

Département d'astronomie

The gas-galaxy-halo connection

Jean Coupon (University of Geneva) Collaborators: Miriam Ramos, Dominique Eckert, Stefano Ettori, Mauro Sereno, Keiichi Umetsu, Sotiria Fotopoulou, Stéphane Paltani, and the XXL collaboration

IPMU - 2016, Thursday April 28th

The galaxy diversity

Hubble Deep Field ST ScI OPO January 15, 1996 R. WIlliams and the HDF Team (ST ScI) and NASA

HST WFPC2

The galaxy zoology: the Hubble sequence

How did galaxies form and evolve from the initial baryon density field to the galaxy diversity as seen today?

The galaxy statistics (e.g. the stellar mass function)

llbert et al. (2013)

What is the interplay between physical processes?

Star formation (in)efficiency in dark matter haloes

Moster et al. (2010)

Lin et al. (2014)

At z=0, from low- to high-mass haloes

Observations in the local Universe (mostly: SDSS)

Where do we stand at z=1?

Mstar/Mh

Ideally one wants to probe both the low- and high-mass regime

NUV < 24.5, ugriz < 25, K < 22, ~ 0.1 Gpc^3 in 0.5 < z < 1.0

M_{star}/M_h Unique depth/volume combination at z=1!

Stellar to halo mass relationship

Comparison with simulations

Deficit of star formation in medium mass (10^10) satellites

The gas-galaxy-halo connection

- gas "temperature cycle" and AGN feedback are the drivers of star formation
- f_{gas} is a key observable to understand galaxy evolution
- galaxy group regime is the new frontier for X-ray probes
- we measured stacked X-ray, lensing and star fraction profiles for groups up to z=1 in CFHTLenS/XXL field
- we obtained constraints on baryon fraction down to 10¹² M_{sun} halos up to z=1

I. The gas-halo connection as a tracer of feedback

"halo-mass desert"

Le Brun et al. (2014)

I. The gas-halo connection as a tracer of feedback

- several models: self-regulated jets, QSO thermal blast
- low-mass regime is most sensitive to feedback modes

Gaspari et al. (2014)

II. The gas-halo connection as a tool for cosmology

- Mgas as primary proxy for halo mass?
- XXL clusters reveal tighter for Mgas-Tx

Lieu et al. (2016)

Eckert, Ettori, JC et al. (2016)

Probing the gas in groups is very challenging

- X-ray brightness is proportional to gas density
- hot gas in groups is thousand times dimmer than in massive clusters
- star binaries become as bright as hot gas at low-mass
- is AGN contamination an issue?
- so far hot gas profiles were only measured at low-z or for a handful of very deep observations

Probing the gas in groups is very challenging

- but we can "stack" X-ray photons from optically detected BCGs
- requirements:
 - contiguous X-ray survey
 - a sample of central galaxies (although a gas-profile parametric model including satellites is feasible)
- main drawback of stacking analysis is that we can't easily measure the scatter -> need to assume one
- biased results if scatter is off

Stacking L_x in the local Universe

- Anderson et al. (2014) stacked X-ray luminosities of local BCGs
- followed-up with lensing masses by Wang et al. (2015)
- impressive detection of hot gas signal down to group-scale systems
- but large PSF, no density profile -> no gas mass
- restricted to the local Universe

Stacking L_x at higher redshift

- Leauthaud et al. (2010) stacked X-ray detected groups in deep XMM/Chandra data
- measurements up to z=1
- group/cluster regime at mid-z, massive cluster regime at high-z, no gas masses

Leauthaud et al. (2010)

The XXL survey

- X-ray survey over 50 deg^2 (2 fields) with XMM-Newton
- contiguous 10 ks observations (largest program ever allocated with XMM)
- resolution four times better than ROSAT

The XXL survey

ROSAT all sky survey

A unique combination of data

- near-IR from WIRCam follow-up
- 20-40% complete spectroscopy for bright galaxies (VIPERS/SDSS)

X-ray data

Optical+NIR

A large volume up to z=1

Stacking X-ray photons

- we selected a sample of ~20,000 central galaxies from spectroscopy and deep optical/near-IR data
- binned in 3 redshift bins (0.2 < z < 1.0) and 6 stellar mass bins (10.5 < logMstar < 12.0)
- low-mass bins contains ~3,000 gals -> 30 Ms (!) of X-ray observations per bin (1 year of XMM data)
- point sources detected in soft and hard bands masked

(from M. Ramos)

Where do we stand in the L_x/redshift plane?

Stacked X-ray profiles (0.2 < z < 0.35)

Stacked X-ray profiles (0.2 < z < 0.35)

Galaxy-galaxy lensing profiles (0.2 < z < 0.35)

X-ray luminosity versus halo mass

Gas fraction (z~0.29)

Extreme AGN feedback is ruled out

Gas fraction at high-z

Gas fraction at high-z

gas fraction evolution?

- Vikhlinin et al. (2009), Lin et al. (2012)
- increased gas fraction between z~0.1 and 0.6
- evolution due background critical density evolution (hence M₅₀₀)?

Measurement systematics?

AGN contamination?

The baryon fraction

Conclusions

- measured the halo-galaxy connection up to z=1 in the CFHTLS
- measured X-ray and lensing profiles up to z=1 in galaxy groups
- rules out extreme AGN feedback
- self-regulated feedback seems to be favoured (TBC)
- baryon fraction increasing with redshift?
- very low-mass regime still exploratory, systematics not under full control
- -> needs better photo-z's and lensing large area (Subaru HSC)
- -> and deeper X-ray observations (Athena, STAR-X?)