ON A CANONICAL QUANTIZATION OF PURE 3D ADS GRAVITY

With Jihun Kim JHEP 1510 (2015) 096 arXiv:1508.03638 [hep-th]

OUTLINE

- CLASSICAL ADS GRAVITY AS CHERN-SIMONS SL(2,R)XSL(2,R)
- CLASSICAL PHASE SPACE OF SL(2,R) CONTAINS TEICHMULLER SPACE
- HOLOMORPHIC QUANTIZATION: WHICH NORM?
- A CONNECTION WITH CFTs

- GLOBAL DIFFEOMORPHISMS AND THE MODULAR GROUP ACTION ON WAVE FUNCTIONS
- NORMALIZABILITY OF THE WAVE
 FUNCTION
- AN IMPROVED CONNECTION WITH CFTs: HOLOGRAPHY AS SUPERSELECTION PROJECTION
- THE CASE OF c<I
- TENTATIVE CONCLUSIONS

CLASSICAL GRAVITY AS CHERN-SIMONS $A = e/l - \omega, \qquad \tilde{A} = e/l + \omega$ $S_E = S(A) - S(\tilde{A})$ $S = \frac{k}{4\pi} \int \operatorname{tr} (AdA + \frac{2}{3}AAA), \qquad k = \frac{l}{4G}$

CLASSICAL GRAVITY AS CHERN-SIMONS

$$A = e/l - \omega, \qquad \tilde{A} = e/l + \omega$$

$$S_E = S(A) - S(\tilde{A})$$

$$S = \frac{k}{4\pi} \int \operatorname{tr} (AdA + \frac{2}{3}AAA), \qquad k = \frac{l}{4G}$$

IN CANONICAL QUANTIZATION 3D SPACE IS

 $M = \Sigma \times R$

CONSTRAINT EQUATION (GAUSS LAW)

$$F|_{\Sigma} = 0 \to A = dUU^{-1}$$
 (locally)

THE SPACE OF FLAT CONNECTIONS MODULO GAUGE TRANSFORMATIONS IS A DIRECT PRODUCT OF TWO SPACES: (EQUIVALENCE CLASSES OF) BOUNDARY GAUGE TRANSFORMATIONS TIMES A FINITE DIMENSIONAL SPACE

GEOMETRICALLY:

(IN)FINITE DIMENSIONAL SPACE WITH SEVERAL CONNECTED COMPONENTS.

WHEN ALL HOLONOMIES ARE HYPERBOLIC AND MANIFOLD HAS ONE BOUNDARY COMPONENT THIS SPACE IS

(IN)FINITE DIMENSIONAL SPACE WITH SEVERAL CONNECTED COMPONENTS.

WHEN ALL HOLONOMIES ARE HYPERBOLIC AND MANIFOLD HAS ONE BOUNDARY COMPONENT THIS SPACE IS

 $T_{\Sigma} \times \widehat{SL}(2,R)/S_1$

RESTRICT
$$A|_{\partial\Sigma} = \begin{pmatrix} 0 & L(t+\phi) \\ 1 & 0 \end{pmatrix}$$

MODULI SPACE IS $T_{\Sigma} \times Diff(S_1)/S_1$

THIS SPACE ADMITS A KAHLER STRUCTURE AND A KAHLER FORM: THE WEYL-PETERSSON FORM

THE WEIL-PETERSSON FORM POSSESSES A KAHLER POTENTIAL, WHICH ALLOWS TO QUANTIZE THE TEICHMULLER SPACE IN HOLOMORPHIC QUANTIZATION. THE RESULT IS JUST A (SUM OF PRODUCT) HILBERT SPACES

$\mathcal{H} = \sum_L V_L \otimes H_T,$

 H_T = holomorphic functions on T, tr exp $D = 2 \cosh L$

 $V_L =$ Irrep of Virasoro

THE WEIL-PETERSSON FORM POSSESSES A KAHLER POTENTIAL, WHICH ALLOWS TO QUANTIZE THE TEICHMULLER SPACE IN HOLOMORPHIC QUANTIZATION. THE RESULT IS JUST A (SUM OF PRODUCT) HILBERT SPACES

$\mathcal{H} = \sum_L V_L \otimes H_T,$

 H_T = holomorphic functions on T, tr exp $D = 2 \cosh L$

 $V_L =$ Irrep of Virasoro

HOW DO STATE VECTORS

 $\psi \in H_T$

TRANSFORM UNDER THE MODULAR GROUP?

