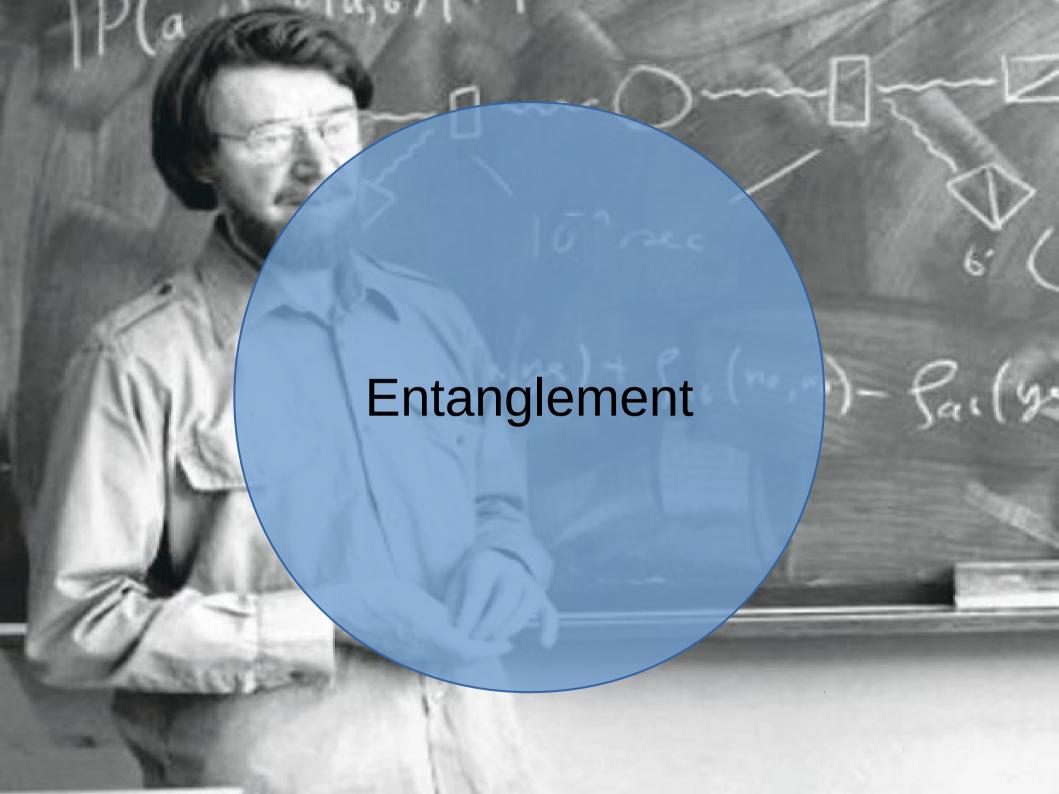
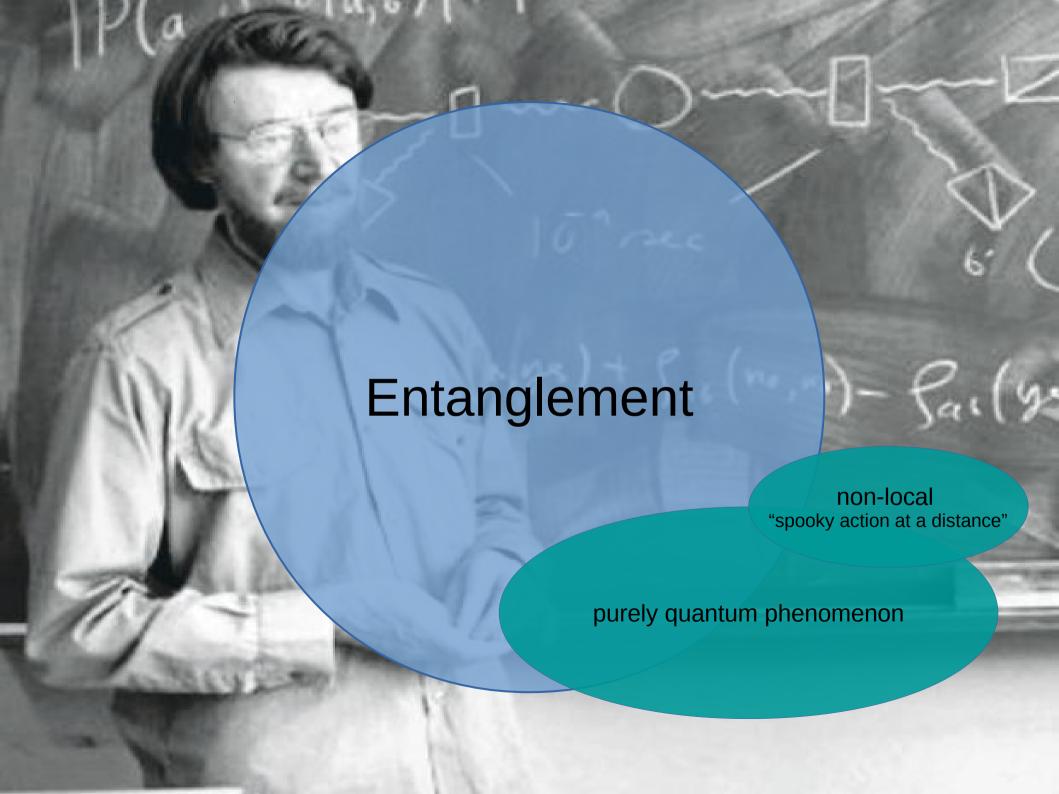
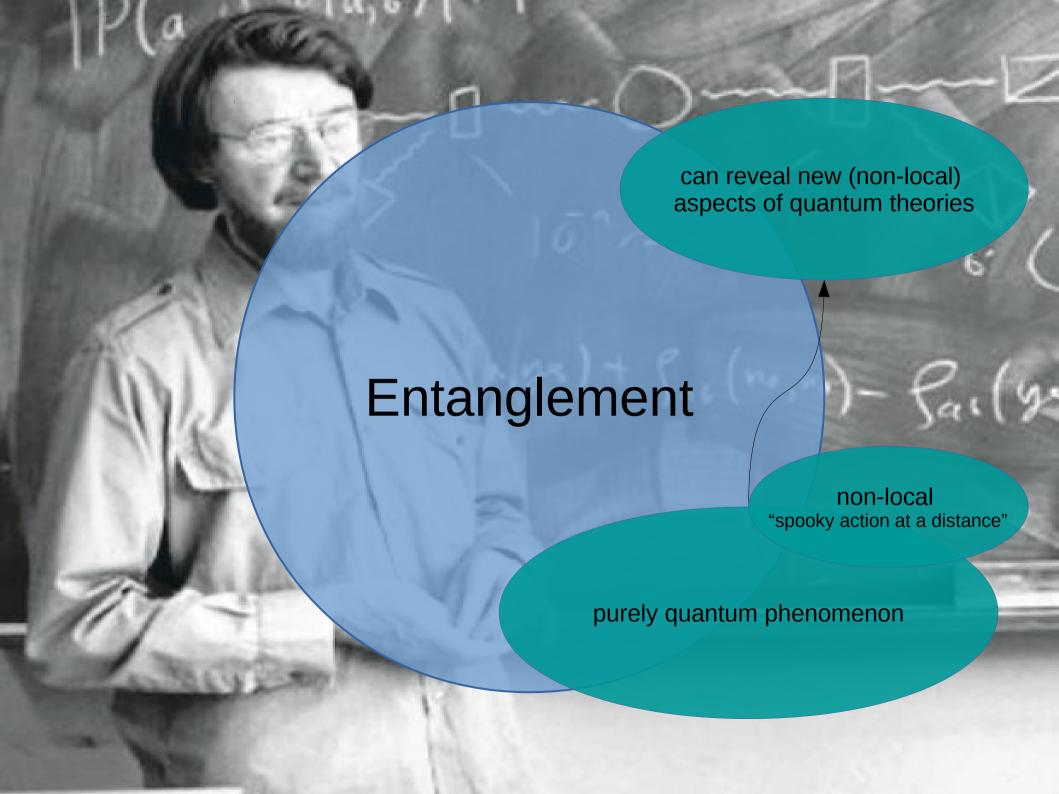
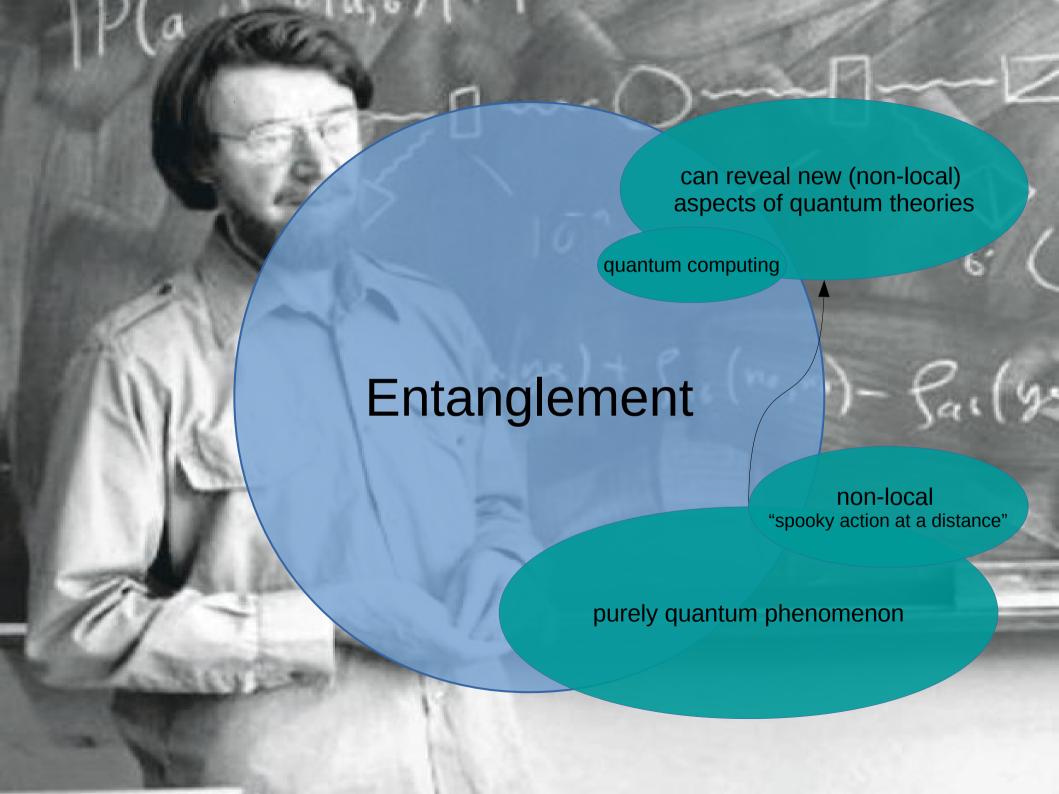
Entanglement, Conformal Field Theory, and Interfaces

