CARTAN EIGENVECTORS, TODA MASSES, AND THEIR q-DEFORMATIONS

Vadim Schechtman

Talk at

Kavli Institute for the Physics and Mathematics of the Universe,

$$
\text { Kashiwa-no-ha, October } 2015
$$

This is a report on a joint work with Laura Brillon and Alexander Varchenko, cf. [BS], [BSV].

Plan

1. Cartan eigenvectors and Toda masses.
2. Vanishing cycles, Sebastiani - Thom product, and E_{8}.
3. Givental's q-deformations.

§1. Cartan eigenvectors and Toda masses

Let \mathfrak{g} be a simple finite dimensional complex Lie algebra; (,) will denote the Killing form on \mathfrak{g}. We fix a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$; let $R \subset \mathfrak{h}^{*}$ be the root system of \mathfrak{g} with respect to $\mathfrak{h},\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset R$ a base of simple roots,

$$
\mathfrak{g}=\left(\oplus_{\alpha<0} \mathfrak{g}_{\alpha}\right) \oplus \mathfrak{h} \oplus\left(\oplus_{\alpha>0} \mathfrak{g}_{\alpha}\right)
$$

the root decomposition. Let

$$
\theta=\sum_{i=1}^{r} n_{i} \alpha_{i}
$$

be the longest root; we set

$$
\alpha_{0}:=-\theta, n_{0}:=1 .
$$

The number

$$
h=\sum_{i=0}^{r} n_{i}
$$

is the Coxeter number of $\mathfrak{g} ; \operatorname{set} \zeta=\exp (2 \pi i / h)$.
For each $\alpha \in R$ choose a base vector $E_{\alpha} \in \mathfrak{g}_{\alpha}$.
Let $A=\left(\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle\right)_{i, j=1}^{r}$ be the Cartan matrix of R.
The eigenvalues of A are

$$
\lambda_{i}=2\left(1-\cos \left(2 k_{i} \pi / h\right)\right), 1 \leq i \leq r .
$$

where

$$
1=k_{1}<k_{2}<\ldots<k_{r}=h-1
$$

are the exponents of R.
The coordinates of the eigenvectors of A have an important meaning in the physics of integrable systems: namely, these numbers appear as the masses of particles (or, dually, as the energy of solitons) in affine Toda field theories, cf. [F], [D].
Historically, the first example of the system of type E_{8} appeared in the pioneering papers [Z] on the 2D critical lsing model in a magnetic field.

The aim of this talk is a study of these numbers, and of their q-deformations.
Principal element and principal gradation. Let $\rho^{\vee} \in \mathfrak{h}$ be defined by

$$
\left\langle\alpha_{i}, \rho^{\vee}\right\rangle=1, \quad i=1, \ldots, r
$$

Let G denote the adjoint group of \mathfrak{g}, and

$$
\exp : \mathfrak{g} \longrightarrow G
$$

the exponential map.
We set

$$
P:=\exp \left(2 \pi i \rho^{\vee} / h\right) \in G
$$

Thus, Ad P defines a $\mathbb{Z} / h \mathbb{Z}$-grading on \mathfrak{g},

$$
\mathfrak{g}=\oplus_{k=0}^{h-1} \mathfrak{g}_{k}, \mathfrak{g}_{k}=\left\{x \in \mathfrak{g} \mid \operatorname{Ad}_{P}(x)=\zeta^{k} x\right\}
$$

We have $\mathfrak{g}_{0}=\mathfrak{h}$

Fix complex numbers $m_{i} \neq 0, i=0, \ldots, r, m_{0}=1$ and define an element

$$
E=\sum_{i=0}^{r} m_{i} E_{\alpha_{i}},
$$

We have $E \in \mathfrak{g}_{1}$; Kostant calls E a cyclic element.
We define, with Konstant, [K], the subspace

$$
\mathfrak{h}^{\prime}:=Z(E) \subset \mathfrak{g}
$$

It is proven in $[\mathrm{K}]$, Thm. 6.7, that \mathfrak{h}^{\prime} is a Cartan subalgebra of \mathfrak{g}, called the Cartan subalgebra in apposition to \mathfrak{h} with respect to the principal element P.
The subspace $\mathfrak{h}^{\prime} \cap \mathfrak{g}_{i}$ is nonzero iff $i \in\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$ where $1=k_{1}<k_{2}<\ldots<k_{r}=h-1$ are the exponents of ${ }^{\imath}$. We have $k_{i}+k_{r+1-i}=h$.

