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Dark matter halo

I Very little is known about the details of the dark matter (DM) halo
in the local neighborhood.

I This introduces significant uncertainty when interpreting data
from direct detection experiments.

I Usually the Standard Halo Model (SHM) is assumed:
isothermal sphere with an isotropic Maxwell-Boltzmann velocity
distribution.

I local DM density: ρχ ∼ 0.3 GeV cm−3

I typical DM velocity: v̄ ' 220 km/s

I Numerical simulations of galaxy formation predict dark matter
velocity distributions which can deviate from a Maxwellian.
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Dark matter direct detection

I Strong tension between hints for a signal and exclusion limits (for
elastic spin-independent scattering):
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Our aim

I Identify Milky Way-like galaxies from high resolution
hydrodynamic simulations, by taking into account observational
constraints on the Milky Way (MW).

I Extract the DM density and velocity distribution at the Solar
position for the selected MW analogues.

I Analyze the data from direct detection experiments, using the
local DM distributions of the selected haloes.
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Dark matter direct detection
I Look for energy deposited in low-background detectors by the

scattering of WIMPs in the dark halo of our galaxy.

I WIMP-nucleus collision:

I Elastic recoil energy:

ER =
2µ2

χAv2

mA
cos2θlab

θlab: angle of the nuclear recoil relative to the initial WIMP direction

I Minimum WIMP speed required to produce a recoil energy ER :

vm =

√
mAER

2µ2
χA

Nassim Bozorgnia IPMU, 18 May 2016



Dark matter direct detection
I Look for energy deposited in low-background detectors by the

scattering of WIMPs in the dark halo of our galaxy.

I WIMP-nucleus collision:

I Elastic recoil energy:

ER =
2µ2

χAv2

mA
cos2θlab

θlab: angle of the nuclear recoil relative to the initial WIMP direction

I Minimum WIMP speed required to produce a recoil energy ER :

vm =

√
mAER

2µ2
χA

Nassim Bozorgnia IPMU, 18 May 2016



Dark matter direct detection
I Look for energy deposited in low-background detectors by the

scattering of WIMPs in the dark halo of our galaxy.

I WIMP-nucleus collision:

I Elastic recoil energy:

ER =
2µ2

χAv2

mA
cos2θlab

θlab: angle of the nuclear recoil relative to the initial WIMP direction

I Minimum WIMP speed required to produce a recoil energy ER :

vm =

√
mAER

2µ2
χA

Nassim Bozorgnia IPMU, 18 May 2016



The differential event rate

I The differential event rate (event/keV/kg/day):

R(ER , t) =
ρχ

mχ

1
mA

∫
v>vm

d3v
dσA
dER

v fdet(v, t)

I For the standard spin-independent and spin-dependent
scattering:

dσA
dER

=
mA

2µ2
χAv2

σ0F 2(ER)

R(ER , t) =
σ0F 2(ER)

2mχµ
2
χA︸ ︷︷ ︸

particle physics

ρχη(vm , t)︸ ︷︷ ︸
astrophysics

where

η(vm , t) ≡
∫

v>vm
d3v

fdet(v, t)
v

halo integral
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Annual modulation

Max in June
Min in Dec

I Due to the motion of the Earth around the Sun, the velocity
distribution in the Earth’s frame changes in a year.

fdet(v, t) = fsun(v + ve(t)) = fgal(v + vs+ve(t))

Sun’s velocity wrt the Galaxy: vs ≈ (0, 220, 0) + (11, 12, 7) km/s

Earth’s velocity: ve ≈ 30 km/s
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Velocity distribution fgal(v)?

I The velocity distribution depends on the halo model.

I In the SHM, a truncated Maxwellian velocity distribution is
assumed

fgal(v) ≈
{

N exp(−v2/v̄2) v < vesc

0 v ≥ vesc

with v̄ ' 220 km/s, vesc = 550 km/s.

I DM distribution could be very different from Maxwellian:
I Most likely both smooth and un-virialized (streams and debris

flows) components.

I the smooth component may not be Maxwellian.

Nassim Bozorgnia IPMU, 18 May 2016



Velocity distribution fgal(v)?

I The velocity distribution depends on the halo model.