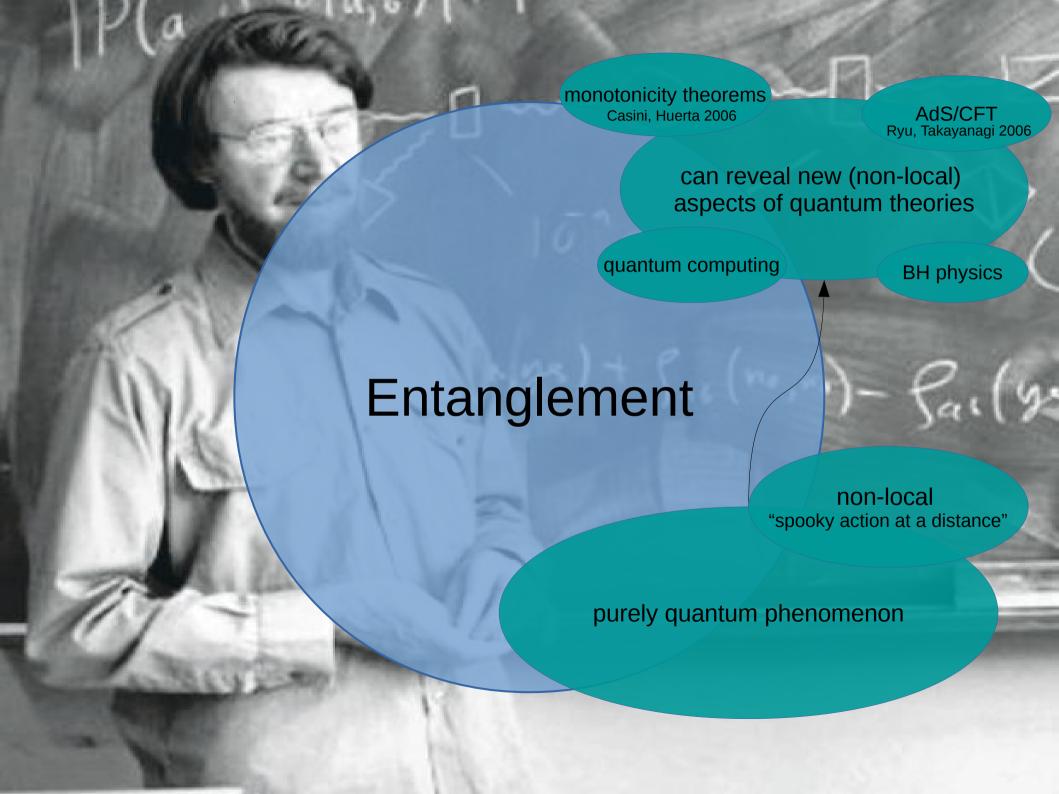
Enrico Brehm • LMU Munich • E.Brehm@physik.uni-muenchen.de

