A \mathbb{Z}^m -graded generalization of the Witt Algebra and its Representations

Kenji IOHARA (ICJ, Lyon)

November 18, 2015

Contents

1	\mathbf{Sim}	ple \mathbb{Z}^m -graded Lie algebras	1
	1.1	Definition	1
	1.2	General cases	3
2	Rep	presentations of W_{π}	4
2	-	oresentations of W_{π} Witt algebra I	4 4
2	2.1	n n	

1 Simple \mathbb{Z}^m -graded Lie algebras

Here, we recall some known facts about simple \mathbb{Z}^m -graded Lie algebras over \mathbb{C} .

1.1 Definition

For $m \in \mathbb{Z}_{>0}$, let $\Lambda = \mathbb{Z}^m$ be a lattice of rank m. We consider the classes of Lie algebras \mathfrak{g} with some extra conditions:

- 1. \mathfrak{g} is Λ -graded, i.e., $\mathfrak{g} = \bigoplus_{\lambda \in \Lambda} \mathfrak{g}_{\lambda}$ s.t. i) $[\mathfrak{g}_{\lambda}, \mathfrak{g}_{\mu}] \subset \mathfrak{g}_{\lambda+\mu}$ for any $\lambda, \mu \in \Lambda$, and ii) dim $\mathfrak{g}_{\lambda} < \infty$ for any $\lambda \in \Lambda$,
- 2. \mathfrak{g} is simple in graded sense, i.e., i) dim $\mathfrak{g} > 1$ and ii) there is no non-trivial proper graded ideal of \mathfrak{g} .

For simplicity, we call such a Lie algebra Λ-graded simple Lie algebra.

A natural but too naive question is

classify all Λ -graded simple Lie algebras up to isomorphism.

In fact, the classification can be too wild. Hence, one should impose some reasonable additional conditions. Let us look at some examples.

m = 0

In this case, the question reduces to the classification of simple finite dimensional Lie algebras over \mathbb{C} , which is known by W. Killing, E. Cartan etc. since the beginning of the 20th century.

Classified by $A \sim G$. \leftarrow discrete data !

|m = 1|

Let us start from examples:

- 1. $\mathfrak{g} = \mathfrak{g}_0$: simple finite dimensional Lie algebra.
- 2. \mathfrak{a} : simple finite dimensional Lie algebra, $\mathfrak{g} = L(\mathfrak{a}) := \mathfrak{a} \otimes \mathbb{C}[t, t^{-1}]$ and its fixed point subalgebras.
- 3. For r > 0, let W_r be the Lie algebra of the derivations of $A = \mathbb{C}[X_1, X_2, \cdots, X_r]$. $W_r^{\frown} \Omega_A = \bigoplus_{i=1}^r AdX_i$ by Lie derivative. $S_r \subset W_r$: the subalgebra annihilating a volume form. $H_{2m} \subset W_{2m}$: the subalgebra annihilating a symplectic form. $K_{2m+1} \subset W_{2m+1}$: the subalgebra preserving a contact form. These algebras are called of **Cartan type**.

4.
$$W = \mathbb{C}[t, t^{-1}] \frac{d}{dt}$$
: the Witt algebra

O. Mathieu in the 80's proved that if the function $k \mapsto \dim \mathfrak{g}_k$ is bounded by a polynomial, then the above list exhausts all such algebras.

Classified by discrete data ! For higher rank case ??

1.2 General cases

Let us start from a trivial but important observation:

Let \mathfrak{g} be a Λ -graded Lie algebra. Then, the Lie algebra $\mathfrak{g}(m) := \mathfrak{g} \otimes \mathbb{C}[t_1^{\pm 1}, \cdots, t_n^{\pm 1}]$ is naturally $\Lambda \oplus \mathbb{Z}^n$ -graded !

If the Lie algebra \mathfrak{g} is not of the form $\mathfrak{a}(m)$ for some simple-graded \mathfrak{a} and m > 0, \mathfrak{g} is called **primitive**.

Sufficient to classify primitive simple Λ -graded algebras.

Suppose that (*) dim $\mathfrak{g}_{\lambda} = 1$ for any $\lambda \in \Lambda$.