I In the SHM, a truncated Maxwellian velocity distribution is
assumed

fgal(v) ≈
{

N exp(−v2/v̄2) v < vesc

0 v ≥ vesc

with v̄ ' 220 km/s, vesc = 550 km/s.

I DM distribution could be very different from Maxwellian:
I Most likely both smooth and un-virialized (streams and debris

flows) components.

I the smooth component may not be Maxwellian.

Nassim Bozorgnia IPMU, 18 May 2016



Velocity distribution fgal(v)?

I The velocity distribution depends on the halo model.

I In the SHM, a truncated Maxwellian velocity distribution is
assumed

fgal(v) ≈
{

N exp(−v2/v̄2) v < vesc

0 v ≥ vesc

with v̄ ' 220 km/s, vesc = 550 km/s.

I DM distribution could be very different from Maxwellian:
I Most likely both smooth and un-virialized (streams and debris

flows) components.

I the smooth component may not be Maxwellian.

Nassim Bozorgnia IPMU, 18 May 2016



Outline

I Dark matter direct detection

I Hints for a signal versus constraints

I DM distribution from cosmological simulations

I Identifying simulated Milky Way analogues

I Local DM density

I Local DM velocity distribution

I Analysis of direct detection data

I Summary

Nassim Bozorgnia IPMU, 18 May 2016



Hints for a signal versus constraints

I Many direct dark matter experiments: DAMA, XENON, CDMS,
CoGeNT, CRESST, KIMS, LUX, SuperCDMS . . .

I WIMPs interact with nuclei and produce:
I phonons, scintillation, or ionization

I We consider data from four experiments:

Hints for a signal:
I DAMA: scintillation (NaI)
I CDMS-Si: ionization + phonons (Si)

Null results:
I LUX: scintillation + ionization (Xe)
I SuperCDMS: ionization + phonons (Ge)
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DAMA annual modulation signal

I NaI detectors; 9.3σ modulation signal; 1.33 ton yr (14 yrs)

DAMA, since 1997

I Two possible WIMP masses: mχ ∼ 10 GeV, mχ ∼ 80 GeV
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CDMS-Si excess of events

I 140.2 kg day in 8 Si detectors. Observed 3 events against
expected background of 0.62 events.

I WIMP + background hypothesis favored over the known
background estimate at ∼ 3σ .

I Maximum likelihood at mχ = 8.6 GeV
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Constraint from LUX and SuperCDMS

I Assuming the Standard Halo Model and spin-independent elastic
scattering, strong tension between positive and negative results:

LUX (90%)

SuperCDMS (90%)

CDMS-Si

(68% & 90%)

DAMA (90% & 3σ)
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Hydrodynamic simulations

I We use the EAGLE and APOSTLE hydrodynamic simulations
(DM + baryons).

Name L (Mpc) N mg (M�) mdm (M�)

EAGLE IR 100 6.8× 109 1.81× 106 9.70× 106

EAGLE HR 25 8.5× 108 2.26× 105 1.21× 106

APOSTLE IR – – 1.3× 105 5.9× 105

I APOSTLE IR: zoomed simulations of Local Group-analogue systems,
comparable in resolution to EAGLE HR.

I These simulations are calibrated to reproduce the observed distribution
of stellar masses and sizes of low-redshift galaxies.

I Companion dark matter only (DMO) simulations were run assuming all
the matter content is collisionless.
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EAGLE simulations

EAGLE project, 1407.7040

Intergalactic gas: blue⇒ green⇒ red with increasing temperature.
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Milky Way analogues
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Identifying Milky Way analogues

I Usually a simulated halo is classified as MW-like if it satisfies the
MW mass constraint, which has a large uncertainty. We
demonstrate that the mass constraint is not enough to define a
MW-like galaxy.

I Consider simulated haloes with 5× 1011 < M200/M� < 2× 1013

and select the galaxies which most closely resemble the MW by
the following criteria:

I Rotation curve from simulation fits well the observed MW
kinematical data from: [Iocco, Pato, Bertone, 1502.03821].

I The total stellar mass of the simulated galaxies is within the 3σ
observed MW range: 4.54× 1010 < M∗/M� < 8.32× 1010.
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Observations vs. simulations

Initial sets of haloes:
EAGLE IR: 2411 | EAGLE HR: 61 |
APOSTLE IR: 24

Haloes which have correct total
stellar mass:
EAGLE IR: 335 | EAGLE HR: 12 |
APOSTLE IR: 2
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Observations vs. simulations

Goodness of fit to the observed data:

EAGLE IR EAGLE HR APOSTLE IR
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N = 2687 is the total number of observational data points used.