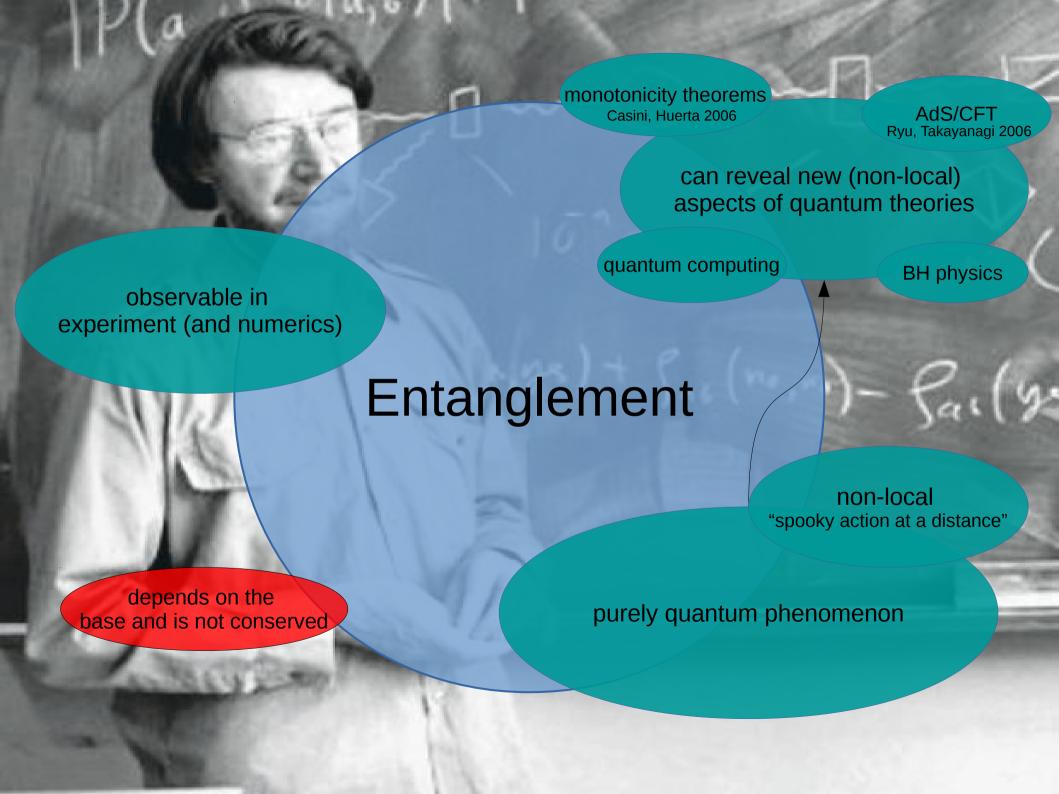






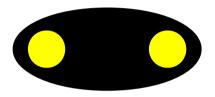


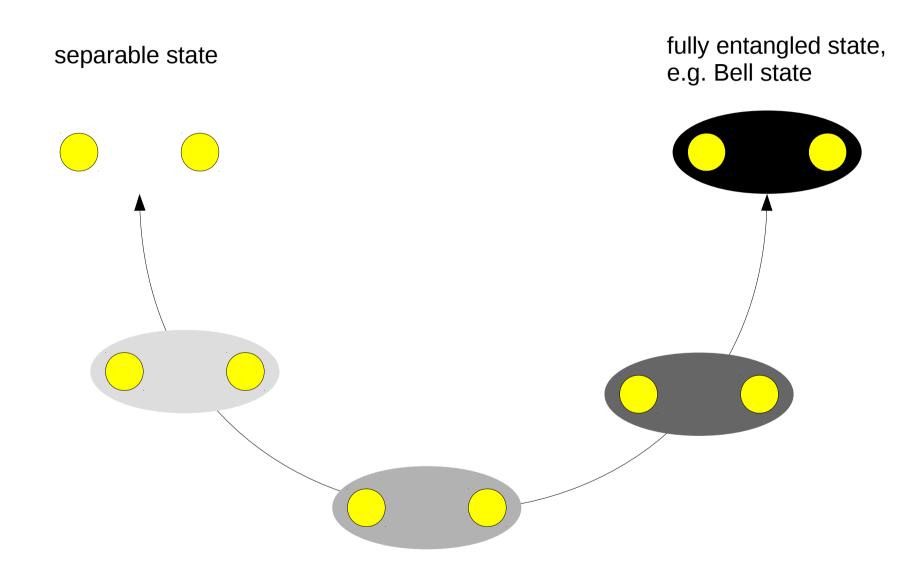


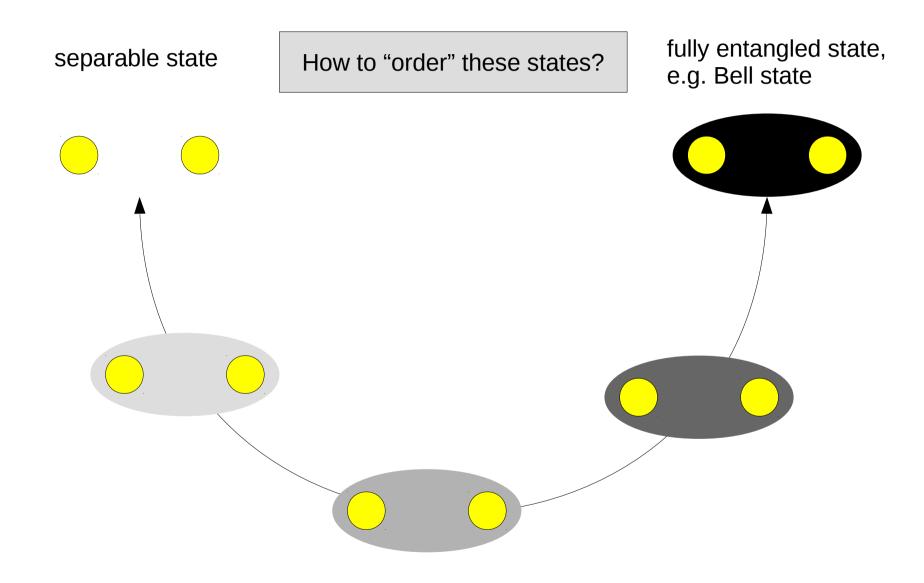


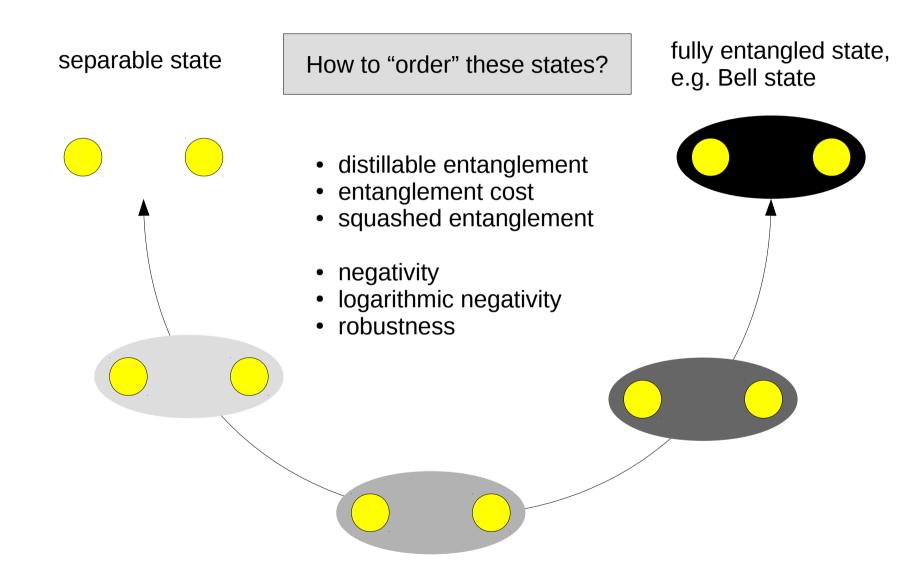
separable state

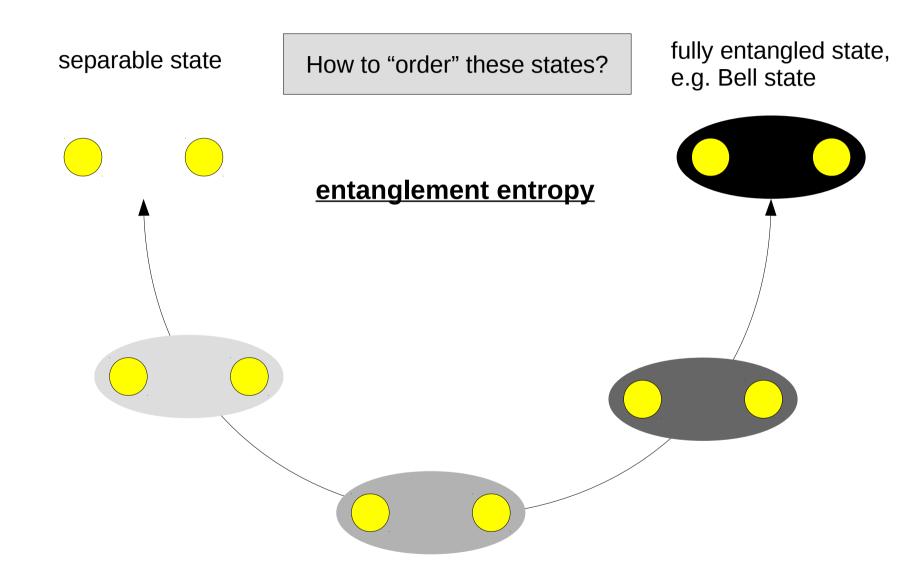
fully entangled state, e.g. Bell state











Entanglement Entropy

Definition: Let $\rho = |\psi\rangle\langle\psi|$ be the **density matrix** of a system in a pure quantum state $|\psi\rangle$. Let the Hilbert space be a direct product $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$. The reduced density matrix of A is $\rho_A = \operatorname{Tr}_B \rho$. The **entanglement entropy** is the corresponding **von Neumann entropy**

$$S_A = -\operatorname{Tr} \rho_A \log \rho_A$$
.

It measures the entanglement, i.e. quantum correlation, between the two sub-systems $\bf A$ and $\bf B$.

Entanglement Entropy

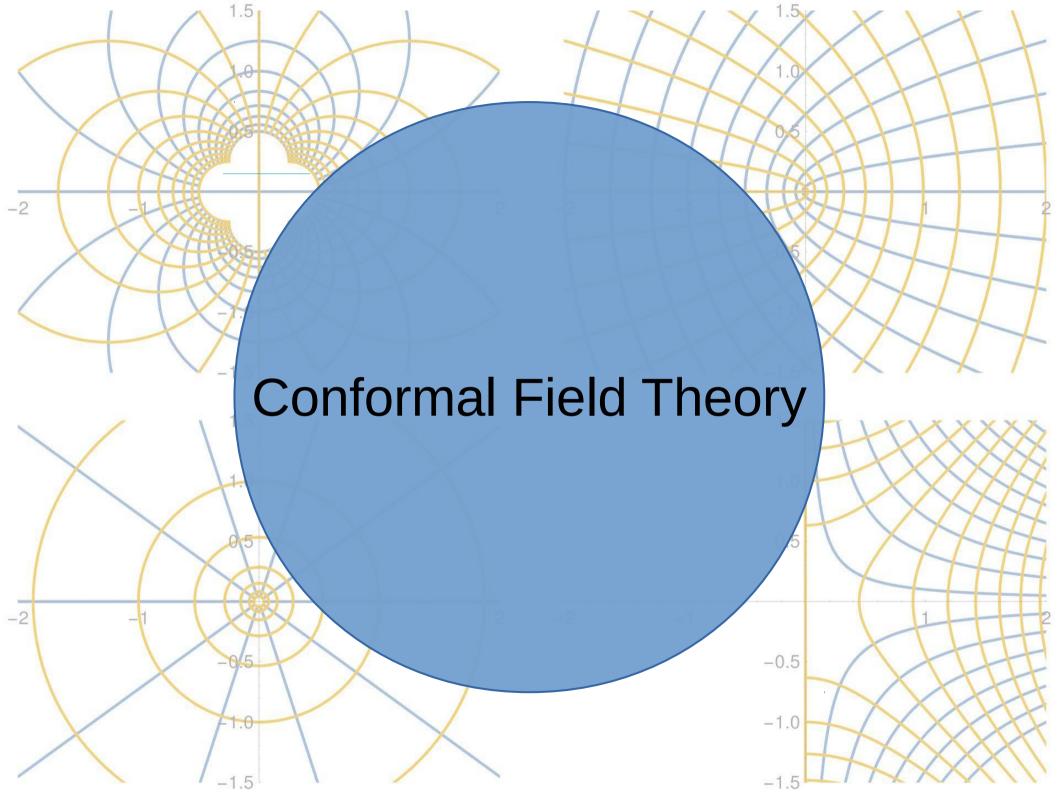
Definition: Let $\rho = |\psi\rangle\langle\psi|$ be the **density matrix** of a system in a pure quantum state $|\psi\rangle$. Let the Hilbert space be a direct product $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$. The reduced density matrix of A is $\rho_A = \text{Tr}_B \rho$. The **entanglement entropy** is the corresponding **von Neumann entropy**