NORM:

 $\langle \psi_I | \psi_J \rangle = \int_T \bar{\psi}_I \exp K \psi_J$

NORM:

$$\langle \psi_I | \psi_J \rangle = \int_T \bar{\psi}_I \exp K \psi_J$$

MODULAR TRANSFORMATIONS ACT AS UNITARY TRANSFORMATIONS.

NORM:

$$\langle \psi_I | \psi_J \rangle = \int_T \bar{\psi}_I \exp K \psi_J$$

MODULAR TRANSFORMATIONS ACT AS UNITARY TRANSFORMATIONS.

SINCE

 $K \to K + f + \bar{f}, \qquad f = \text{holomorphic}$

THEN

$$\psi_I \to U_I^J e^{-f} \psi_J, \qquad U_I^L U_L^J = \delta_I^J$$

THE KAHLER POTENTIAL FOR THE WEYL PETERSSON FORM OF THE TEICHMULLER SPACE FOR PUNCTURED SURFACE IS KNOWN: ZOGRAF AND TAKHTAJAN PROVED THAT IT EQUALS THE (REGULARIZED) LIOUVILLE ACTION COMPUTED ON SHELL:

 $K_0 = S_L|_{on \ shell} + H(t, \bar{t})$

THE KAHLER POTENTIAL FOR THE WEYL PETERSSON FORM OF THE TEICHMULLER SPACE FOR PUNCTURED SURFACE IS KNOWN: ZOGRAF AND TAKHTAJAN PROVED THAT IT EQUALS THE (REGULARIZED) LIOUVILLE ACTION COMPUTED ON SHELL:

 $K_0 = S_L|_{on \ shell} + H(t, \bar{t})$

TO DEFINE THIS TERM WE NEED A 3D HANDLEBODY, WHOSE BOUNDARY IS THE RIEMANN SURFACE (SCHOTTKY PARAMETRIZATION) THE KAHLER POTENTIAL FOR THE WEYL PETERSSON FORM OF THE TEICHMULLER SPACE FOR PUNCTURED SURFACE IS KNOWN: ZOGRAF AND TAKHTAJAN PROVED THAT IT EQUALS THE (REGULARIZED) LIOUVILLE ACTION COMPUTED ON SHELL:

$$K_0 = S_L|_{on \ shell} + H(t, \bar{t})$$

TO DEFINE THIS TERM WE NEED A 3D HANDLEBODY, WHOSE BOUNDARY IS THE RIEMANN SURFACE (SCHOTTKY PARAMETRIZATION)

FOR THE PUNCTURED SPHERE THIS IS THE POLYAKOV CONJECTURE (TAKTAJAN, ZOGRAF, MENOTTI,..)

AN EQUIVALENT FORM OF THE KAHLER POTENTIAL USES THE FACTORIZATION OF THE SCALAR 2D LAPLACIAN (QUILLEN, ZOGRAF)

$$K_0 = S_L|_{on \ shell} + H(t, \bar{t})$$

AN EQUIVALENT FORM OF THE KAHLER POTENTIAL USES THE FACTORIZATION OF THE SCALAR 2D LAPLACIAN (QUILLEN, ZOGRAF)

$$K_0 = S_L|_{on \ shell} + H(t, \bar{t})$$

$$\frac{\det \Delta'}{\det \Im \Omega} = e^{2K_0} |G|^2$$

THE HOLOMORPHIC FUNCTION G TRANSFORMS UNDER M.C.G. AS

$$G \to G' = \det(C\Omega + D)e^{-2f}G$$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(2g, R)$$