Theorem 1.1 (K.I. and O. Mathieu, in Proc. LMS (3) 106, 2013). Let \mathfrak{g} be a primitive simple Λ -graded Lie algebra satisfying (*). Then, \mathfrak{g} is isomorphic either to $A_1^{(1)}, A_2^{(2)}$ or to some W_{π} where $\pi : \Lambda \hookrightarrow \mathbb{C}^2$ is an additive map with certain condition.

Notice that in the cases when \mathfrak{g} is of type $A_1^{(1)}, A_2^{(2)}, \mathfrak{g}$ is \mathbb{Z} -graded.

Let us define W_{π} . Let \mathcal{P} be the Poisson algebra of symbols of twisted ordinary pseudo-differential operators which is defined as follows.

For $\lambda = (a, b) \in \mathbb{C}^2$, let E_{λ} be the symbol of the twisted pseudo-differential operator $z^{a+1}\partial^{b+1}$ ($\partial = \frac{d}{dz}$) and set $\rho = (1, 1)$. Then, \mathcal{P} is the \mathbb{C} -vector space with basis $\{E_{\lambda}\}_{\lambda \in \mathbb{C}^2}$ whose multiplicative and Poisson structures are given by

$$E_{\lambda} \cdot E_{\mu} := E_{\lambda + \mu + \rho}, \qquad \{E_{\lambda}, E_{\mu}\} = \langle \lambda + \rho, \mu + \rho \rangle E_{\lambda + \mu},$$

where $\langle \cdot, \cdot \rangle$ is a non-degenerate skew-symmetric bilinear form on \mathbb{C}^2 :

$$\langle (a,b), (c,d) \rangle = bc - ad.$$

The Lie algebra $W_{\pi} \subset \mathcal{P}$ is the subalgebra with basis $\{E_{\lambda}\}_{\lambda \in \pi(\Lambda)}$.

Remark 1.2. 1. W_{π} is simple-graded iff $\pi(\Lambda) \not\subset \mathbb{C}\rho$ and $2\rho \not\in \pi(\Lambda)$.

- 2. In case dim $\mathbb{C}\pi(\Lambda) = 1$, this W_{π} becomes a generalized Witt algebra: $\{E_{\lambda}, E_{\mu}\} = \langle \rho, \mu - \lambda \rangle E_{\lambda+\mu}.$
- 3. In case dim $\mathbb{C}\pi(\Lambda) = 2$, $H^2(W_{\pi}, \mathbb{C}) = 0$.

Hence, even with this strong restriction, the classification involves a continuous parameter ! **Remark 1.3.** The classification problem of simple Λ -graded Lie algebras with the conditions dim $\mathfrak{g}_{\lambda} \leq 1$ is still open !

N.B. The classification of all possible \mathbb{Z}^n -gradation on a given Lie algebra is even non-trivial. (Good example is to find the \mathbb{Z} -graded structure of twisted loop algebra of type $A_2^{(2)}$.)

2 Representations of W_{π}

Here, we consider the representations with bounded multiplicity.

2.1 Witt algebra I

Let $\mathbf{W} = \mathbb{C}[t, t^{-1}] \frac{d}{dt}$ be the Witt algebra. For $m \in \mathbb{Z}$, set $L_m = -t^{m+1} \frac{d}{dt}$. It is clear that $[L_m, L_n] = (m - n)L_{m+n}$.

In 1985, Kaplansky and Santharoubane [KS] classified all \mathbb{Z} -graded W-module $M = \bigoplus_m M_m$ such that dim $M_m = 1$. Here are examples:

- 1. For $(u, \delta) \in \mathbb{C}/\mathbb{Z} \times \mathbb{C}$, $\Omega_u^{\delta} := \bigoplus_{x \in u} \mathbb{C}e_x^{\delta}$ with $L_m \cdot e_x^{\delta} := (m\delta + x)e_{x+m}^{\delta}$.
- 2. The A-family $(A_{a,b})_{(a,b)\in\mathbb{C}^2}$. Here, $A_{a,b}$ is the **W**-module with basis $\{e_n^A\}_{n\in\mathbb{Z}}$ and the action given by the formula:

$$L_m \cdot e_n^A := \begin{cases} (m+n)e_{m+n}^A & n \neq 0, \\ (am^2 + bm)e_m^A & n = 0. \end{cases}$$