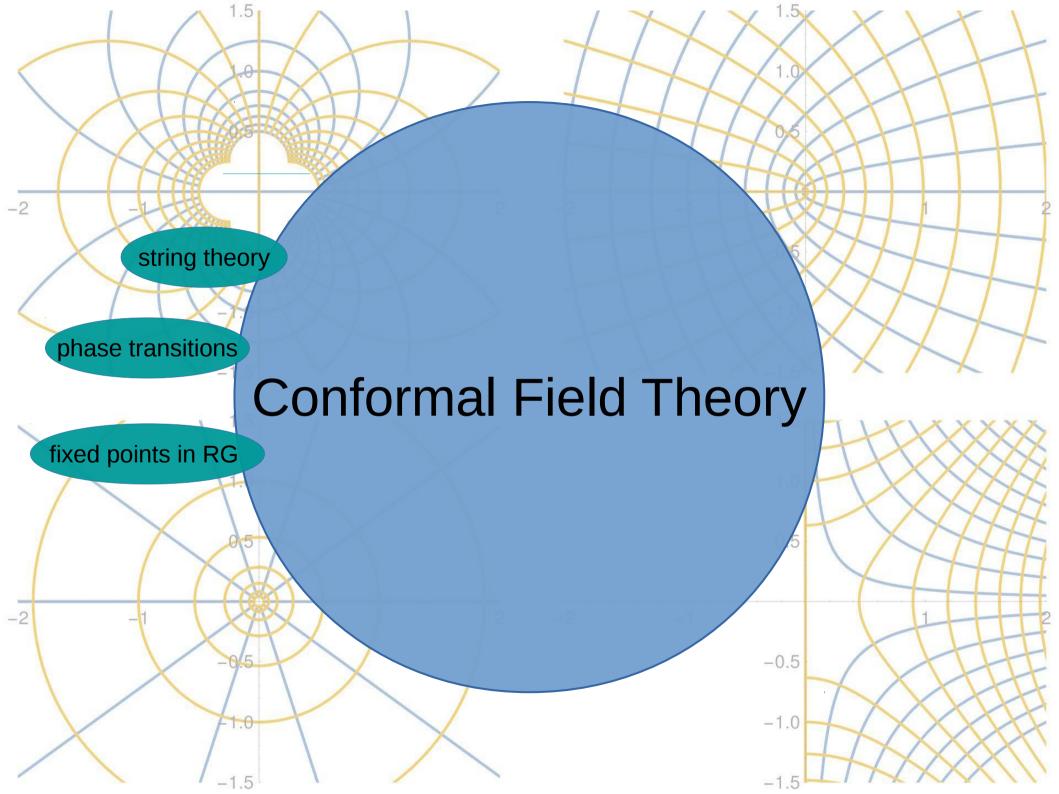
$$S_A = -\operatorname{Tr} \rho_A \log \rho_A$$
.

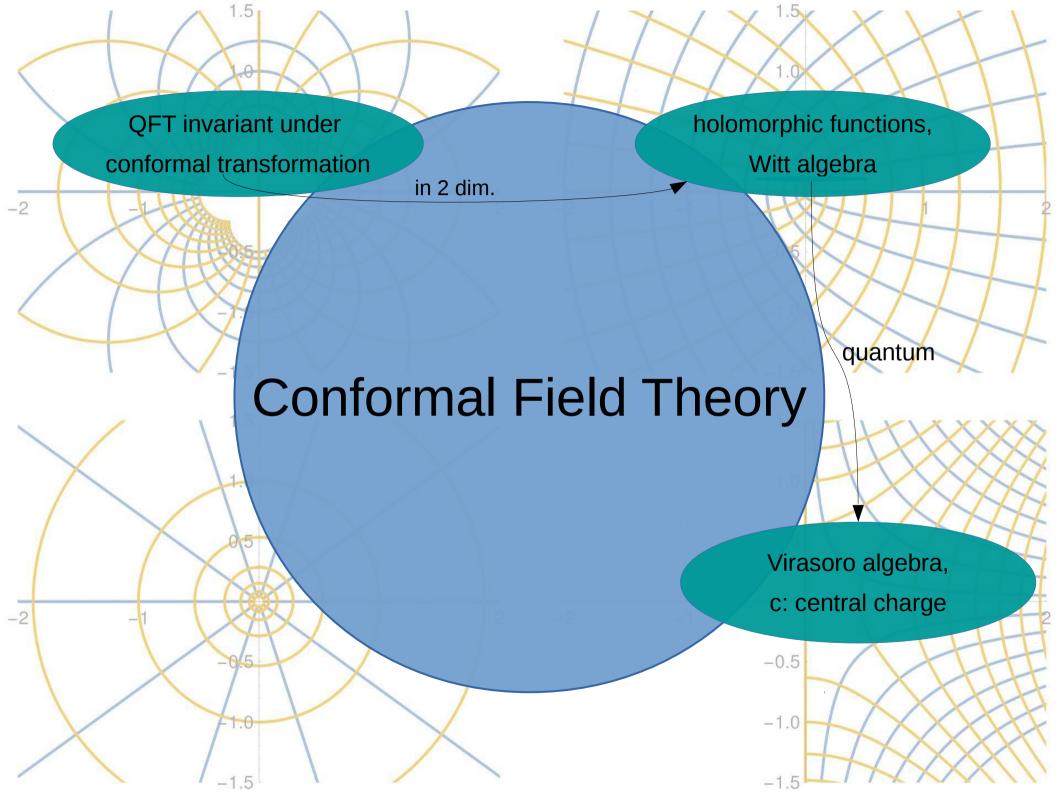
It measures the entanglement, i.e. quantum correlation, between the two sub-systems $\bf A$ and $\bf B$.

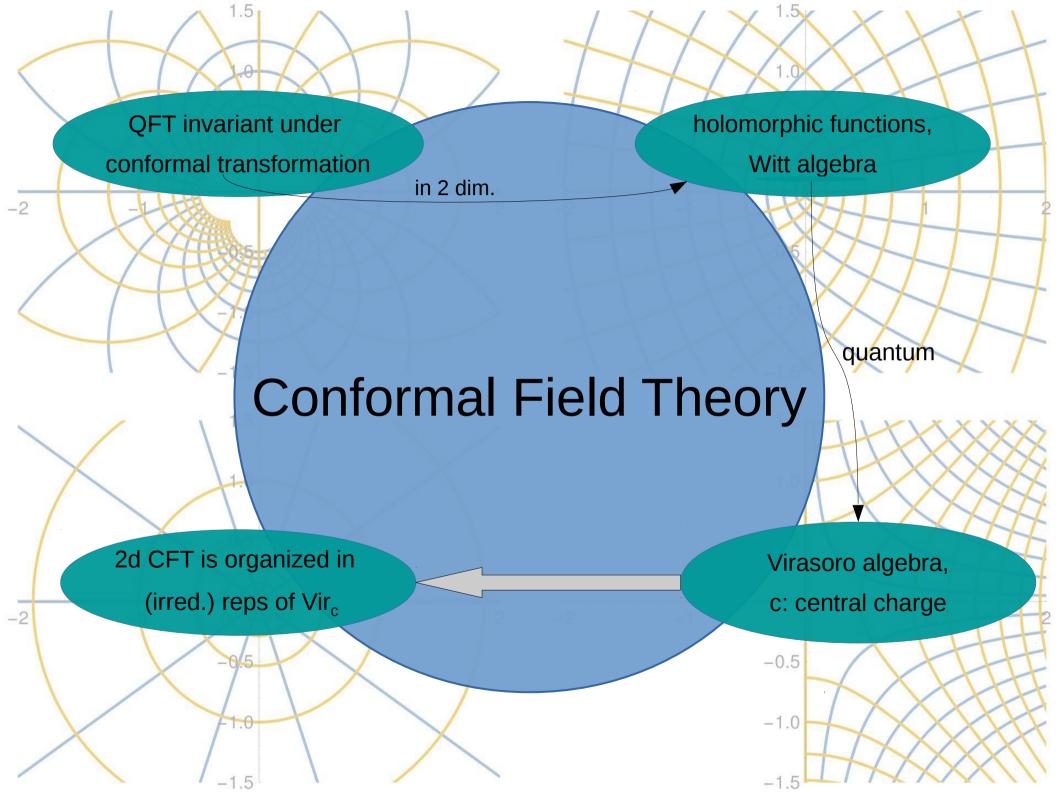
Replica trick...

