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distillable entanglement
* entanglement cost
« squashed entanglement

* negativity
 |ogarithmic negativity
robustness
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Definition: Let p = |¢)(¢| be the density matrix of a system in a pure
quantum state [¢). Let the Hilbert space be a direct product

H = Ha Q Hp. The reduced density matrix of A is pa = Trgp. The
entanglement entropy is the corresponding von Neumann entropy

S5a=—Trpalogpa.

It measures the entanglement, i.e. quantum correlation, between the two

sub-systems A and B.
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Replica trick...
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at some critical value:

second order phase transition

‘ scale invariance




at some critical value:

second order phase transition

‘ scale invariance

in continuum limit:

free Majorana fermions projected on even fermion numbers

1

rational model consisting of 3 primaries:

id (0,0)
5 (1/2, 1/2)
o (1/16,1/16)
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gluing condition:
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gluing condition:
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operator mapping states

from on CFT to the other folding —
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THz) = TH(z) = T*(2) - T(2)

> Both sides vanish independently:

Ti(z) = T/(2)

- separate boundary conditions

> In particular happens when one
of the CFTs is trivial

\4

The two components equal
independently:

THz)=T%2), T'z)=T2)

11’2 also commutes with the
Hamiltonian

The interface can be moved
around without cost of energy or
momentum

This is called a topological
interface
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Fusion of topological defects with other defects or boundaries:

The set of topological

defects form a

1 (Frobenius) algebra
Frohlich et al 2007




acts as a constant map between isomorphic Virasoro representations

Petkova, Zuber 2000
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2-point function of twist fields
(Ta(u) TH(V))
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2-point function of twist fields

(To() TH(V)) \,

“junction field” of lowest
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operator )
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branch cut ' '
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leading order N v o ~—___, nochange in the log term
=A(n) of the EE
c
—log L
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contributes to sub-leading
term in the EE:

daxi dai SioSn
NoA

s(la) =~ _ Trp |0g with — pft =
(i,7)




relative entropy / Kullback—Leibler divergence:

(1) = — YT pf log 2
(i1 3



relative entropy / Kullback—Leibler divergence:

P
s(la) =— D _Trpf log —
(i,7) i
diagonal
RCFTs
pi = 15i3|2




change the conformal weight of the
twist field

they affect the leading order “
contribution

Example: General interfaces of the Ising model

— interfaces of the free fermion theory:

h2(0) = || 12(0) £5(0)

n>0
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Example: General interfaces of the Ising model

— interfaces of the free fermion theory:

/12(0)—1_[’12 0) 12(0)

n>0
\ K» 10)(0| NS

(cos(@)|+){+| +sin(¢)|—){(—]) R

exp (—ipt , 01191, + ¢L 01095 + L ,00195 + i O207)

( cos2¢  sin2¢ ) »=0 sep. boundaries
O = .
+sin2¢ Fcos2¢ ¢ =m/4  topological



change the conformal weight of the
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contribution

Example: General interfaces of the Ising model

— projection on even fermion number:

) = 5 (IN(0) £ 17(0)) + (6 —0)

™ (A) = \21“5(0) (¢ —¢)



S=0‘(T)§ log L + s

T = sin’2¢ transmission coefficient

—— Fermion
—— Boson Sakai, Satoh 2008
— SuSy




change the conformal weight of the
twist field

they affect the leading order “
contribution

Some interesting questions:

~  How does the EE behave for general non-topological defects?

> On which features of a general conformal defect does it depend?
Keywords: transmission coefficient; Casimir energy; topological
data.

> Is the sub-leading term always constant under non-topological
deformations of a topological defect?



By unfolding a boundary one may interpret it as a top. defect in a
chiral theory

> one can use the same techniques to derive the left-right
entanglement at a boundary

The entanglement through the defect is a feature of the defect itself.
It might be possible to define more structure to the space of 2d CFTs

> define distances between CFTs, by the help of conformal defects
and the EE through them? (in the spirit of ideas of Bachas et al 2014 )

> the infinitesimal limit of the Kullback—Leibler divergence vyields the
Fisher information metric
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Using the constrains for d;:

> Trpt =

(4,2)

so they form a probability distribution.

s <log | > TiSioSw

(i,0) L

If the two CFTs are not the same: Their exists a defect s.t. the Kullback-Leibler
divergence vanishes iff the spectra are identical.

min(M}, M?2)
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Ilg(A) = Z dAfYH’}’H Bachas et al 2012
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is also the g-factor of the
interface

K=1