Set

$$
\mathfrak{h}^{\prime(i)}:=\mathfrak{h}^{\prime} \cap \mathfrak{g}_{k_{i}}, \quad 1 \leq i \leq r ;
$$

these are the subspaces of dimension 1.
Pick a nonzero vector $e^{(i)} \in \mathfrak{h}^{\prime(i)}$ for all $1 \leq i \leq r$, for example $e^{(1)}=E$.
The operators ad $_{e^{(i)}}$ ad $_{e^{(h-i)}}$ preserve \mathfrak{h}; let

$$
\tilde{M}^{(i)}:=\left.\operatorname{ad}_{e^{(i)}} \operatorname{ad}_{e^{(h-i)}}\right|_{\mathfrak{h}}: \mathfrak{h} \longrightarrow \mathfrak{h}
$$

denote its restriction to \mathfrak{h}.

Theorem. For each $1 \leq i \leq r$ there exists a unique operator $M^{(i)} \in \mathfrak{g l}(\mathfrak{h})$ whose square is equal to $\tilde{M}^{(i)}$ such that the column vector of its eigenvalues in the approriate numbering

$$
\mu^{(i)}:=\left(\mu_{1}^{(i)}, \ldots, \mu_{r}^{(i)}\right)^{t}
$$

is an eigenvector of the Cartan matrix A with eigenvalue

$$
\lambda_{i}:=2\left(1-\cos \left(2 k_{i} \pi / h\right)\right) .
$$

The operators $M^{(1)}, \ldots, M^{(r)}$ commute with each other.
The proof is based on a relation between the Cartan matrix A and the Coxeter element of our root system which will be discussed later.

Relation to affine Toda field theories

Consider a classical field theory whose fields are smooth functions $\phi: X \longrightarrow \mathfrak{h}$ where $X=\mathbb{R}^{2}$ ("space - time"), with coordinates x_{1}, x_{2}.

The Lagrangian density $\mathcal{L}_{e}(\phi)$ of the theory depends on an element $e \in \mathfrak{h}^{\prime}$ where \mathfrak{h}^{\prime} is a Cartan algebra in apposition to \mathfrak{h}.
We fix a \mathbb{C}-antilinear Cartan involution $*: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}$ such that $\mathfrak{h}^{\prime(i) *}=\mathfrak{h}^{\prime r-i)}$.
We set

$$
\mathcal{L}_{e}(\phi)=\frac{1}{2} \sum_{a=1}^{2}\left(\partial_{a} \phi, \partial_{a} \phi\right)-m^{2}\left(\operatorname{Ad}_{\exp (\phi)}(e), e^{*}\right) .
$$

Here $\partial_{a}:=\partial / \partial x_{a},($,$) denotes the Killing form on \mathfrak{g}$.
The Euler - Lagrange equations of motion are

$$
\begin{equation*}
\mathcal{D}_{e}(\phi):=\Delta \phi+m^{2}\left[\operatorname{Ad}_{\exp (\phi)}(e), e^{*}\right]=0, \tag{EL}
\end{equation*}
$$

where $\Delta \phi=\sum_{a=1}^{2} \partial_{a}^{2} \phi$. It is a system of r nonlinear differential equations of the second order.
The linear approximation to the nonlinear equation (EL) is a Klein Gordon equation

$$
\begin{equation*}
\Delta_{e} \phi:=\Delta \phi+m^{2} \operatorname{ad}_{e} \operatorname{ad}_{e^{*}}(\phi)=0 \tag{ELL}
\end{equation*}
$$