$$S_A = -rac{\partial}{\partial n} \mathrm{Tr}
ho_A^n|_{n o 1}$$

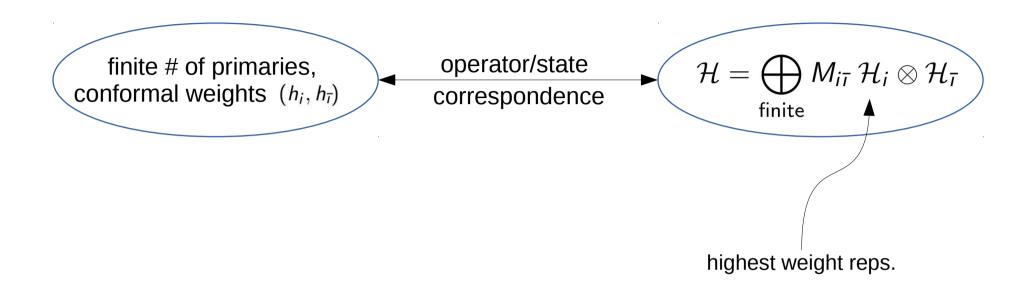




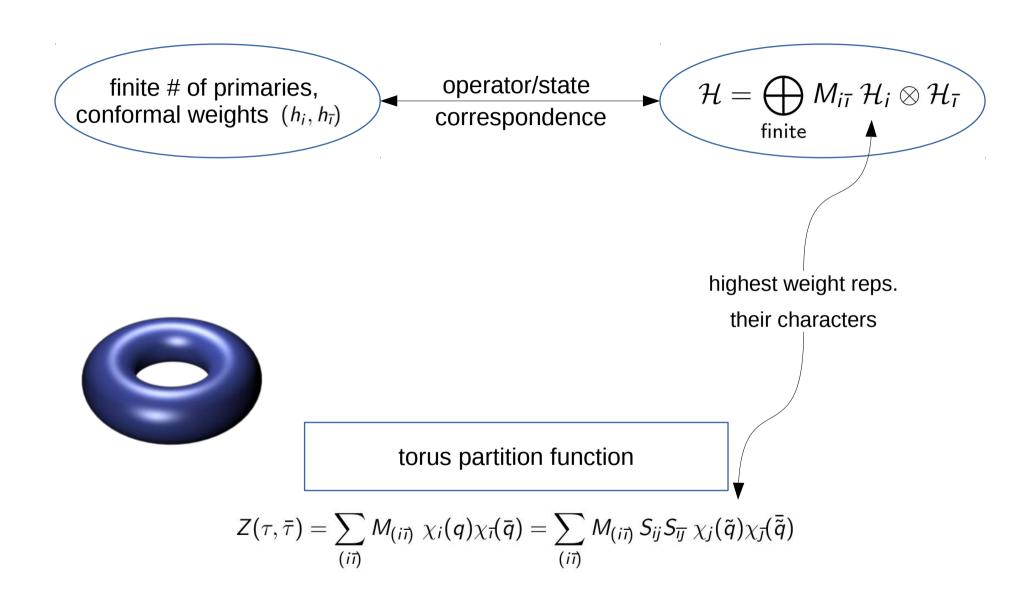




Rational Models



Rational Models



Example: Critical Ising Model

-1	1	1	1	-1
1	-1	1	-1	-1
1	-1	1	-1	-1

at some critical value:

second order phase transition

scale invariance

Example: Critical Ising Model

-1	1	1	1	-1
1	-1	1	-1	-1
1	-1	1	-1	-1

at some critical value:

second order phase transition

scale invariance

in continuum limit:

free Majorana fermions projected on even fermion numbers

rational model consisting of **3 primaries**:

primary	conformal weight
id	(0,0)
ε	(1/2, 1/2)
σ	(1/16,1/16)

Conformal Interface

Conformal Interface

... or defect

natural generalization of

conformal boundaries

Stat. mech.:

impurities in quantum chains

junction of quantum wires

String theory:

generalized D-branes?

brane spectrum generating
Graham, Watts 2004

Conformal Interface

... or defect

natural generalization of

conformal boundaries

RG defects

symmetry generating

String theory:

generalized D-branes?

brane spectrum generating
Graham, Watts 2003

Stat. mech.:

impurities in quantum chains

junction of quantum wires

Conformal Interface

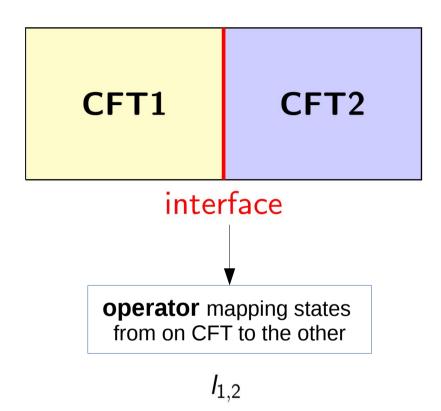
... or defect

natural generalization of

conformal boundaries

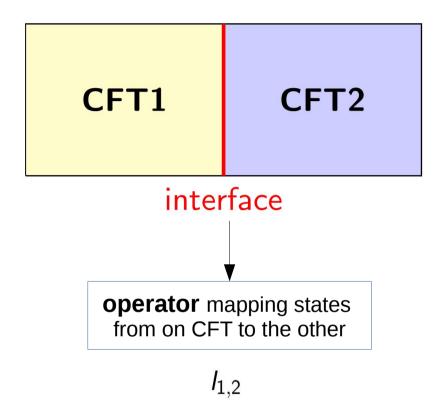
Conformal Interfaces

Bachas et al 2002



Conformal Interfaces

Bachas et al 2002

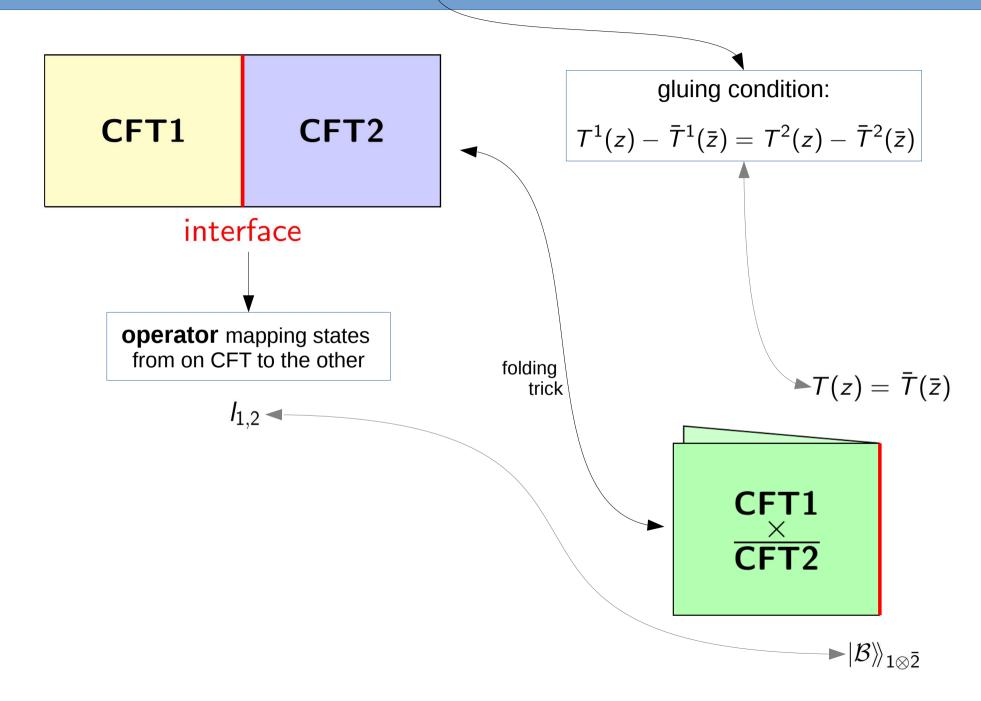


gluing condition:

$$T^{1}(z) - \bar{T}^{1}(\bar{z}) = T^{2}(z) - \bar{T}^{2}(\bar{z})$$

Conformal Interfaces

Bachas et al 2002



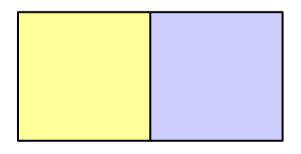
Special Gluing Conditions

$$T^{1}(z) - \bar{T}^{1}(\bar{z}) = T^{2}(z) - \bar{T}^{2}(\bar{z})$$

Both sides vanish independently:

$$T^i(z) = \bar{T}^i(\bar{z})$$

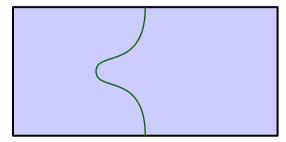
- separate boundary conditions
- In particular happens when one of the CFTs is trivial