NEW WAVE FUNCTION

$$\Phi^I = G^{c/2} \psi^I$$

TRANSFORMS UNDER THE M.C.G. AS:

$$\Phi^I \to \Phi'^I = \det(C\Omega + D)^{c/2} U^I_J \Phi^J$$

NEW WAVE FUNCTION

$$\Phi^I = G^{c/2} \psi^I$$

TRANSFORMS UNDER THE M.C.G. AS:

$$\Phi^I \to \Phi'^I = \det(C\Omega + D)^{c/2} U^I_J \Phi^J$$

ITS NORM IS THE QUILLEN NORM

$$(\Phi, \Phi') = \int_{T(\Sigma)} \left(\frac{\det \Delta'}{\det \Im \Omega} \right)^{-c/2} \bar{\Phi} \wedge *\Phi'$$

THE NORM IS NOT UNIQUE

QUILLEN:

$$(\Phi, \Phi') = \int_{T(\Sigma)} \left(\frac{\det \Delta'}{\det \Im \Omega} \right)^{-c/2} \bar{\Phi} \wedge *\Phi'$$

THE NORM IS NOT UNIQUE

QUILLEN:

$$(\Phi, \Phi') = \int_{T(\Sigma)} \left(\frac{\det \Delta'}{\det \Im \Omega} \right)^{-c/2} \bar{\Phi} \wedge *\Phi'$$

H.VERLINDE (1990):

$$(\Phi, \Phi') = \int_{T(\Sigma)} Z_L^{26-c} Z_{bc} \left(\frac{\det \Delta'}{\det \Im\Omega}\right)^{-c/2} \bar{\Phi} \wedge *\Phi'$$

LIOUVILLE+BC GHOST SYSTEM PARTITION FUNCTIONS, GIVES O(I) CORRECTION TO KAHLER POTENTIAL AT LARGE c

THE SYMPLECTIC FORM FOR A RIEMANN SURFACE WITH A BOUNDARY OF LENGTH L IS (CO-HOMOLOGOUS TO) THE SUM OF THE SYMPLECTIC FORM FOR A SURFACE WITH A PUNCTURE PLUS THE FIRST CHERN CLASS OF THE TANGENT BUNDLE AT THE PUNCTURE (MIRZAKHANI, USING DUISTERMAAT-HECKMAN)

$$\omega_L \approx \omega_0 + \frac{1}{2}L^2 c_1(T)$$

THE SYMPLECTIC FORM FOR A RIEMANN SURFACE WITH A BOUNDARY OF LENGTH L IS (CO-HOMOLOGOUS TO) THE SUM OF THE SYMPLECTIC FORM FOR A SURFACE WITH A PUNCTURE PLUS THE FIRST CHERN CLASS OF THE TANGENT BUNDLE AT THE PUNCTURE (MIRZAKHANI, USING DUISTERMAAT-HECKMAN)

$$\omega_L \approx \omega_0 + \frac{1}{2}L^2 c_1(T)$$

OUR KAHLER POTENTIAL IS THEN (SEE ALSO DIJKGRAAF, VERLINDE, VERLINDE, 1990)

$$K = K_0 - \frac{k}{2}L^2 \log g_{z\bar{z}} + f(t) + \bar{f}(\bar{t})$$

REABSORB IN REDEFINITION OF W.F.

$$\chi^I \to \chi'^I = \omega(z)^{kL^2/2} U^I_J \det{}^{c/2} (C\Omega_0 + D) \chi^J$$

PUNCTURED SURFACE

 $\chi^I \to \chi'^I = \omega(z)^{kL^2/2} U^I_J \det{}^{c/2} (C\Omega_0 + D) \chi^J$

TRANSFORMATION OF dz AT POINT z INDUCED BY M.C.G.TRANSFORMATION PERIOD MATRIX OF PUNCTURED SURFACE

$$\chi^{I} \to \chi^{\prime I} = \omega(z)^{kL^{2}/2} U_{J}^{I} \det^{c/2} (C\Omega_{0} + D) \chi^{J}$$