I Minimum of the reduced χ2 occurs within the 3σ measured range
of the MW total stellar mass.⇒ haloes with correct MW stellar
mass have rotation curves which match well the observations.

I We focus only on the selected EAGLE HR and APOSTLE IR
haloes due to higher resolution.⇒ total of 14 MW analogues.
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Dark matter density profiles

I Spherically averaged DM density profiles derived from mass
enclosed in a given spherical shell between R and R + δR:

2.
8
×
ϵ
=

0.
98

kp
c

��� � � ��

����
����

����
�

�
��

��

� [���]

ρ
�
�
[�
��

/�
�
�
]

2.
8
×
ϵ
=

0.
87

kp
c

��� � � ��

����
����

����
�

�
��

��

� [���]

ρ
�
�
[�
��

/�
�
�
]

I In the inner 1.5 – 2 kpc: DM density shallower than NFW.
I Between 1.5 – 6/8 kpc: baryons lead to a steepening of the DM

profile.
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Local dark matter density

I Need the DM density at the position of the Sun.

I Consider a torus aligned with the stellar disc with 7 < R < 9 kpc,
and −1 < z < 1 kpc.

I EAGLE HR: local ρDM = 0.42− 0.73 GeV cm−3.
I APOSTLE IR: local ρDM = 0.41− 0.54 GeV cm−3.
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Local dark matter density

Is there an enhancement of the local DM density in the Galactic disc
compared to the halo?

I Compare the the average ρDM in the torus with the value in a
spherical shell at 7 < R < 9 kpc.

ρtorus
DM is larger than ρshell

DM by:

2 – 27% for 10 haloes,
greater than 10% for 5 haloes, and
greater than 20% for only two haloes.

I The increase in the DM density in the disc could be due to the
DM halo contraction as a result of dissipational baryonic
processes.
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Halo shapes

I To study the shape of the inner (R < 8 kpc) DM haloes, we
calculate the inertia tensor of DM particles within 5 and 8 kpc.
⇒ ellipsoid with three axes of length a ≥ b ≥ c.

I Calculate the sphericity: s = c/a.

I s = 1: perfect sphere. s < 1: increasing deviation from sphericity.

I At 5 kpc, s = [0.85, 0.95]. At 8 kpc, s lower by less than 10%.

I Due to dissipational baryonic processes, DM sphericity
systematically higher in the hydrodynamic simulations compared to
DMO haloes in which s = [0.75, 0.85].
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I Due to dissipational baryonic processes, DM sphericity
systematically higher in the hydrodynamic simulations compared to
DMO haloes in which s = [0.75, 0.85].
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Halo shapes

I Describe a deviation from sphericity by the triaxiality parameter:

T =
a2 − b2

a2 − c2

I Oblate systems, a ≈ b � c ⇒ T ≈ 0.

I Prolate systems, a� b ≈ c ⇒ T ≈ 1.

I In the hydro case, since inner haloes are very close to spherical,
deviation towards either oblate or prolate is small. DMO
counterparts have a preference for prolate inner haloes.
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Outline

I Dark matter direct detection

I Hints for a signal versus constraints

I DM distribution from cosmological simulations

I Identifying simulated Milky Way analogues

I Local DM density

I Local DM velocity distribution

I Analysis of direct detection data

I Summary
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Local DM speed distributions

I DM speed distribution is related to the DM velocity distribution (in
the Galactic rest frame):

f (|v|) = v2
∫

dΩv f̃ (v)

such that
∫

dv f (|v|) = 1.

I The torus contains 1800 – 3200 particles, depending on the halo.

I Due to limited resolution, we are not sensitive to the local
variation of the DM velocity distribution within the torus.⇒ we
take the average speed distribution of DM particles in the torus.

I Compare the DM speed distribution from simulations to:

I SHM Maxwellian with v0 = 230 km/s.