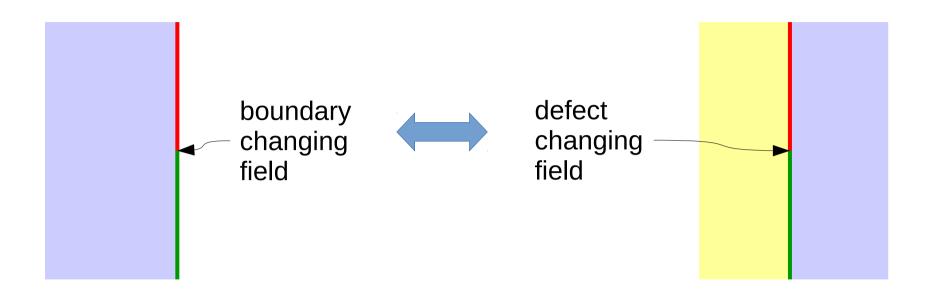
The two components equal independently:

$$T^{1}(z) = T^{2}(z), \quad \bar{T}^{1}(\bar{z}) = \bar{T}^{2}(\bar{z})$$

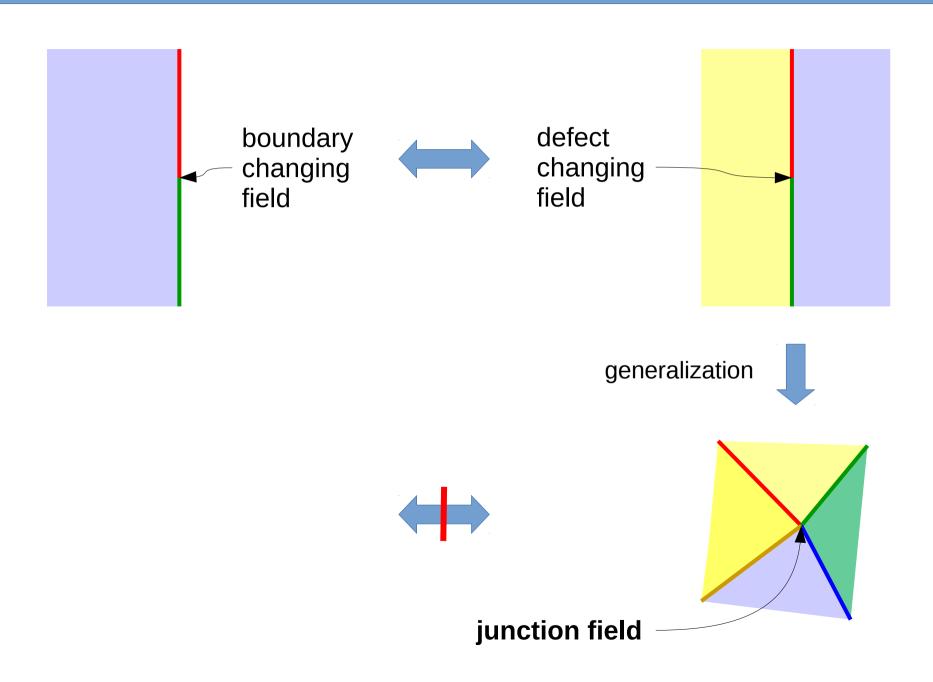
- $I_{1,2}$ also commutes with the Hamiltonian
- The interface can be moved around without cost of energy or momentum
- This is called a topological interface



What makes the difference?

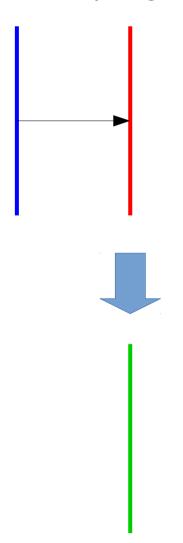


What makes the difference?



What else makes the difference?

Fusion of topological defects with other defects or boundaries:



The set of topological defects form a (Frobenius) algebra

Fröhlich et al 2007

Topological Interfaces in a CFT

acts as a constant map between isomorphic Virasoro representations

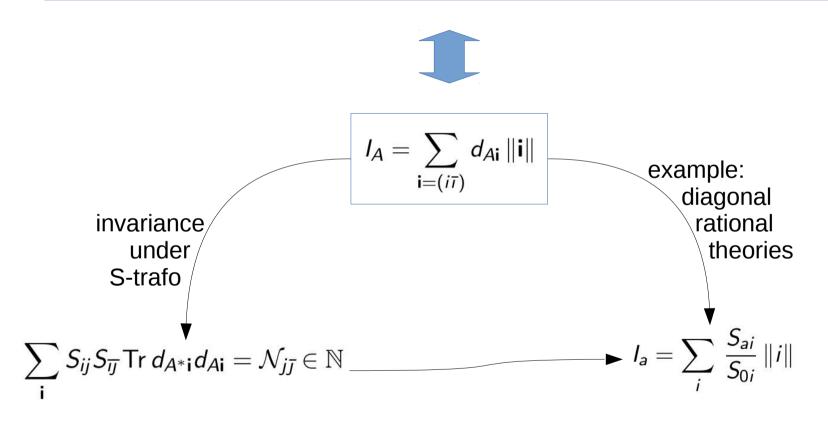
Petkova, Zuber 2000

$$I_A = \sum_{\mathbf{i}=(i\bar{\imath})} d_{A\mathbf{i}} \|\mathbf{i}\|$$

Topological Interfaces in a CFT

acts as a **constant map** between isomorphic **Virasoro representations**

Petkova, Zuber 2000



Example: Topological Interfaces of the Ising model

$$S_{ij} = rac{1}{2} egin{pmatrix} 1 & 1 & \sqrt{2} \ 1 & 1 & -\sqrt{2} \ \sqrt{2} & -\sqrt{2} & 0 \end{pmatrix}$$

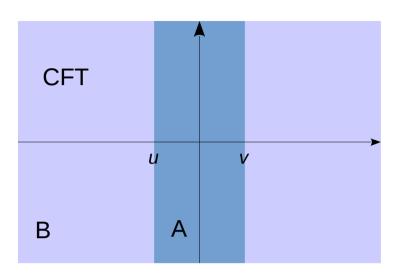
$$I_{id} = \|id\| + \|\epsilon\| + \|\sigma\|$$

$$I_{\epsilon} = \|id\| + \|\epsilon\| - \|\sigma\|$$

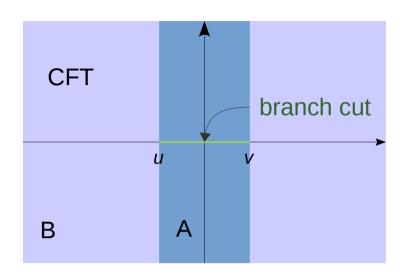
$$I_{\sigma} = \sqrt{2}\|id\| - \sqrt{2}\|\epsilon\|$$

Entanglement **Conformal Field Theory**

Cardy, Calabrese 2009



Cardy, Calabrese 2009

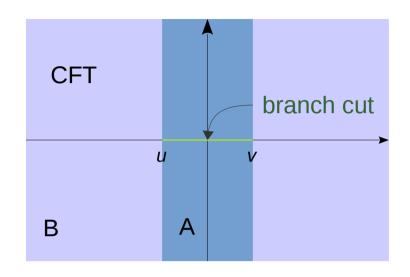


remember replica trick:

$$\operatorname{Tr} \rho_A^n$$

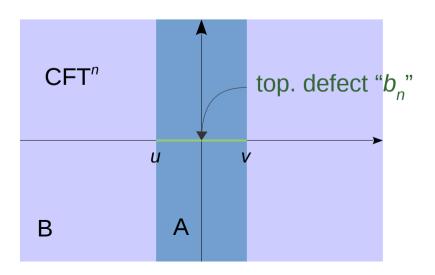
partition function Z(n) on a complicated Riemann surface

