃N−1(Vt , ∂Vt ;Z) −→ H̃N−1(Vt ;Z),

called a variation operator, which translates to a map

L : Q(fλ)∗
∼−→ Q(fλ)

(”Seifert form”) such that the matrix A(fλ) of the bilinear form in the
distinguished basis is

A(fλ) = L + (−1)N−1Lt ,

and
T (fλ) = (−1)N−1LL−t .

A choice of a path q in B connecting 0 with λ, enables one to identify
Q(f ) with Q(fλ), and T (f ) will be identified with T (fλ).
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2.3. Sebastiani - Thom factorization. If g ∈ C[y1, . . . , yM ] is
another function, the sum, or join of two singularities
f ⊕ g : CN+M −→ C is defined by

(f ⊕ g)(x , y) = f (x) + g(y)

The fundamental Sebastiani - Thom theorem, [ST], says that there exists
a natural isomorphism of lattices

Q(f ⊕ g)
∼
= Q(f )⊗Z Q(g),

and under this identification the full monodromy decomposes as

Tf⊕g = Tf ⊗ Tg
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2.4. Examples : simple singularities.

xn+1, n ≥ 1, (An)

x5 + y 3 + z2 (E8)

Their names come from the following facts :

— their lattices of vanishing cycles may be identified with the
corresponding root lattices ;

— the monodromy group is identified with the corresponding Weyl
group ;

— the classical monodromy Tf is a Coxeter element, therefore its order h
is equal to the Coxeter number, and

Spec(Tf ) = {e2πik1/h, . . . , e2πikr/h}

where the integers

1 = k1 < k2 < . . . < kr = h − 1,
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are the exponents of our root system.

We will discuss the case of E8 in some details below.
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Cartan - Coxeter correspondence and join product

2.5. Lattices, polarization, Coxeter elements.

Let us call a lattice a pair (Q,A) where Q is a free abelian group, and

A : Q × Q −→ Z

a symmetric bilinear map (”Cartan matrix”). We shall identify A with a
map

A : Q −→ Q∨ := Hom(Q,Z).

A polarized lattice is a triple (Q,A, L) where (Q,A) is a lattice, and

L : Q ∼−→ Q∨

(”variation”, or ”Seifert matrix”) is an isomorphism such that

A = A(L) := L + L∨
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where
L∨ : Q = Q∨∨ ∼−→ Q∨

is the conjugate to L.

The Coxeter automorphism of a polarized lattice is defined by

C = C (L) = −L−1L∨ ∈ GL(Q).

We shall say that the operators A and C are in a Cartan - Coxeter
correspondence.

Example. Let (Q,A) be a lattice, and {e1, . . . , en} an ordered Z-base of
Q. With respect to this base A is expressed as a symmetric matrix
A = (aij) = A(ei , ej) ∈ gln(Z). Let us suppose that all aii are even. We
define the matrix of L to be the unique upper triangular matrix (`ij) such
that A = L + Lt (in patricular `ii = aii/2 ; in our examples we will have
aii = 2.)
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2.6. Join product. Suppose we are given two polarized lattices
(Qi ,Ai , Li), i = 1, 2.

Set Q = Q1 ⊗ Q2, whence

L := L1 ⊗ L2 : Q ∼−→ Q∨,

and define
A := A1 ∗ A2 := L + L∨ : Q ∼−→ Q∨

The triple (Q,A, L) will be called the join, or Sebastiani - Thom,
product of the polarized lattices Q1 and Q2, and denoted by Q1 ∗ Q2.

Obviously
C (L) = −C (L1)⊗ C (L2) ∈ GL(Q1 ⊗ Q2).

It follows that if if Spec(C (Li)) = {e2πiki/hi , ki ∈ Ki} then

Spec(C (L)) = {−e2πi(k1/h1+k2/h2), (k1, k2) ∈ K1 × K2}
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The root system E8

2.7. Recall that E8 corresponds to the singularity

f (x , y , z) = z5 + y 3 + x2

E8 versus A4 ∗ A2 ∗ A1 : elementary analysis.

The ranks :
r(E8) = 8 = r(A4)r(A2)r(A1);

the Coxeter numbers :

h(E8) = h(A4)h(A2)h(A1) = 5 · 3 · 2 = 30.

It follows that

|R(E8)| = 240 = |R(A4)||R(A2)||R(A1)|.
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The exponents of E8 are :

1, 7, 13, 19, 11, 17, 23, 29.

All these numbers, except 1, are primes, and these are all primes ≤ 30,
not dividing 30.

Occasionally they form a group

U(Z/30Z).

They may be determined from the formula

i
5

+
j
3

+
1
2

=
30 + k(i , j)

30
, 1 ≤ i ≤ 4, 1 ≤ j ≤ 2,

so
k(i , 1) = 1 + 6(i − 1) = 1, 7, 13, 19;

k(i , 2) = 1 + 10 + 6(i − 1) = 11, 17, 23, 29.
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This shows that the exponents of E8 are the same as the exponents of
A4 ∗ A2 ∗ A1.

The following theorem is more delicate :

2.8. Theorem (Gabrielov). There exists a polarization of the root
lattice Q(E8) and an isomorphism of polarized lattices

Γ : Q(A4) ∗ Q(A2) ∗ Q(A1)
∼−→ Q(E8).

In fact, this isomorphism is given by an explicit (but complicated)
formula.