It admits r "normal mode" solutions

$$
\phi_{j}\left(x_{1}, x_{2}\right)=e^{i\left(k_{j} x_{1}+\omega_{j} x_{2}\right)} y_{j}, k_{j}^{2}+\omega_{j}^{2}=m^{2} \mu_{j}^{2}
$$

$1 \leq j \leq r$, where μ_{j}^{2} are the eigenvalues of the square mass operator

$$
M_{e}^{2}:=\operatorname{ad}_{e} \operatorname{ad}_{e^{*}}: \mathfrak{h} \longrightarrow \mathfrak{h}
$$

and y_{j} are the corresponding eigenvectors.
In other words, (ELL) decouples into r equations describing scalar particles of masses μ_{j}, which explains the name "masses" for them.

Due to commutativity of \mathfrak{h}^{\prime} ，for all $e, e^{\prime} \in \mathfrak{h}^{\prime}$ ，

$$
\left[\Delta_{e}, \Delta_{e^{\prime}}\right]=0
$$

\qquad正 $+$

 -2
§2. Vanishing cycles, Sebastiani - Thom product, and E_{8}.
2.1. Here we recall some classical constructions from the singularity theory.
Let $f:\left(\mathbb{C}^{N}, 0\right) \longrightarrow(\mathbb{C}, 0)$ be the germ of a holomorphic function with an isolated critical point at 0 , with $f(0)=0$.
A Milnor fiber is

$$
V_{z}=f^{-1}(z) \cap \bar{B}_{\rho}
$$

where

$$
\bar{B}_{\rho}=\left\{\left.\left(x_{1}, \ldots, x_{N}\right)\left|\sum\right| x_{i}\right|^{2} \leq \rho\right\}
$$

for $1 \gg \rho \gg|z|>0$.
For z belonging to a small disc $D_{\epsilon}=\{z \in \mathbb{C}| | z \mid<\epsilon\}$, the space V_{z} is a complex manifold with boundary, homotopically equivalent to a bouquet $\vee S^{N-1}$ of μ spheres, where

$$
\mu=\operatorname{dim}_{\mathbb{C}} \operatorname{Miln}(f, 0),
$$

$$
\operatorname{Miln}(f, 0)=\mathbb{C}\left[\left[x_{1}, \ldots, x_{N}\right]\right] /\left(\partial_{1} f, \ldots, \partial_{N} f\right) .
$$

The family of free abelian groups

$$
Q(f ; z):=\tilde{H}_{N-1}\left(V_{z} ; \mathbb{Z}\right) \cong \mathbb{Z}^{\mu}, z \in \dot{D}_{\epsilon}:=D_{\epsilon} \backslash\{0\},
$$

(\tilde{H} means that we take the reduced homology for $N=1$), carries a flat Gauss - Manin conection.
Take $t \in \mathbb{R}_{>0} \cap \dot{D}_{\epsilon}$; the lattice $Q(f ; t)$ does not depend, up to a canonical isomorphism, on the choice of t. Let us call this lattice $Q(f)$. The linear operator

$$
T(f): Q(f) \xrightarrow{\sim} Q(f)
$$

induced by the path $p(\theta)=e^{i \theta} t, 0 \leq \theta \leq 2 \pi$, is called the classical monodromy of the germ $(f, 0)$.
2.2. Morse deformations. The \mathbb{C}-vector space $\operatorname{Miln}(f, 0)$ may be identified with the tangent space to the base B of the miniversal defomation of f. For

$$
\lambda \in B^{0}=B \backslash \Delta
$$

where $\Delta \subset B$ is an analytic subset of codimension 1 , the corresponding function $f_{\lambda}: \mathbb{C}^{N} \longrightarrow \mathbb{C}$ has μ nondegenerate Morse critical points with distinct critical values, and the algebra $\operatorname{Miln}\left(f_{\lambda}\right)$ is semisimple, isomorphic to \mathbb{C}^{μ}.