Cardy, Calabrese 2009

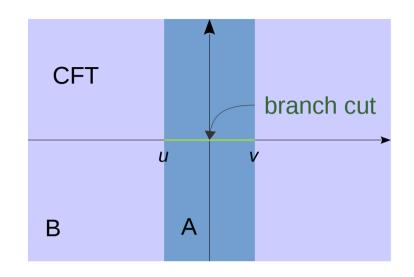


remember replica trick:

partition function Z(n) on a complicated Riemann surface



Cardy, Calabrese 2009



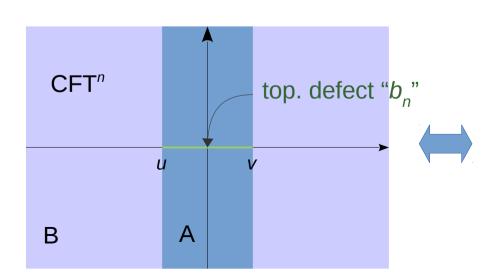
remember replica trick:

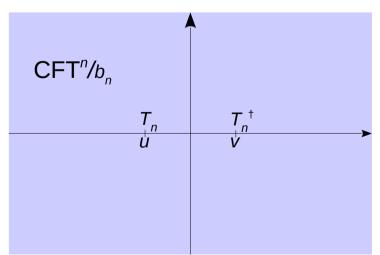
$$\operatorname{Tr} \rho_A^n$$

partition function Z(n) on a complicated Riemann surface

2-point function of twist fields

$$\langle T_n(u) T_n^{\dagger}(v) \rangle$$

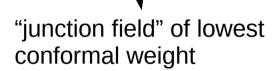




EE of a Finite Interval

2-point function of **twist fields**

$$\langle T_n(u) T_n^{\dagger}(v) \rangle$$



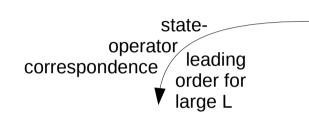
$$T_n$$
 b_n

EE of a Finite Interval

2-point function of **twist fields**

$$\langle T_n(u) T_n^{\dagger}(v) \rangle$$

"junction field" of lowest conformal weight



$$T_n$$
 b_n

$$q^{h_n - \frac{n\,c}{12}} = \langle T_n | q^{H^n_{b_n}} | T_n \rangle = Z_{\mathcal{H}^n_{b_n}}(\tau \gg 1)$$

$$= \operatorname{Tr}(b_n \tilde{q}^{H^n}) = \operatorname{Tr}(\tilde{q}^{nH}) = \sum_{(i\bar{\imath})} \chi_i(\tilde{q}^n) \chi_{\bar{\imath}}(\tilde{q}^n)$$
Cardy condition

 $= q^{-\frac{c}{12n}}$

S-trafo & leading order

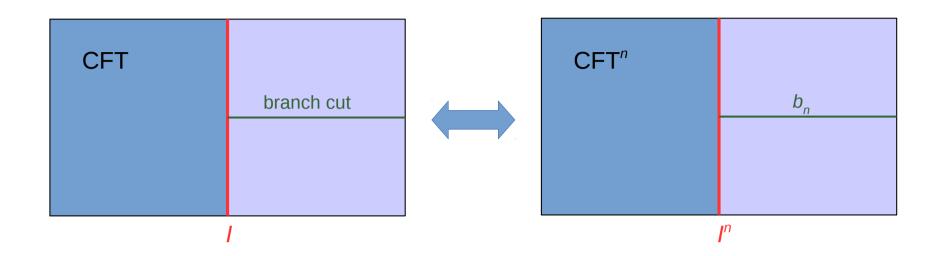
$$h_n = \frac{c}{12}(n - \frac{1}{n}), \quad L = |v - u| \gg 1$$

$$S_A = \frac{c}{3} \log L + c_0$$

Entanglement

Conformal Interfaces

Entanglement through Conformal Interfaces



$$Z(n) = \text{Tr}(b_n q^{H^n/4} I^n q^{H^n/2} (I^n)^{\dagger} q^{H^n/4})$$

$$= \text{Tr}(I q^{H/2} I^{\dagger} q^{H/2})^n$$

Remember:
$$I_A = \sum_{\mathbf{i}=(i\bar{\imath})} d_{A\mathbf{i}} \|\mathbf{i}\|$$
 and $[I_A, H] = 0$

$$Z(n) = \operatorname{Tr}\left(\left(I_{A}I_{A}^{\dagger}\right)^{n}q^{nH}\right) = \sum_{(i\bar{\imath})}\operatorname{Tr}(d_{A\mathbf{i}}d_{A^{*}\mathbf{i}})^{n}\chi_{i}(q^{n})\chi_{\bar{\imath}}(\bar{q}^{n})$$

$$= \sum_{(i,\bar{\imath})}\operatorname{Tr}\left(d_{A^{*}\mathbf{i}}d_{A\mathbf{i}}\right)^{n}S_{i0}S_{\bar{\imath}0} \quad \tilde{q}^{-\frac{c}{12n}}$$
S-trafo & leading order
$$= A(n)$$

Remember:
$$I_A = \sum_{\mathbf{i}=(i\bar{\imath})} d_{A\mathbf{i}} \|\mathbf{i}\|$$
 and $[I_A, H] = 0$

$$Z(n) = \operatorname{Tr}\left(\left(I_{A}I_{A}^{\dagger}\right)^{n}q^{nH}\right) = \sum_{(i\bar{\imath})}\operatorname{Tr}(d_{A\mathbf{i}}d_{A^{*}\mathbf{i}})^{n}\chi_{i}(q^{n})\chi_{\bar{\imath}}(\bar{q}^{n})$$

$$= \sum_{(i,\bar{\imath})}\operatorname{Tr}\left(d_{A^{*}\mathbf{i}}d_{A\mathbf{i}}\right)^{n}S_{i0}S_{\bar{\imath}0} \quad \tilde{q}^{-\frac{c}{12n}}$$
S-trafo & leading order
$$\equiv A(n)$$

$$\equiv A(n)$$

$$= \sum_{(i,\bar{\imath})}\operatorname{Tr}\left(d_{A^{*}\mathbf{i}}d_{A\mathbf{i}}\right)^{n}S_{i0}S_{\bar{\imath}0} \quad \tilde{q}^{-\frac{c}{12n}}$$
no change in the log term of the EE
$$\frac{c}{3}\log L$$
contributes to sub-leading

$$s(I_A) = -\sum_{(i,\vec{i})} \operatorname{Tr} p_{\mathbf{i}}^A \log \frac{p_{\mathbf{i}}^A}{p_{\mathbf{i}}^{id}}$$

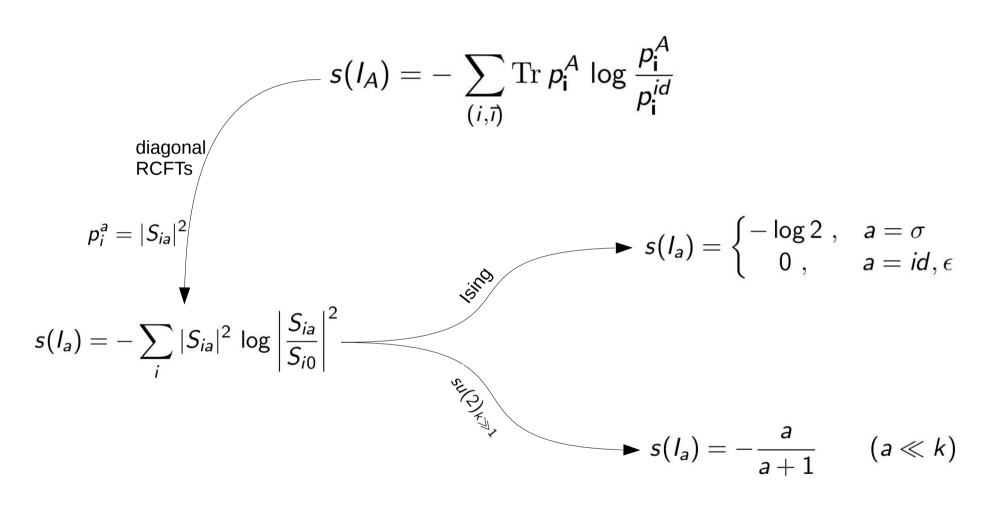
term in the EE:

with
$$p_{\mathbf{i}}^{A} = \frac{d_{A^*\mathbf{i}} d_{A\mathbf{i}} S_{i0} S_{\overline{i0}}}{\mathcal{N}_{\mathbf{0}A}^{A}}$$

relative entropy / Kullback-Leibler divergence:

$$s(I_A) = -\sum_{(i, \vec{\imath})} \operatorname{Tr} p_{\mathbf{i}}^A \log \frac{p_{\mathbf{i}}^A}{p_{\mathbf{i}}^{id}}$$

relative entropy / Kullback-Leibler divergence:



they affect the leading order contribution

change the conformal weight of the twist field

Example: General interfaces of the Ising model

→ interfaces of the free fermion theory:

$$I_{1,2}(O) = \prod_{n>0} I_{1,2}^n(O) I_{1,2}^0(O)$$

they affect the leading order contribution

change the conformal weight of the twist field

Example: General interfaces of the Ising model

→ interfaces of the free fermion theory:

$$I_{1,2}(\mathcal{O}) = \prod_{n>0} I_{1,2}^n(\mathcal{O}) \ I_{1,2}^0(\mathcal{O})$$

$$\begin{cases} |0\rangle\langle 0| & \text{NS} \\ \sqrt{2}(\cos(\phi)|+\rangle\langle+|+\sin(\phi)|-\rangle\langle-|) & \text{R} \end{cases}$$

$$\exp\left(-i\psi_{-n}^1\mathcal{O}_{11}\bar{\psi}_{-n}^1 + \psi_{-n}^1\mathcal{O}_{12}\psi_n^2 + \bar{\psi}_{-n}^1\mathcal{O}_{21}\bar{\psi}_n^2 + i\psi_n^2\mathcal{O}_{22}\bar{\psi}_n^2 \right)$$

$$\mathcal{O} = egin{pmatrix} \cos 2\phi & \sin 2\phi \\ \pm \sin 2\phi & \mp \cos 2\phi \end{pmatrix} \qquad egin{pmatrix} \phi = 0 & ext{sep. boundaries} \\ \phi = \pi/4 & ext{topological} \end{pmatrix}$$

they affect the leading order contribution

change the conformal weight of the twist field

Example: General interfaces of the Ising model

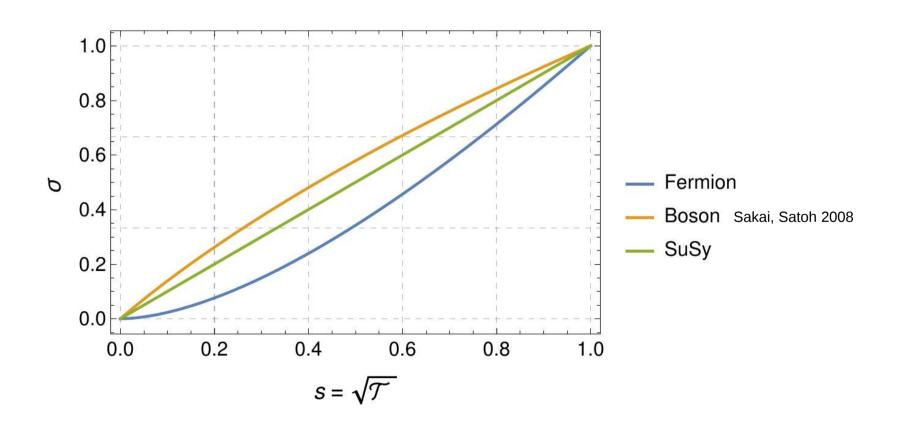
→ projection on even fermion number:

$$I^{\pm}(\Lambda) = \frac{1}{2} \left(I^{\mathsf{NS}}(\mathcal{O}) \pm I^{\mathsf{R}}(\mathcal{O}) \right) + (\phi \to -\phi)$$

$$I^{\mathsf{n.}}(\mathsf{\Lambda}) = \frac{1}{\sqrt{2}} I^{\mathsf{NS}}(\mathcal{O}) + (\phi \to -\phi)$$

$$S = \sigma(\mathcal{T}) \frac{c}{3} \log L + s$$

$$T = \sin^2 2\phi$$
 transmission coefficient



they affect the leading order contribution

change the conformal weight of the twist field

Some interesting questions:

- How does the EE behave for general non-topological defects?
- On which features of a general conformal defect does it depend? Keywords: transmission coefficient; Casimir energy; topological data.

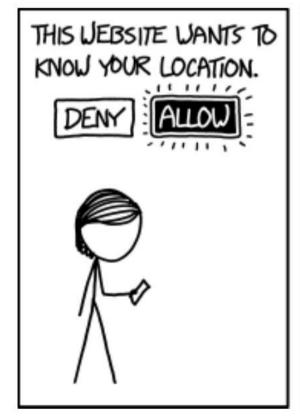
Is the sub-leading term always constant under non-topological deformations of a topological defect?

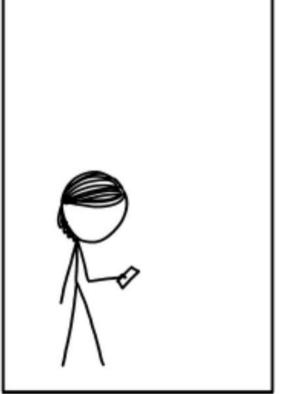
Final Words and Thoughts

- By unfolding a boundary one may interpret it as a top. defect in a chiral theory
 - one can use the same techniques to derive the left-right entanglement at a boundary

- > The entanglement through the defect is a **feature** of the defect itself.
- It might be possible to define more **structure** to the space of 2d CFTs
 - define distances between CFTs, by the help of conformal defects and the EE through them? (in the spirit of ideas of Bachas et al 2014)
 - the infinitesimal limit of the Kullback–Leibler divergence yields the Fisher information metric

Thank You!





https://xkcd.com/1473/

- H. Casini and M. Huerta, *A finite entanglement entropy and the c-theorem*, Phys. Lett. B600 (2004) 142 [hep-th/0405111].
- S. Ryu and T. Takayanagi, *Aspects of holographic entanglement entropy*, JHEP 08 (2006) 045 [hep-th/0605073].
- K. Graham and G. M. T. Watts, *Defect lines and boundary flows*, JHEP 04 (2004) 019, [hep-th/0306167].
- J. Fröhlich, J. Fuchs, I. Runkel, and C. Schweigert, *Duality and defects in rational conformal field theory*, Nucl. Phys. B763 (2007) 354–430, [hep-th/0607247].
- C. Bachas, J. de Boer, R. Dijkgraaf, and H. Ooguri, *Permeable conformal walls and holography*, JHEP 06 (2002) 027, [hep-th/0111210].
- V. B. Petkova and J. B. Zuber, *Generalized twisted partition functions*, Phys. Lett. B504 (2001) 157–164, [hep-th/0011021].
- P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J.Phys. A42 (2009) 504005, [arXiv:0905.4013].
- K. Sakai and Y. Satoh, Entanglement through conformal interfaces, JHEP 0812 (2008) 001, [arXiv:0809.4548].
- C. P. Bachas, I. Brunner, M. R. Douglas, and L. Rastelli, Calabi's diastasis as interface entropy, Phys. Rev. D90 (2014), no. 4 045004, [arXiv:1311.2202].

More about relative entropy

Using the constrains for d_{Ai} :

$$\sum_{(i,\vec{\imath})} \operatorname{Tr} p_{\mathbf{i}}^A = 1$$

so they form a probability distribution.

$$s \leq \log \left(\sum_{(i, ar{\imath})} T_{iar{\imath}} S_{i0} S_{ar{\imath}0} \right)$$

$$-\min(M_{iar{\imath}}^1, M_{iar{\imath}}^2)$$

If the two CFTs are not the same: Their exists a defect s.t. the Kullback-Leibler divergence vanishes iff the **spectra are identical**.

Results for higher torus models

$$\mathcal{I}_{12}(\Lambda) = \sum_{\gamma \in \Gamma_{12}^{\Lambda}} d_{\Lambda\gamma} ||\gamma||$$
 Bachas et al 2012
$$\Gamma_{12}^{\Lambda} = \{\gamma \in \Gamma_1 \, | \, \Lambda\gamma \in \Gamma_2\} = \Gamma_1 \cap \Lambda^{-1}\Gamma_2 \subset \Gamma_1$$

$$S = (1 - \partial_K) \log(Z(K)) \big|_{K=1} = \frac{c}{3} \log(L) - \log|\Gamma_1/\Gamma_{12}^{\Lambda}|$$

is also the g-factor of the interface