TRANSFORMATION OF dz AT POINT z INDUCED BY M.C.G.TRANSFORMATION

PERIOD MATRIX OF PUNCTURED SURFACE

THIS IS THE TRANSFORMATION LAW FOR THE CONFORMAL BLOCK OF A VIRASORO PRIMARY OF WEIGHT

$$h = \frac{kL^2}{2}$$

QG IN 3D ADS IS DEFINED BY SL(2,R)XSL(2,R) SO WE NEED TO COMBINE TOGETHER THE MODULI SPACES OF BOTH CS

 $\Psi_{QG} = |v\rangle \chi^{I}(t) \chi^{J}(\bar{t'})? \qquad |v\rangle \in V_h \otimes V'_h$

QG IN 3D ADS IS DEFINED BY SL(2,R)XSL(2,R) SO WE NEED TO COMBINE TOGETHER THE MODULI SPACES OF BOTH CS

 $\Psi_{QG} = |v\rangle \chi^{I}(t) \chi^{J}(\bar{t'})? \qquad |v\rangle \in V_h \otimes V'_h$

NO:THE WAVE FUNCTION OF QG MUST BE INVARIANT ALSO UNDER GLOBAL DIFFEOMORPHISMS

QG IN 3D ADS IS DEFINED BY SL(2,R)XSL(2,R) SO WE NEED TO COMBINE TOGETHER THE MODULI SPACES OF BOTH CS

 $\Psi_{QG} = |v\rangle \chi^{I}(t) \chi^{J}(\bar{t'})? \qquad |v\rangle \in V_h \otimes V'_h$

NO:THE WAVE FUNCTION OF QG MUST BE INVARIANT ALSO UNDER GLOBAL DIFFEOMORPHISMS

UNDER GLOBAL DIFFS $\phi: \Sigma \to \Sigma$

$$\operatorname{tr} Pe^{\oint_{\gamma} A} \in T \to \operatorname{tr} Pe^{\oint_{\phi^{-1}(\gamma)} A}$$
$$\operatorname{tr} Pe^{\oint_{\gamma} \bar{A}} \in T \to \operatorname{tr} Pe^{\oint_{\phi^{-1}(\gamma)} \bar{A}}$$

DIAGONAL ACTION ON

 $T \times \bar{T}'$

THE BLACK CYCLE MAPS INTO THE RED CYCLE UNDER A GLOBAL DIFFEOMORPHISM

 $\operatorname{tr} Pe^{\oint_{\gamma} A} \in T \to \operatorname{tr} Pe^{\oint_{\phi^{-1}(\gamma)} A}$ $\operatorname{tr} Pe^{\oint_{\gamma} \bar{A}} \in T \to \operatorname{tr} Pe^{\oint_{\phi^{-1}(\gamma)} \bar{A}}$

 $T \times T' \to (T \times T')/M$

SO THE WAVE FUNCTION IS

$$\Psi = |v\rangle \sum_{IJ} \chi_I^h(t) \bar{\chi}_J^{\bar{h}}(\bar{t}') N^{IJ}, \qquad |v\rangle \in V_h \otimes V_{\bar{h}}$$

$dz^h d\bar{z}^{\bar{h}} \Psi$ INVARIANT UNDER DIAGONAL MAPPING CLASS GROUP

SO THE WAVE FUNCTION IS

$$\Psi = |v\rangle \sum_{IJ} \chi_I^h(t) \bar{\chi}_J^{\bar{h}}(\bar{t}') N^{IJ}, \qquad |v\rangle \in V_h \otimes V_{\bar{h}}$$

$dz^h d\bar{z}^h \Psi$ INVARIANT UNDER DIAGONAL MAPPING CLASS GROUP

ALL ONE-POINT FUNCTIONS OF CFT BELONG TO THIS SPACE I.E. HILBERT SPACE IS TARGET SPACE OF CFT'S ONE POINT FUNCTIONS (SEE WITTEN '07)