Using a relation between the Cartan/Coxeter correspondence discussed
above, one can obtain
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2.9. Corollary : an expression for the eigenvectors of A(E8).

Let θ = aπ
5 , 1 ≤ a ≤ 4, γ = bπ

3 , 1 ≤ b ≤ 2, δ = π
2 ,

α = θ + γ + δ = 1 +
kπ
30
,

k ∈ {1, 7, 11, 13, 17, 19, 23, 29}.

The 8 eigenvalues of A(E8) have the form

λ(α) = λ(θ, γ) = 2− 2 cosα

An eigenvector of A(E8) with the eigenvalue λ(θ, γ) is
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XE8(θ, γ) = −



2 cos(4θ) cos(γ − θ − δ)
− cos(2γ + 2θ)

2 cos2(θ)
−2 cos(γ) cos(3θ − δ)− cos(γ + θ − δ)
−2 cos(2γ + 3θ) cos(θ) + cos(2γ)
−2 cos θ cos(γ + 2θ − δ)

−2 cos(γ + θ − δ) cos(γ − θ + δ)
− cos(γ − θ − δ)


(2.9.1)
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The Perron - Frobenius eigenvector corresponds to the eigenvalue

2− 2 cos
π

30
,

and may be chosen as

vPF =



2 cos π5 cos
11π
30

cos π
15

2 cos2 π
5

2 cos 2π
30 cos

π
30

2 cos 4π
15 cos

π
5 + 1

2
2 cos π5 cos

7π
30

2 cos π
30 cos

11π
30

cos 11π
30


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2.10. Another form of the eigenvectors’ matrix. The coordiantes
of all eigenvectors of A(E8) may also be obtained from the coordinates of
the PF vector by some permutations and sign changes.

Namely, if (z1, . . . , z8) is a PF vector then the other eigenvectors are the
columns of the matrix

Z =



z1 z7 z4 z2 z2 z4 z7 z1

z2 z1 −z7 −z4 z4 z7 −z1 −z2

z3 z6 z5 z8 −z8 −z5 −z6 −z3

z4 z2 −z1 −z7 −z7 −z1 z2 z4

z5 −z8 −z3 z6 −z6 z3 z8 −z5

z6 −z5 −z8 z3 z3 −z8 −z5 z6

z7 −z4 z2 −z1 z1 −z2 z4 −z7

z8 −z3 z6 −z5 −z5 z6 −z3 z8


The group of permutations involved is isomorphic to

U(Z/30Z)/{±1}.
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These eigenvectors differ from the ones given by the formula (2.9.1) : the
latter ones are proportional to the former ones.
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§3. Givental’s q-deformations

In the paper [Giv] A.Givental studies the vanishing cycles of mutlivalued
of multivalued functions of the form

f (x1, . . . , xn)q,

and develops a q-analog of the Picard - Lefschetz theory.

Motivated by his theory, we suggest a

3.1. Definition. Let (Q,A, L) be a polarized lattice. We define a
q-deformed Cartan matrix by

A(q) = L + qLt .
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Let A = (aij) ∈ glr (C) be a symmetric matrix, and

A = L + Lt ,

the standard polarization, with L upper triangular. Thus, L = (`ij), with
`ii = aii/2, and

`ij =

{
aij if i < j
0 if i > j

Let us assign to A its ”Dynkin graph” Γ(A) having {1, . . . , r} as the set
of vertices, vertices i and j being connected by an edge iff aij 6= 0.
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3.2. Theorem. Let us suppose that Γ(A) is a tree. Then :

(i) The eigenvalues of A(q) have the form

λ(q) = 1 + (λ− 2)q1/2 + q (3.2.1)

where λ is an eigenvalue of A.

(ii) If
x = (x1, . . . , xr )

is an eigenvector of A with the eigenvalue λ then the eigenvector x(q) of
A(q) with the eignevalue λ(q) has the form

x(q) = (qn1x1, . . . , qnr xr ),

with ni ∈ 1
2Z.
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3.3. Remark (M.Finkelberg). The expression (3.2.1) resembles the
number of points of an elliptic curve X over a finite field Fq. To
appreciate better this resemblance, note that in all our examples λ has
the form

λ = 2− 2 cos θ,

so if we set

α =
√
qe iθ

(”a Frobenius root”) then |α| =
√
q, and

λ(q) = 1− α− ᾱ + q ” = ” |X (Fq)|
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3.4. Example.

AE8(q) =



1 + q 0 −1 0 0 0 0 0
0 1 + q 0 −1 0 0 0 0
−q 0 1 + q −1 0 0 0 0
0 −q −q 1 + q −1 0 0 0
0 0 0 −q 1 + q −1 0 0
0 0 0 0 −q 1 + q −1 0
0 0 0 0 0 −q 1 + q −1
0 0 0 0 0 0 −q 1 + q


Its eigenvalues are

λ(q) = 1 + q + (λ− 2)
√
q = 1 + q − 2

√
q cos θ

where λ = 2− 2 cos θ is an eigenvalue of A(E8).
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If X = (x1, x2, x3, x4, x5, x6, x7, x8) is an eigenvector of A(E8) for the
eigenvalue λ, then

X = (x1,
√
qx2,
√
qx3, qx4, q

√
qx5, q2x6, q2√qx7, q3x8) (4.5.1)

is an eigenvector of AE8(q) for the eigenvalue λ(q).
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