3. The *B*-family $(B_{p,q})_{(p,q)\in\mathbb{C}^2}$. Here, $B_{p,q}$ is the **W**-module with basis $\{e_n^B\}_{n\in\mathbb{Z}}$ and the action given by the formula:

$$L_m \cdot e_n^B := \begin{cases} n e_{m+n}^B & m+n \neq 0, \\ (pm^2 + qm) e_0^B & m+n = 0. \end{cases}$$

Set $\overline{A} := A/\mathbb{C}$. We remark that there are two exact sequences:

$$0 \longrightarrow \overline{A} \longrightarrow A_{a,b} \longrightarrow \mathbb{C} \longrightarrow 0,$$

$$0 \longrightarrow \mathbb{C} \longrightarrow B_{a,b} \longrightarrow \overline{A} \longrightarrow 0.$$

These exact sequences do not split, except for (a, b) = (0, 0). Therefore, the *A*-family is a deformation of $\Omega_0^1 \cong A_{0,1}$ and the *B*-family is a deformation of $\Omega_0^0 \cong B_{0,1}$. Except for the pevious two isomorphisms and the obvious $A_{0,0} \cong B_{0,0} \cong \overline{A} \oplus \mathbb{C}$, there are some repetitions in the previous list due to the following isomorphisms:

- 1. the de Rham differential $d: \Omega_u^0 \longrightarrow \Omega_u^1$, if $u \not\equiv 0 \mod \mathbb{Z}$,
- 2. $A_{\lambda a,\lambda b} \cong A_{a,b}$ and $B_{\lambda a,\lambda b} \cong B_{a,b}$ for $\lambda \in \mathbb{C}^*$.

There is no other isomorphism in the class S beside those described above. From now on, we will consider $(a, b) \neq (0, 0)$ as a projective coordinate, and the indecomposable modules in the *AB*-families are now parametrizes by \mathbb{P}^1 .

The classification of **W**-modules of the class \mathcal{S} has been achieved by I. Kaplansky et L. J. Santharoubane.

Theorem 2.1. Let M be a W-module of the class S.

- 1. If M is irreducible, then there exists $(u, \delta) \in \mathbb{C}/\mathbb{Z} \times \mathbb{C}$, with $(u, \delta) \neq (0, 0)$ or (0, 1), such that $M \cong \Omega_u^{\delta}$.
- 2. If M is reducible and indecomposable, then M is isomorphic to either A_{ξ} or B_{ξ} for some $\xi \in \mathbb{P}^1$.
- 3. Otherwise, M is isomorphic to $\overline{A} \oplus \mathbb{C}$.

2.2 Witt algebra II

Here, we show that the three family of W-modules introduced in the previous subsection can be realized in terms of the Poisson algebra \mathcal{P} and its deformation.

Fix $\alpha \in \mathbb{C}^2$ s.t. $\langle \rho, \alpha \rangle \neq 0$. A key fact is that **W** can be realized as a subalgebra of \mathcal{P} : $\mathbf{W} \cong \bigoplus_m \mathbb{C} E_{m\alpha}; L_m \mapsto -\frac{1}{\langle \rho, \alpha \rangle} E_{m\alpha}$. Hence, we identify **W** with $\bigoplus_m \mathbb{C} E_{m\alpha}$.

First of all, let us realize Ω_u^{δ} . Let $\mu \in \mathbb{C}$ be a representative of $u \in \mathbb{C}/\mathbb{Z}$. Then, it is clear that the subspace of \mathcal{P}

$$\mathcal{T}_{\mu\alpha-(\delta+1)\rho} := \bigoplus_{n \in \mathbb{Z}} \mathbb{C} E_{(n+\mu)\alpha-(\delta+1)\rho}$$

is a **W**-submodule isomoprhic to Ω_u^{δ} . Indeed, we have

$$\{L_m, E_{(n+\mu)\alpha-(\delta+1)\rho}\} = -\frac{1}{\langle \rho, \alpha \rangle} \langle m\alpha + \rho, (n+\mu)\alpha - \delta\rho \rangle E_{(m+n+\mu)\alpha-(\delta+1)\rho}$$
$$= (m\delta - (\mu+n))E_{(m+n+\mu)\alpha-(\delta+1)\rho}.$$

To realize A, B-familly, we need some preparation.

