

Searching for Strong Lenses to Probe Dark Matter Substructures

10 914

Supervisor: Sherry Suyu (ASIAA) Tzihong Chiueh (NTU)

@ IPMU 2015/11/26

Collaboration

* Observation:

Anupreeta More (Kavli IPMU),
Masamune Oguri (U. Tokyo),
Atsunori Yonehara (Kyoto Sangyo University),
Yuriko Kubota (Kyoto Sangyo University),
Phil Marshall (KIPAC),
Jean Coupon (U. Geneva),
Bau-Ching Hsieh (ASIAA)

* <u>Simulation</u>:

Hsi-Yu Schive (NTU), Tak-Pong Woo (NTU), Shing-Kwong Wong (NTU)

Motivation

Cosmology probe dark energy through time delays of lenses

→ Galaxy evolution

study galaxy structure/substructures and probe dark matter

Black holes

co-evolution of supermassive black holes and spheroids

 Currently there are only a handful of 4-image lensed quasars
 → expect to have ~600 lensed quasars (~80 quads) in HSC survey (Oguri & Marshall 2010)

Strong Lens Hunter

重力和影像探奥號 Chung-li He In-hsiang Tan Ao Hao CHTTAH

Chan et al. 2015 (arXiv:1411.5398)

Procedure Overview

- Separate Lens and Images
- Estimate Lens center and Image positions
- Classify potential **quads (4-image)** and **doubles (2-image)**
- Fit SIE/SIS model to quads/doubles

	q	uad (4-imag	ge)	do	dud		
	bright	faint	ultra-faint	bright	faint	ultra-faint	(non-lens)
large sep. $(r_{ein} > 1.1'')$							
small sep. $(r_{ein} < 1.1'')$							

TPR & FPR

• Given a lens (mock):

- TP = true positive = correct identification
- FN = false negative = incorrect rejection

TPR = true positive rate

 $=\frac{\# \text{ of correct identification}}{\# \text{ of all lenses}} = \frac{\text{TP}}{\text{TP} + \text{FN}}$

• Given a non-lens (dud):

• TN = true negative = correct rejection

• FP = false positive = incorrect identification

FPR = false positive rate

of incorrect identification _ FP

of all non-lenses TN + FP

Results

- * CHITAH finds much purer sample of quads than doubles.
- * For bright large-sep. ($r_{ein} > 1.1''$) quads: TPR ~ 90% and FPR ~ 3%.
- For faint large-sep. quads:TPR ~ 80% and FPR ~ 5%
- * A sharp drop of TPR as $r_{\rm ein} \leq 0.5''$
 - \Rightarrow the PSF seeing of the mock lenses

Relative to the Gaussian PSF, the extended wings of Moffat PSF decrease the TPRs by a few percent.

Chan et al. 2015 (arXiv:1411.5398)

COSMOS 5921+0638

COSMOS 5921+0638

HST ACS F814W

Subaru Suprime-Cam *B* band Chan et al. 2015 (arXiv:1411.5398)

Typical Apparent Diameter of the Moon (0.5 degrees)

Suprime-Cam First Light Release January 1999

Suprime-Cam Image Release September 2001 Hyper Suprime-Cam Image Release July 2013

Wide	1400 deg ²	grizy	r~26
Deep	27 deg ²	grizy+3NB	r~27
Ultra-Deep	3.5 deg ²	grizy+3NB	r~28

Lens Candidates in HSC

Galaxy-scale Lens

- matches (64) between GAMA blended spectra catalog (Holwerda et al. 2015) and HSC early data release S14A0_b
- * preselection (10) via redshifts and morphology (CHITAH, Chan et al. 2015)
- confirmation via lens modeling (GLEE, Suyu & Halkola 2010)

Quasar Lens (preliminary)

- Atsunori and Yuriko produce a quasar catalog via photometric quasar selection method (Richards et al. 2009).
- ✤ CHITAH classifies objects in HSC S14A_0b imaging data using the quasar catalog.
- We visually grade the lens candidates.