Let $0 \in B$ denote the point corresponding to f itself, so that $f=f_{0}$, and pick $t \in \mathbb{R}_{>0} \cap D_{\epsilon}$ as in 1.1.
Afterwards pick $\lambda \in B^{0}$ close to 0 in such a way that the critical values $z_{1}, \ldots z_{\mu}$ of f_{λ} have absolute values $\ll t$.

As in 2.1, for each

$$
z \in \tilde{D}_{\epsilon}:=D_{\epsilon} \backslash\left\{z_{1}, \ldots z_{\mu}\right\}
$$

the Milnor fiber V_{z} has the homotopy type of a bouquet $\vee S^{N-1}$ of μ spheres, and we will be interested in the middle homology

$$
Q\left(f_{\lambda} ; z\right)=\tilde{H}_{N-1}\left(V_{z} ; \mathbb{Z}\right) \cong \mathbb{Z}^{\mu}
$$

The lattices $Q\left(f_{\lambda} ; z\right)$ carry a natural bilinear product induced by the cup
product in the homology which is symmetric (resp. skew-symmetric) when N is odd (resp. even).
The collection of these lattices, when $z \in \tilde{D}_{\epsilon}$ varies, carries a flat Gauss Manin connection.

Consider an "octopus"

$$
\operatorname{Oct}(t) \subset \mathbb{C}
$$

with the head at t : a collection of non-intersecting paths p_{i} ('tentacles') connecting t with z_{i} and not meeting the critical values z_{j} otherwise. It gives rise to a base

$$
\left\{b_{1}, \ldots, b_{\mu}\right\} \subset Q\left(f_{\lambda}\right):=Q\left(f_{\lambda} ; t\right)
$$

(called "distinguished") where b_{i} is the cycle vanishing when being transferred from t to z_{i} along the tentacle p_{i}, cf. [Gab], [AGV].
The Picard - Lefschetz formula describe the action of the fundamental group $\pi_{1}\left(\tilde{D}_{\epsilon} ; t\right)$ on $Q\left(f_{\lambda}\right)$ with respect to this basis. Namely, consider a loop γ_{i} which turns around z_{i} along the tentacle p_{i}, then the
corresponding transformation of $Q\left(f_{\lambda}\right)$ is the reflection (or transvection) $s_{i}:=s_{b_{i}}$, cf. [Lef], Théorème fondamental, Ch. II, p. 23.
The loops γ_{i} generate the fundamental group $\pi_{1}\left(\tilde{D}_{\epsilon}\right)$. Let

$$
\rho: \pi_{1}\left(\tilde{D}_{\epsilon} ; t\right) \longrightarrow G L\left(Q\left(f_{\lambda}\right)\right)
$$

denote the monodromy representation. The image of ρ, denoted by $G\left(f_{\lambda}\right)$, is called the monodromy group of f_{λ}.
The subgroup $G\left(f_{\lambda}\right)$ is generated by $s_{i}, 1 \leq i \leq \mu$.
As in 2.1, we have the monodromy operator

$$
T\left(f_{\lambda}\right) \in G\left(f_{\lambda}\right)
$$

the image by ρ of the path $p \subset \tilde{D}_{\epsilon}$ starting at t and going around all points z_{1}, \ldots, z_{μ}.

This operator $T\left(f_{\lambda}\right)$ is now a product of μ simple reflections

$$
T\left(f_{\lambda}\right)=s_{1} s_{2} \ldots s_{\mu}
$$

One can identify the relative (reduced) homology $\tilde{H}_{N-1}\left(V_{t}, \partial V_{t} ; \mathbb{Z}\right)$ with the dual group $\tilde{H}_{N-1}\left(V_{t} ; \mathbb{Z}\right)^{*}$, and one defines a map

$$
\text { var : } \tilde{H}_{N-1}\left(V_{t}, \partial V_{t} ; \mathbb{Z}\right) \longrightarrow \tilde{H}_{N-1}\left(V_{t} ; \mathbb{Z}\right)
$$

called a variation operator, which translates to a map

$$
L: Q\left(f_{\lambda}\right)^{*} \xrightarrow{\sim} Q\left(f_{\lambda}\right)
$$