For $\xi \in \mathbb{C}^2$, let δ_{ξ} be the derivation of \mathcal{P} defined by $\delta_{\xi}(E_{\lambda}) := \{ \log E_{\xi}, E_{\lambda} \} = \langle \xi + \rho, \lambda + \rho \rangle E_{\lambda - \rho}.$ Let $\pi^{ab} : \mathcal{P} \twoheadrightarrow \mathcal{P} / \{\mathcal{P}, \mathcal{P}\} \cong \mathbb{C}$ be the canonical projection and set

$$\kappa : \mathcal{P} \times \mathcal{P} \longrightarrow \mathbb{C}; \qquad (X, Y) \longmapsto \pi^{ab}(X \cdot Y).$$

It can be checked that for any $\xi \in \mathbb{C}^2$, we have

$$\kappa(\delta_{\xi}(X), Y) + \kappa(X, \delta_{\xi}(Y)) = 0.$$

The Lie algebra \mathcal{P}_{ξ} is the vector space $\mathcal{P} \oplus \mathbb{C}c$ with its Lie bracket $[\cdot, \cdot]$ is given by

$$[X, Y] = \{X, Y\} + \kappa(X, \delta_{\xi}(Y))c,$$

$$[c, \mathcal{P}_{\xi}] = 0.$$

Remark that $\mathcal{P}_{\xi} = [\mathcal{P}_{\xi}, \mathcal{P}_{\xi}] \oplus \mathbb{C}E_{-2\rho}$. For $\eta \in \mathbb{C}^2$, we define the derivation $\tilde{\delta}_{\eta}$ of \mathcal{P}_{ξ} by

$$\tilde{\delta}_{\eta}(E_{\lambda}) = \begin{cases} \langle \eta + \rho, \lambda + \rho \rangle E_{\lambda - \rho} & \text{if } \lambda \neq -\rho, \\ \langle \eta + \rho, \xi + \rho \rangle c & \text{if } \lambda = -\rho. \end{cases}$$

Set $\mathcal{P}_{\xi,\eta} = \mathcal{P}_{\xi} \ltimes \mathbb{C}\tilde{\delta}_{\eta}$. It can be checked that **W** acts on $\mathcal{P}_{\xi,\eta}$, $[\mathcal{P}_{\xi}, \mathcal{P}_{\xi}] \ltimes \mathbb{C}\tilde{\delta}_{\eta}$ and $\mathbb{C}E_{-\rho}$, hence on the subquotient

$$\overline{\mathcal{P}}_{\xi,\eta} := [\mathcal{P}_{\xi}, \mathcal{P}_{\xi}] \ltimes \mathbb{C}\tilde{\delta}_{\eta}/\mathbb{C}E_{-2\rho}$$

For $(a, b), (p, q) \in \mathbb{C}^2$, set $\eta = b\alpha - (a + 1)\rho$ and $\xi = q\alpha - (p + 1)\rho$. Then, it can be verified that the **W**-submodule

$$\bigoplus_{m\neq 0} \mathbb{C} E_{m\alpha-\rho} \oplus \mathbb{C}\tilde{\delta}_{\eta} \subset \overline{\mathcal{P}}_{\xi,\eta}$$

is isomorphic to $A_{a,b}$ and

$$\bigoplus_{m\neq 0} \mathbb{C} E_{m\alpha-2\rho} \oplus \mathbb{C} c \subset \overline{\mathcal{P}}_{\xi,\eta}$$

is isomorphic to $B_{p,q}$.

2.3 W_{π}

What should be notice for W_{π} is that since it is realized as a Lie subalgebra of \mathcal{P} , it can be checked that W_{π} acts on $\mathcal{P}_{\xi,\eta}$, $[\mathcal{P}_{\xi}, \mathcal{P}_{\xi}] \ltimes \mathbb{C}\tilde{\delta}_{\eta}$ and $\mathbb{C}E_{-\rho}$, hence on $\overline{\mathcal{P}}_{\xi,\eta}$ of the previous subsection. Hence, with the same recipe, one can get indecomposable Λ -graded multiplicity free W_{π} -modules $\mathcal{M} = \bigoplus_{\lambda \in \pi(\Lambda)} \mathcal{M}_{\lambda}$. In fact, we can show that above constructions exhaust all such W_{π} -modules ! The only thing what one should work carefully is that the result depend on π , namely, whether $\pi(\Lambda)$ contains ρ or not.