I Maxwellian with free peak speed: f (v) ∝ v2 exp[−(v/v0)2].
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Local DM speed distributions
In the Galactic rest frame:
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I Comparison to dark matter only (DMO) simulations:
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Local DM speed distributions
In the Galactic rest frame:
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Local DM speed distribution

I Baryons deepen the gravitational potential of the Galaxy in the
inner regions, resulting in more high velocity particles.⇒ The
peak of the DM speed distribution is shifted to higher speeds
when baryons are included in the simulations.

I The Maxwellian distribution with a free peak provides a better fit
to haloes in the hydrodynamic simulations compared to their
DMO counterparts.

I The best fit peak speed of the Maxwellian distribution in the
hydrodynamic simulations: 223 – 289 km/s.
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Components of the velocity distribution

Distributions of radial, azimuthal, and vertical velocity components:
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Components of the velocity distribution

Comparison to DMO simulations:
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Components of the velocity distribution

I The three components of the DM velocity distribution are not
similar.⇒ Clear velocity anisotropy at the Solar circle.

I The distributions of the radial and vertical velocity components
are peaked around zero.

I Four haloes have a significant positive mean azimuthal speed
(µ > 20 km/s). The DMO counterparts of these haloes don’t
show evidence of rotation.

I Is this pointing to the existence of a "dark disc"?

Nassim Bozorgnia IPMU, 18 May 2016
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Dark disc

From images in 2MASS. Credit: J. Read & O. Agertz

I Dark disc forms when stars and gas in the Galactic disc drag
merging satellites towards the Galactic plane. Tidal forces
disrupt these satellites.⇒ their accreted material forms thick
stellar and DM discs [Read, Lake, Agertz, Debattista, 0803.2714].

I Implications for direct detection:

I Density of the dark disc⇒ Enhance direct detection event rates.

I Lag velocity of the DM particles in the disc compared to the stellar
particles⇒ Shift in the phase of the annual modulation signal.
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Dark disc in EAGLE and APOSTLE

I To check the existence of a dark disc in any of our MW
analogues, we need to search for galaxies with a DM component
rotating as fast as the stars.

I For each halo, we fit the azimuthal velocity distribution of the
star and DM particles in the torus with a double Gaussian.

I Among the four haloes with significant positive mean azimuthal
speed, two haloes have a rotating DM component in the disc
with mean velocity comparable (within 50 km/s) to that of the
stars.

I Hint for the existence of a co-rotating dark disc in 2 out of 14
MW-like haloes.⇒ dark discs are relatively rare in our halo
sample.

Nassim Bozorgnia IPMU, 18 May 2016
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The halo integral

I The halo integral parametrizes the astrophysics dependence of
the event rate,

η(vm , t) ≡
∫

v>vm
d3v

fdet(v, t)
v

, R(ER , t) =
ρχσ0 F 2(ER)

2mχµ
2
χA

η(vm , t)

I To compute the halo integral, we need the velocity distributions in
the detector reference frame:

fdet(v, t) = fgal(v + vs+ve(t))

Sun’s velocity wrt the Galaxy: vs ≈ (0, v? , 0) + (11.10, 12.24, 7.25) km/s

v?: local circular speed for the simulated halo.
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The halo integral
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APOSTLE IR

I Significant halo-to-halo scatter in the halo integrals.

I Halo integrals for the best fit Maxwellian velocity distribution
(peak speed 223 – 289 km/s) fall within the 1σ uncertainty band
of the halo integrals of the simulated haloes.

I Difference between simulated haloes and SHM Maxwellian due
to the different peak speed of the DM velocity distribution of the
simulated haloes compared to 230 km/s.
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The halo integral
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I Comparison to dark matter only (DMO) simulations:
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The halo integral

I Baryons affect the velocity distribution strongly at the Solar
position, resulting in a shift of the tails of the halo integrals to
higher velocities with respect to the DMO case.

I Shape of speed distribution for DMO haloes not captured well by
the Maxwellian with a free peak. There are large deficits at the
peak, and an excess at low and very high velocities compared to
the best fit Maxwellian speed distributions.