("Seifert form") such that the matrix $A\left(f_{\lambda}\right)$ of the bilinear form in the distinguished basis is

$$
A\left(f_{\lambda}\right)=L+(-1)^{N-1} L^{t},
$$

and

$$
T\left(f_{\lambda}\right)=(-1)^{N-1} L L^{-t} .
$$

A choice of a path q in B connecting 0 with λ, enables one to identify $Q(f)$ with $Q\left(f_{\lambda}\right)$, and $T(f)$ will be identified with $T\left(f_{\lambda}\right)$.
2.3. Sebastiani - Thom factorization. If $g \in \mathbb{C}\left[y_{1}, \ldots, y_{M}\right]$ is
another function, the sum, or join of two singularities
$f \oplus g: \mathbb{C}^{N+M} \longrightarrow \mathbb{C}$ is defined by

$$
(f \oplus g)(x, y)=f(x)+g(y)
$$

The fundamental Sebastiani - Thom theorem, [ST], says that there exists a natural isomorphism of lattices

$$
Q(f \oplus g) \cong Q(f) \otimes_{\mathbb{Z}} Q(g),
$$

and under this identification the full monodromy decomposes as

$$
T_{f \oplus g}=T_{f} \otimes T_{g}
$$

2.4. Examples: simple singularities.

$$
\begin{align*}
& x^{n+1}, n \geq 1, \tag{n}\\
& x^{5}+y^{3}+z^{2} \tag{8}
\end{align*}
$$

Their names come from the following facts:
their lattices of vanishing cycles may be identified with the corresponding root lattices;

- the monodromy group is identified with the corresponding Weyl group;
the classical monodromy T_{f} is a Coxeter element, therefore its order h is equal to the Coxeter number, and

$$
\operatorname{Spec}\left(T_{f}\right)=\left\{e^{2 \pi i k_{1} / h}, \ldots, e^{2 \pi i k_{r} / h}\right\}
$$

where the integers

$$
1=k_{1}<k_{2}<\ldots<k_{r}=h-1,
$$

are the exponents of our root system.
We will discuss the case of E_{8} in some details below.

Cartan - Coxeter correspondence and join product

2.5. Lattices, polarization, Coxeter elements. Let us call a lattice a pair (Q, A) where Q is a free abelian group, and

$$
A: Q \times Q \longrightarrow \mathbb{Z}
$$

a symmetric bilinear map ("Cartan matrix"). We shall identify A with a map

$$
A: Q \longrightarrow Q^{\vee}:=\operatorname{Hom}(Q, \mathbb{Z}) .
$$

A polarized lattice is a triple (Q, A, L) where (Q, A) is a lattice, and

$$
L: Q \xrightarrow{\sim} Q^{\vee}
$$

("variation", or "Seifert matrix") is an isomorphism such that

$$
A=A(L):=L+L^{v}
$$

where

$$
L^{\vee}: Q=Q^{\vee \vee} \xrightarrow{\sim} Q^{\vee}
$$

is the conjugate to L.
The Coxeter automorphism of a polarized lattice is defined by

$$
C=C(L)=-L^{-1} L^{\vee} \in G L(Q)
$$

We shall say that the operators A and C are in a Cartan - Coxeter correspondence.

Example. Let (Q, A) be a lattice, and $\left\{e_{1}, \ldots, e_{n}\right\}$ an ordered \mathbb{Z}-base of Q. With respect to this base A is expressed as a symmetric matrix $A=\left(a_{i j}\right)=A\left(e_{i}, e_{j}\right) \in \mathfrak{g l}_{n}(\mathbb{Z})$. Let us suppose that all $a_{i i}$ are even. We define the matrix of L to be the unique upper triangular matrix $\left(\ell_{i j}\right)$ such that $A=L+L^{t}$ (in patricular $\ell_{i i}=a_{i i} / 2$; in our examples we will have $a_{i i}=2$.)
2.6. Join product. Suppose we are given two polarized lattices $\left(Q_{i}, A_{i}, L_{i}\right), i=1,2$.
Set $Q=Q_{1} \otimes Q_{2}$, whence