Next, we will show that, for W_{π} , there are intermediate modules with arbitrary homogenous components of any dimension $d \geq 3$.

Set $V = \mathbb{C}^2$. The symplectic structure on V induces a Lie bracket on SV defined by the requirement

$$[\alpha^m, \beta^n] = nm < \alpha |\beta > \alpha^{m-1} \beta^{n-1}$$

for all $\alpha, \beta \in V$ and any $n, m \in \mathbb{Z}_{\geq 0}$. Since $[S^nV, S^mV] \subset S^{n+m-2}V$, it follows that S^2V is a Lie subalgebra and each component S^nV is a S^2V module. Indeed S^2V is isomorphic with $\mathfrak{sl}(2)$ and S^nV is the irreducible $\mathfrak{sl}(2)$ -module of dimension n + 1.

Since \mathcal{P} is a Poisson algebra, it will be convenient to denote by \mathcal{P}_{-} the underlying Lie algebra and by \mathcal{P}_{+} the underlying commutative algebra. Set:

$$\mathcal{P}^{ext} = \mathcal{P}_{-} \ltimes \mathcal{P}_{+} \otimes S^{2} V$$

Clearly \mathcal{P}^{ext} has a structure of Lie algebra, and for any $n, \mathcal{P}_+ \otimes S^n V$ is a \mathcal{P}^{ext} -module. Define a map $c: \mathcal{P}_- \to \mathcal{P}_+ \otimes S^2 V$ by the formula:

$$c(L_{\lambda}) = 1/2L_{\lambda-\rho} \otimes \lambda(\lambda+\rho)$$

and for $X \in \mathcal{P}_{-}$ set j(X) = X + c(X).

Lemma 2.2. The map $j : \mathcal{H}_{-} \to \mathcal{H}^{ext}$ is a Lie algebra morphism, i.e. the map c satisfies the Maurer Cartan equation

$$c([X,Y]) = X.c(Y) - Y.c(X) + [c(X), c(Y)]$$

for any $X, Y \in \mathcal{P}_{-}$.

For any $n \geq 0$, $\mathcal{P}_+ \otimes S^n V$ is naturally a \mathcal{P}^{ext} -module. Then $\mathcal{M}^n := j_* \mathcal{P}_+ \otimes S^n V$ is a \mathbb{C}^2 -graded \mathcal{P}_- -module, whose all homogenous components have dimension n. Given $\beta \in \mathbb{C}^2/\pi(\Lambda)$, set

$$\mathcal{M}^n(eta) = igoplus_{\mu\ineta} \, \mathcal{M}^n_\mu$$

It follows that $\mathcal{M}^n(\beta)$ is a graded W_{π} -module whose all non-zero components have dimension n. Recall that we assume that W_{π} is not a generalized Witt algebra, i.e, we assume that $\pi(\Lambda)$ does not lie in a complex line.

Lemma 2.3. For any $n \geq 3$, the W_{π} -module $\mathcal{M}^{n}(\beta)$ is irreducible. Moreover, given two distinct $\pi(\Lambda)$ -cosets $\beta \neq \beta'$, the W_{π} -modules $\mathcal{M}^{n}(\beta)$ and $\mathcal{M}^{n}(\beta')$ are not isomorphic.

Conjecture 2.4. Any irreducible W_{π} -module of the intermediate series has all its homogenous components of dimension ≤ 1 or it is isomorphic to $\mathcal{M}^{n}(\beta)$ $(n \geq 3)$ or $\overline{\mathcal{P}}(\beta)$ for some $\beta \in \mathbb{C}^{2}/\pi(\Lambda)$.

References

- [IM1] K. Iohara and O. Mathieu, Classification of simple Lie algebras on a lattice, Proc. London Math. Soc. (3) 106, (2013), 508–564.
- [IM2] K. Iohara and O. Mathieu, A Global version of Grozman's theorem, Math. Z. 274, (2013), 955–992.
- [KS] I. Kaplansky and L. J. Santharoubane, Harish-Chandra modules over the Virasoro algebra, in Infinite-dimensional groups with applications, MSRI Publ. 4, Springer, New York-Berlin, (1985), 217–231.
- [M] O. Mathieu, Classification of simple graded Lie algebras of finie growth, Invent. Math. 108, (1992), 455–519.