SO THE WAVE FUNCTION IS

$$\Psi = |v\rangle \sum_{IJ} \chi_I^h(t) \bar{\chi}_J^{\bar{h}}(\bar{t}') N^{IJ}, \qquad |v\rangle \in V_h \otimes V_{\bar{h}}$$

 $dz^h d\bar{z}^h \Psi$ INVARIANT UNDER DIAGONAL MAPPING CLASS GROUP

ALL ONE-POINT FUNCTIONS OF CFT BELONG TO THIS SPACE I.E. HILBERT SPACE IS TARGET SPACE OF CFT'S ONE POINT FUNCTIONS (SEE WITTEN '07)

ACTUALLY ANALYTIC CONTINUATION TO INDEPENDENT LEFT AND RIGHT MODULI (SEE WITTEN '07, SEGAL)

NEW RESTRICTIONS COME FROM NORMALIZABILITY

$$\Psi = |v\rangle \sum_{IJ} \chi_I^h(t) \bar{\chi}_J^{\bar{h}}(\bar{t}') N^{IJ}, \qquad |v\rangle \in V_h \otimes V_{\bar{h}}$$

$$\left\langle \sum_{IJ} \chi_I \bar{\chi}_J N^{IJ} \right| \sum_{KL} \chi_K \bar{\chi}_L N^{KL} \right\rangle < \infty$$

DANGEROUS REGIONS: DEGENERATING RIEMANN SURFACES
NEW RESTRICTIONS COME FROM NORMALIZABILITY

$$\Psi = |v\rangle \sum_{IJ} \chi_I^h(t) \bar{\chi}_J^{\bar{h}}(\bar{t}') N^{IJ}, \qquad |v\rangle \in V_h \otimes V_{\bar{h}}$$

$$\left\langle \sum_{IJ} \chi_I \bar{\chi}_J N^{IJ} \right| \sum_{KL} \chi_K \bar{\chi}_L N^{KL} \right\rangle < \infty$$

DANGEROUS REGIONS: DEGENERATING RIEMANN SURFACES

z = qw, |q| < |z| < 1, |q| < |w| < 1, $q = e^{2\pi i \tau}$

NEAR A NODE CERTAIN MODULAR TRANSFORMATIONS ARE KNOWN AND SIMPLE

 $(\tau, \tau') \rightarrow (\tau + 1, \tau' + 1)$ (Dehn Twist)

$$\omega_{WP} \propto \frac{d\tau \wedge d\bar{\tau}}{(\Im\tau)^3}$$

INVARIANCE UNDER THE DIAGONAL DEHN TWIST:

$$\Psi = |v\rangle \times \langle V^{h,\bar{h}}\rangle, \qquad \langle V^{h,\bar{h}}\rangle = \sum_{n} \int d\mu_n(\Delta) q^{\Delta - c/24} \bar{q}'^{\Delta + n - c/24}$$

DEFINE:

 $\tau = i\rho + (\theta + \zeta)/2\pi, \qquad \tau' = i\rho' + (\theta - \zeta)/2\pi$

DEFINE:

 $\tau = i\rho + (\theta + \zeta)/2\pi, \qquad \tau' = i\rho' + (\theta - \zeta)/2\pi$ NORM:

 $||\langle V^{h,\bar{h}}\rangle||^2 \approx \sum_n \int^\infty d\rho \int^\infty d\rho' \int_{-\infty}^\infty d\zeta \int d\mu_n(\Delta) d\mu_n(\Delta') e^{-2\pi\rho(\Delta + \Delta' - \frac{c-1}{12})} e^{-2\pi\rho'(\Delta + \Delta' + 2n - \frac{c-1}{12})} e^{i\zeta(\Delta - \Delta')}$

DEFINE:

 $\tau = i\rho + (\theta + \zeta)/2\pi, \qquad \tau' = i\rho' + (\theta - \zeta)/2\pi$

NORM:

 $||\langle V^{h,\bar{h}}\rangle||^{2} \approx \sum_{n} \int^{\infty} d\rho \int^{\infty} d\rho' \int_{-\infty}^{\infty} d\zeta \int d\mu_{n}(\Delta) d\mu_{n}(\Delta') e^{-2\pi\rho(\Delta+\Delta'-\frac{c-1}{12})} e^{-2\pi\rho'(\Delta+\Delta'+2n-\frac{c-1}{12})} e^{i\zeta(\Delta-\Delta')}$ $\uparrow \qquad \uparrow$ $CONVERGENCE IMPLIES \quad \Delta, \Delta+n > (c-1)/24$

DEFINE:

 $\tau = i\rho + (\theta + \zeta)/2\pi, \qquad \tau' = i\rho' + (\theta - \zeta)/2\pi$

NORM:

 $||\langle V^{h,\bar{h}}\rangle||^{2} \approx \sum_{n} \int^{\infty} d\rho \int^{\infty} d\rho' \int_{-\infty}^{\infty} d\zeta \int d\mu_{n}(\Delta) d\mu_{n}(\Delta') e^{-2\pi\rho(\Delta+\Delta'-\frac{c-1}{12})} e^{-2\pi\rho'(\Delta+\Delta'+2n-\frac{c-1}{12})} e^{i\zeta(\Delta-\Delta')}$ $\uparrow \qquad \uparrow$ $CONVERGENCE IMPLIES \quad \Delta, \Delta+n > (c-1)/24$

WE CHOSE THE VERLINDE NORM AND USED:

$$Z_L^{26-c} Z_{bc} \to q\bar{q}'$$

TOGETHER WITH THE FACTORIZATION (WOLPERT)

$$\frac{\det \Delta'}{\det \Im \Omega}(q, \bar{q}'..) \to C(q\bar{q}')^{1/12}$$

INTEGRAND IN NORM PROPORTIONAL TO DIRAC DELTA: CONTINUOUS SPECTRUM

$$||\langle V^{h,\bar{h}}\rangle||^2 \approx \sum_n \int d\mu_n(\Delta) d\mu_n(\Delta') F(\Delta,n) \delta(\Delta - \Delta')$$

INTEGRAND IN NORM PROPORTIONAL TO DIRAC DELTA: CONTINUOUS SPECTRUM

$$||\langle V^{h,\bar{h}}\rangle||^2 \approx \sum_n \int d\mu_n(\Delta) d\mu_n(\Delta') F(\Delta,n) \delta(\Delta - \Delta')$$

SO HILBERT SPACE OF PURE 3D ADS GRAVITY IS TARGET SPACE FOR ONE-POINT FUNCTIONS OF CFTs WITH CONTINUOUS SPECTRUM AND STATES WITH CONFORMAL WEIGHT

$$\Delta > (c-1)/24$$

INTEGRAND IN NORM PROPORTIONAL TO DIRAC DELTA: CONTINUOUS SPECTRUM

$$||\langle V^{h,\bar{h}}\rangle||^2 \approx \sum_n \int d\mu_n(\Delta) d\mu_n(\Delta') F(\Delta,n) \delta(\Delta - \Delta')$$

SO HILBERT SPACE OF PURE 3D ADS GRAVITY IS TARGET SPACE FOR ONE-POINT FUNCTIONS OF CFTs WITH CONTINUOUS SPECTRUM AND STATES WITH CONFORMAL WEIGHT

$$\Delta > (c-1)/24$$

SPACE OF SUCH CFTs IS NONEMPTY ONE SOLUTION: LIOUVILLE CFT

DIDN'T WE KNOW IT FROM THE FACT THAT WAVE FUNCTIONS OF SL(2,R) TRANSFORM AS CONFORMAL BLOCKS OF LIOUVILLE?

DIDN'T WE KNOW IT FROM THE FACT THAT WAVE FUNCTIONS OF SL(2,R) TRANSFORM AS CONFORMAL BLOCKS OF LIOUVILLE?