$$
L:=L_{1} \otimes L_{2}: Q \xrightarrow{\sim} Q^{\vee},
$$

and define

$$
A:=A_{1} * A_{2}:=L+L^{\vee}: Q \xrightarrow{\sim} Q^{\vee}
$$

The triple (Q, A, L) will be called the join, or Sebastiani - Thom, product of the polarized lattices Q_{1} and Q_{2}, and denoted by $Q_{1} * Q_{2}$.
Obviously

$$
C(L)=-C\left(L_{1}\right) \otimes C\left(L_{2}\right) \in G L\left(Q_{1} \otimes Q_{2}\right) .
$$

It follows that if if $\operatorname{Spec}\left(C\left(L_{i}\right)\right)=\left\{e^{2 \pi i k_{i} / h_{i}}, k_{i} \in K_{i}\right\}$ then

$$
\operatorname{Spec}(C(L))=\left\{-e^{2 \pi i\left(k_{1} / h_{1}+k_{2} / h_{2}\right)},\left(k_{1}, k_{2}\right) \in K_{1} \times K_{2}\right\}
$$

The root system E_{8}

2.7. Recall that E_{8} corresponds to the singularity

$$
f(x, y, z)=z^{5}+y^{3}+x^{2}
$$

E_{8} versus $A_{4} * A_{2} * A_{1}$: elementary analysis.
The ranks :

$$
r\left(E_{8}\right)=8=r\left(A_{4}\right) r\left(A_{2}\right) r\left(A_{1}\right) ;
$$

the Coxeter numbers :

$$
h\left(E_{8}\right)=h\left(A_{4}\right) h\left(A_{2}\right) h\left(A_{1}\right)=5 \cdot 3 \cdot 2=30 .
$$

It follows that

$$
\left|R\left(E_{8}\right)\right|=240=\underset{\text { CARTAN EIGENVECTORS }}{\left|R\left(A_{4}\right)\right|\left|R\left(A_{2}\right)\right|\left|R\left(A_{1}\right)\right| .}
$$

The exponents of E_{8} are :

$$
1,7,13,19,11,17,23,29
$$

All these numbers, except 1 , are primes, and these are all primes ≤ 30, not dividing 30 .

Occasionally they form a group

$$
U(\mathbb{Z} / 30 \mathbb{Z})
$$

They may be determined from the formula

$$
\frac{i}{5}+\frac{j}{3}+\frac{1}{2}=\frac{30+k(i, j)}{30}, 1 \leq i \leq 4,1 \leq j \leq 2
$$

$$
\begin{gathered}
k(i, 1)=1+6(i-1)=1,7,13,19 \\
k(i, 2)=1+10+6(i-1)=11,17,23,29 .
\end{gathered}
$$

This shows that the exponents of E_{8} are the same as the exponents of $A_{4} * A_{2} * A_{1}$.
The following theorem is more delicate :
2.8. Theorem (Gabrielov). There exists a polarization of the root lattice $Q\left(E_{8}\right)$ and an isomorphism of polarized lattices

$$
\Gamma: Q\left(A_{4}\right) * Q\left(A_{2}\right) * Q\left(A_{1}\right) \xrightarrow{\sim} Q\left(E_{8}\right) .
$$

In fact, this isomorphism is given by an explicit (but complicated) formula.
Using a relation between the Cartan/Coxeter correspondence discussed above, one can obtain
2.9. Corollary : an expression for the eigenvectors of $A\left(E_{8}\right)$.