Database

Lens Candidates

io. Gav	Ima	ge H	HSC name	SDSS name	RA	Dec	PA	Z	mi	nim	g R _{ein}	χ ² src	flag C	линс	GSHS	GAM	GMO	GTC	GJC	GAY	GYK	comment
3.00		5417	172422504498	J0959+0206	09:59:21.76	+02:06:38.4	27.3	0.55 3.14	0 0 26.2	2 4	0.822	0.181	-	3.0	3.0	3.0	3.0		3.0	•	-	anguita lens
0.50					-		-	-	-21.0)4	0.916	0.312	-	1.0	0.5	0.0	0.5	-	0.0	1.0	-	e.
1.17						1	-	-	-20.4	4	0.716	0.590	-	1.5	1.0	1.0	1.0	-	1.5	1.0	-	-
1.88	e i						-	-	-20.5	54	1.031	0.956	-	2.8	2.0	1.5	1.5	-	2.5	1.0	-	SHS: spiral arm or lensed galaxy? JHHC: 2014A&A562A23G
0.83						-		-	10.6	s 4	1.060	n 799		10	10	10	0.5		0.5	10	1	
0.25						1 0						1				•						
0.25				I	-00	k fo	D I		m	0	re		er	ns	ses	51	n			G	5	
0.25					00	k fo	D1		m 22.3		0.539	0.000	er	1.0	0.5	5 1	n	-	0.0	0.0	.	I JA!! JC: Merger?
0.25 0.62 0.25 0.42					00	k fo				O A	0.539 0.837	0.000	er	1.0 1.0	0.5 0.5	0.0 0.0	0.0 0.0	-	0.0	0.0		IOA!! JC: Merger?
0.25 0.62 0.25 0.42 0.42					200	k fo			22.3 21.0 21.8	O B A B A B A B A B A B A B A B A B A B B A B B B B B B B B	0.539 0.837 0.738	0.000 0.760 0.659	e1	1.0 1.0 1.0	0.5 0.5 1.5	0.0 0.0 1.5	0.0 0.0 0.5		0.0 1.0 0.5	0.0		IC: Merger?
0.25 0.62 0.25 0.42 0.42 0.1.00				Ι	200	k fo			22.3 21.0 21.8 21.8	O 3 4 3 4 3 4 3 4	0.539 0.837 0.738 0.894	0.000 0.760 0.659 0.896		1.0 1.0 1.0	0.5 0.5 1.5 2.0	0.0 0.0 1.5 1.0	0.0 0.0 0.5 1.5		0.0 1.0 0.5 2.5	0.0 0.0 1.0 1.0		JC: Merger? SHS: lensed galaxy?
0.25 0.62 0.25 0.42 0 1.00 1 1.63 2 1.08				Ι	100	k fo			22.3 21.0 21.8 21.8 21.8	LO 3 4 3 4 3 4 2 4	0.539 0.837 0.738 0.894 1.071	0.000 0.760 0.659 0.896 0.542		1.0 1.0 1.0 1.8 1.0	0.5 0.5 1.5 2.0 1.0	0.0 0.0 1.5 1.0 1.0	0.0 0.0 0.5 1.5 1.0		0.0 1.0 0.5 2.5 1.5	0.0 0.0 1.0 1.0		ISHS: lensed galaxy?
0.25 0.62 0.25 0.42 0 1.00 1 1.63 2 1.08 3 0.33				Ι	100	k fo			22.3 21.0 21.8 21.8 21.2 21.2 22.2	$ \begin{array}{c} $	0.539 0.837 0.738 0.894 1.071 0.647	0.000 0.760 0.659 0.896 0.542 0.879		1.0 1.0 1.0 1.0 1.0 1.0	0.5 0.5 1.5 2.0 1.0 0.5	0.0 0.0 1.5 1.0 1.0 0.0	0.0 0.0 0.5 1.5 1.0 0.0		0.0 1.0 0.5 2.5 1.5 0.5	0.0 0.0 1.0 1.0 1.0 0.0		I DA!! JC: Merger? SHS: lensed galaxy? SHS: lensed galaxy?

Flux Anomalies

lens	$R_{ m cusp}$
B1422+231	0.187
B0712+472	0.254
B2045+265	0.501

lens	$R_{ m fold}$
MG0414+0534	0.087
B0128+437	0.263
B1555+375	0.235
B1608+656	0.327
B1933+503	0.656

Xu et al. 2015

Myers et al. 2003 and Browne et al. 2003

Flux anomalies

✤ Dust?

It does not affect radio lenses.

Substructure?

CDM substructures only affect < 5% of flux relation.

(Xu et al. 2015)

From gravitational imaging, substructure mass fraction is though consistent with CDM simulation, but a bit higher? (Vegetti et al. 2014)

New dark matter model?

ψDM: wave dark matter

- * ψ DM consists of extremely light bosons (~10⁻²² eV)
- The corresponding de Broglie wavelength becomes astronomical scale.
- The wave mechanics can be described by Schrödinger's equation, coupled to gravity by means of Poisson's equation.
- * Simulation is very expensive. $\rightarrow GAMER$ (Schive et al. 2009)

High-z mass fluctuation

Potential solution to the missing satellites problem

Schive et al. 2015

Future prospect

Search for new lenses in surveys with CHITAH:
 HSC data, CFHTLS data, DES data and KiDS/VIKING data

GPU version

- Lensed galaxy search improvement
- New lens candidates followup
- Flux anomalies via more \u00f8DM halos
- * *vDM* confirmation through both simulation and observation