I This results in quite different halo integrals of DMO haloes
compared to their best fit Maxwellian halo integrals.
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Outline

I Dark matter direct detection

I Hints for a signal versus constraints

I DM distribution from cosmological simulations

I Identifying simulated Milky Way analogues

I Local DM density

I Local DM velocity distribution

I Analysis of direct detection data

I Summary
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Implications for direct detection
I Assuming the SHM:

LUX

SuperCDMS
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Implications for direct detection
I Comparing with simulated MW-like haloes in EAGLE HR (smallest ρDM ):
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Implications for direct detection
I Comparing with simulated MW-like haloes in EAGLE HR (largest ρDM ):
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I Halo-to-halo uncertainty larger than the 1σ uncertainty from each halo.
I Overall difference with SHM mainly due to the different local DM density

of the simulated haloes.
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Effect of the velocity distribution

Fix local ρDM = 0.3 GeV cm−3

I Haloes in EAGLE HR with velocity distributions closest and
farthest from SHM Maxwellian:

LUX

SuperCDMS

CDMS-Si

DAMA
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I Shift in the low WIMP mass region persists, where experiments
probe the high velocity tail of the distribution.
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farthest from SHM Maxwellian:
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I Shift in the low WIMP mass region persists, where experiments
probe the high velocity tail of the distribution.
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Effect of the velocity distribution
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I Peak speed of the best fit Maxwellian is close to 230 km/s in
APOSTLE IR haloes, so the effect of the velocity distribution is
smaller.
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Comparison with other recent works

I Kelso et al. 1601.04725, study two MW-like galaxies from the
MaGICC simulations. Analogous to our findings, they also find
that the best fit Maxwellian velocity distribution provides a good
fit to the velocity distribution of each simulated halo.
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Comparison with other recent works

I Sloane et al. 1601.05402 study four MW-like galaxies with
various merger histories.

I Difference with our results: they find a deficit of high speed
DM particles in their simulations compared to the SHM.

I However, the halo integrals obtained from their best fit
Maxwellian velocity distributions show only small discrepancies
at high speeds compared to those obtained from simulations.

I Difference between best fit peak speeds of the Maxwellian in our
works likely due to the different stellar masses of our MW-like
galaxies.
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Comparison with other recent works

I The results of our work as well as Kelso et al. 1601.04725 and
Sloane et al. 1601.05402 show that halo integrals and hence
direct detection event rates obtained from a Maxwellian velocity
distribution with a free peak speed are similar to those obtained
directly from the simulated haloes.

I A Maxwellian velocity distribution with a peak speed constrained
by hydrodynamic simulations could be used by the community in
the analysis of direct detection data.
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Outline

I Dark matter direct detection

I Hints for a signal versus constraints

I DM distribution from cosmological simulations

I Identifying simulated Milky Way analogues

I Local DM density

I Local DM velocity distribution

I Analysis of direct detection data

I Summary
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Summary

I We identified simulated haloes which satisfy observational
properties of the Milky Way, besides the uncertain mass
constraint. Haloes are MW-like if:

I good fit to observed MW rotation curve.
I stellar mass in the 3σ observed MW stellar mass range.

I The local DM density: ρDM = 0.41− 0.73 GeV cm−3.⇒ overall
shift of the allowed regions and exclusion limits for all masses.

I Halo integrals of MW analogues match well those obtained from
best fit Maxwellian velocity distribution (with mean speed 223 –
289 km/s).⇒ shift of allowed regions and exclusion limits by a
few GeV at low DM masses compared to SHM.

I Shift in the allowed regions and exclusion limits occurs in the
same direction.⇒ compatibility between different experiments is
not improved.
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Selection criteria

��� � � ��
���

���

���

���

�* [��
�� �☉]

� �
[�
�
/�
]

EAGLE HR

��� � � ��
���

���

���

���

���� [��
�� �☉]

� �
[�
�
/�
]

EAGLE HR

I M? strongly correlated with vc at 8 kpc, while the correlation of
M200 with vc is weaker.

I M?(R < 8 kpc) = (0.5− 0.9)M?.

I Mtot(R < 8 kpc) = (0.01− 0.1)M200.

I Over the small halo mass range probed, little correlation between
MDM(R < 8 kpc) and M200.
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Velocity distribution azimuthal components

DM and stellar velocity distributions:
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EAGLE HR

I Fit with a double Gaussian. Difference in the mean speed of
second Gaussian between DM and stars is 35 km/s in the left,
and 7 km/s in the right panel.

I Fraction of second Gaussian is 32% in the left panel and 43% in
the right panel.
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