Let $\theta=\frac{a \pi}{5}, 1 \leq a \leq 4, \gamma=\frac{b \pi}{3}, 1 \leq b \leq 2, \delta=\frac{\pi}{2}$,

$$
\alpha=\theta+\gamma+\delta=1+\frac{k \pi}{30},
$$

$$
k \in\{1,7,11,13,17,19,23,29\} .
$$

The 8 eigenvalues of $A\left(E_{8}\right)$ have the form

$$
\lambda(\alpha)=\lambda(\theta, \gamma)=2-2 \cos \alpha
$$

An eigenvector of $A\left(E_{8}\right)$ with the eigenvalue $\lambda(\theta, \gamma)$ is

$$
X_{E_{8}}(\theta, \gamma)=-\left(\begin{array}{c}
2 \cos (4 \theta) \cos (\gamma-\theta-\delta) \tag{2.9.1}\\
-\cos (2 \gamma+2 \theta) \\
2 \cos ^{2}(\theta) \\
-2 \cos (\gamma) \cos (3 \theta-\delta)-\cos (\gamma+\theta-\delta) \\
-2 \cos (2 \gamma+3 \theta) \cos (\theta)+\cos (2 \gamma) \\
-2 \cos \theta \cos (\gamma+2 \theta-\delta) \\
-2 \cos (\gamma+\theta-\delta) \cos (\gamma-\theta+\delta) \\
-\cos (\gamma-\theta-\delta)
\end{array}\right)
$$

The Perron - Frobenius eigenvector corresponds to the eigenvalue

$$
2-2 \cos \frac{\pi}{30}
$$

and may be chosen as

$$
v_{P F}=\left(\begin{array}{c}
2 \cos \frac{\pi}{5} \cos \frac{11 \pi}{30} \\
\cos \frac{\pi}{15} \\
2 \cos ^{2} \frac{\pi}{5} \\
2 \cos \frac{2 \pi}{30} \cos \frac{\pi}{30} \\
2 \cos \frac{4 \pi}{15} \cos \frac{\pi}{5}+\frac{1}{2} \\
2 \cos \frac{\pi}{5} \cos \frac{7 \pi}{30} \\
2 \cos \frac{\pi}{30} \cos \frac{11 \pi}{30} \\
\cos \frac{11 \pi}{30}
\end{array}\right)
$$

2.10. Another form of the eigenvectors' matrix. The coordiantes of all eigenvectors of $A\left(E_{8}\right)$ may also be obtained from the coordinates of the PF vector by some permutations and sign changes.
Namely, if $\left(z_{1}, \ldots, z_{8}\right)$ is a PF vector then the other eigenvectors are the columns of the matrix

$$
Z=\left(\begin{array}{cccccccc}
z_{1} & z_{7} & z_{4} & z_{2} & z_{2} & z_{4} & z_{7} & z_{1} \\
z_{2} & z_{1} & -z_{7} & -z_{4} & z_{4} & z_{7} & -z_{1} & -z_{2} \\
z_{3} & z_{6} & z_{5} & z_{8} & -z_{8} & -z_{5} & -z_{6} & -z_{3} \\
z_{4} & z_{2} & -z_{1} & -z_{7} & -z_{7} & -z_{1} & z_{2} & z_{4} \\
z_{5} & -z_{8} & -z_{3} & z_{6} & -z_{6} & z_{3} & z_{8} & -z_{5} \\
z_{6} & -z_{5} & -z_{8} & z_{3} & z_{3} & -z_{8} & -z_{5} & z_{6} \\
z_{7} & -z_{4} & z_{2} & -z_{1} & z_{1} & -z_{2} & z_{4} & -z_{7} \\
z_{8} & -z_{3} & z_{6} & -z_{5} & -z_{5} & z_{6} & -z_{3} & z_{8}
\end{array}\right)
$$

The group of permutations involved is isomorphic to

$$
U(\mathbb{Z} / 30 \mathbb{Z}) /\{ \pm 1\} .
$$

These eigenvectors differ from the ones given by the formula (2.9.1) : the latter ones are proportional to the former ones.

§3. Givental's q-deformations

In the paper [Giv] A.Givental studies the vanishing cycles of mutlivalued of multivalued functions of the form

$$
f\left(x_{1}, \ldots, x_{n}\right)^{q},
$$

and develops a q-analog of the Picard - Lefschetz theory.
Motivated by his theory, we suggest a
3.1. Definition. Let (Q, A, L) be a polarized lattice. We define a q-deformed Cartan matrix by

$$
A(q)=L+q L^{t} .
$$

Let $A=\left(a_{i j}\right) \in \mathfrak{g l}_{r}(\mathbb{C})$ be a symmetric matrix, and

$$
A=L+L^{t},
$$

the standard polarization, with L upper triangular. Thus, $L=\left(\ell_{i j}\right)$, with $\ell_{i i}=a_{i i} / 2$, and

$$
\ell_{i j}=\left\{\begin{array}{cc}
a_{i j} & \text { if } i<j \\
0 & \text { if } i>j
\end{array}\right.
$$

Let us assign to A its "Dynkin graph" $\Gamma(A)$ having $\{1, \ldots, r\}$ as the set of vertices, vertices i and j being connected by an edge iff $a_{i j} \neq 0$.
3.2. Theorem. Let us suppose that $\Gamma(A)$ is a tree. Then :
(i) The eigenvalues of $A(q)$ have the form

$$
\begin{equation*}
\lambda(q)=1+(\lambda-2) q^{1 / 2}+q \tag{3.2.1}
\end{equation*}
$$

where λ is an eigenvalue of A.
(ii) If

$$
x=\left(x_{1}, \ldots, x_{r}\right)
$$

is an eigenvector of A with the eigenvalue λ then the eigenvector $x(q)$ of $A(q)$ with the eignevalue $\lambda(q)$ has the form

$$
x(q)=\left(q^{n_{1}} x_{1}, \ldots, q^{n_{r}} x_{r}\right),
$$

with $n_{i} \in \frac{1}{2} \mathbb{Z}$.
3.3. Remark (M.Finkelberg). The expression (3.2.1) resembles the number of points of an elliptic curve X over a finite field \mathbb{F}_{q}. To appreciate better this resemblance, note that in all our examples λ has the form

$$
\lambda=2-2 \cos \theta,
$$

so if we set

$$
\alpha=\sqrt{q} e^{i \theta}
$$

('a Frobenius root") then $|\alpha|=\sqrt{q}$, and

$$
\lambda(q)=1-\alpha-\bar{\alpha}+q "="\left|X\left(\mathbb{F}_{q}\right)\right|
$$

3.4. Example.
$A_{E_{8}}(q)=\left(\begin{array}{cccccccc}1+q & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1+q & 0 & -1 & 0 & 0 & 0 & 0 \\ -q & 0 & 1+q & -1 & 0 & 0 & 0 & 0 \\ 0 & -q & -q & 1+q & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -q & 1+q & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -q & 1+q & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -q & 1+q & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -q & 1+q\end{array}\right)$

Its eigenvalues are

$$
\lambda(q)=1+q+(\lambda-2) \sqrt{q}=1+q-2 \sqrt{q} \cos \theta
$$

where $\lambda=2-2 \cos \theta$ is an eigenvalue of $A\left(E_{8}\right)$.

If $X=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right)$ is an eigenvector of $A\left(E_{8}\right)$ for the eigenvalue λ, then

$$
\begin{equation*}
X=\left(x_{1}, \sqrt{q} x_{2}, \sqrt{q} x_{3}, q x_{4}, q \sqrt{q} x_{5}, q^{2} x_{6}, q^{2} \sqrt{q} x_{7}, q^{3} x_{8}\right) \tag{4.5.1}
\end{equation*}
$$

is an eigenvector of $A_{E_{8}}(q)$ for the eigenvalue $\lambda(q)$.

References

[BS] L.Brillon, V.Schechtman, Coxeter element and particle masses, http ://www.math.univ-toulouse.fr/ schechtman/masse3.pdf
[BSV] L.Brillon, V.Schechtman, A. Varchenko, Vanishing cycles and Cartan eigenvectors, http ://xxx.lanl.gov/abs/1509.05591.
[Giv] A.Givental, Twisted Picard - Lefschetz formulas, Funct. Anal. Appl., 22 (1988), $12-22$.
[K] B. Kostant, The principal three-dimensional subgroup and the Betty numbers of a complex simple Lie group, Amer. J. Math. LXXXI (1959), 973-1032.