NO: E.G. THE CONFORMAL BLOCKS OF A FREE BOSON DO NOT SAY ANYTHING ABOUT ITS RADIUS OF COMPACTIFICATION

DIDN'T WE KNOW IT FROM THE FACT THAT WAVE FUNCTIONS OF SL(2,R) TRANSFORM AS CONFORMAL BLOCKS OF LIOUVILLE?

NO: E.G.THE CONFORMAL BLOCKS OF A FREE BOSON DO NOT SAY ANYTHING ABOUT ITS RADIUS OF COMPACTIFICATION

IN PARTICULAR THEY ARE THE SAME FOR THE UNCOMPACTIFIED BOSON (CONTINUOUS SPECTRUM) AND FOR THE COMPACT BOSON (DISCRETE SPECTRUM)

HILBERT SPACE IS TOO LARGE

$$H_{CQG} = V_h \otimes V_{\bar{h}} \otimes \sum_g H_g$$

INFINITE MULTIPLICITY FOR ANY VIRASORO IRREP.

HILBERT SPACE IS TOO LARGE

$$H_{CQG} = V_h \otimes V_{\bar{h}} \otimes \sum_g H_g$$

INFINITE MULTIPLICITY FOR ANY VIRASORO IRREP.

ALSO: TOPOLOGY-CHANGING TRANSITIONS SEEM TO EXIST IN ADS3 PURE GRAVITY

THOUGH TEICHMULLER COORDINATES ARE CONSTANT UNDER LORENTZIAN TIME EVOLUTION

HILBERT SPACE IS TOO LARGE

$$H_{CQG} = V_h \otimes V_{\bar{h}} \otimes \sum_g H_g$$

INFINITE MULTIPLICITY FOR ANY VIRASORO IRREP.

ALSO: TOPOLOGY-CHANGING TRANSITIONS SEEM TO EXIST IN ADS3 PURE GRAVITY

THOUGH TEICHMULLER COORDINATES ARE CONSTANT UNDER LORENTZIAN TIME EVOLUTION

MAYBETWO WRONGS DO MAKE A RIGHT!

TOPOLOGY CHANGE ALLOWED WHEN

$\exists M \qquad s.t. \qquad \partial M = \Sigma$

AND THE SURFACE CAN BE SPLIT BY A HOMOLOGY CYCLE a NON CONTRACTIBLE IN M INTO

$$\Sigma \setminus a = \Sigma_g \cup \Sigma_{g'}$$

TOPOLOGY CHANGE ALLOWED WHEN

 $\exists M \qquad s.t. \qquad \partial M = \Sigma$

AND THE SURFACE CAN BE SPLIT BY A HOMOLOGY CYCLE a NON CONTRACTIBLE IN M INTO

$$\Sigma \setminus a = \Sigma_g \cup \Sigma_{g'}$$

A SIMPLE EXAMPLE WITH g=g'=1 AND M A HANDLEBODY:

ALSO: TOPOLOGY CHANGE DEFINES A PROJECTION:

$$P(A|C) = \sum_{B} P(A|B)P(B|C)$$

CONJECTURE: EACH EIGENSPACE WITH UNIT EIGENVALUE OF TOPOLOGY CHANGE PROJECTOR DEFINES A CONSISTENT THEORY

ALSO: TOPOLOGY CHANGE DEFINES A PROJECTION:

$$P(A|C) = \sum_{B} P(A|B)P(B|C)$$

CONJECTURE: EACH EIGENSPACE WITH UNIT EIGENVALUE OF TOPOLOGY CHANGE PROJECTOR DEFINES A CONSISTENT THEORY

HEURISTIC SEMICLASSICAL CALCULATION SUGGEST THAT THE PROJECTION IS:

$$P = \sum_{g,g'} C(h,g) C(h,g') \langle V^h \rangle_{\Sigma_g} \langle V^h \rangle_{\Sigma'_g}$$

VERTICES OF PRIMARIES IN LIOUVILLE THEORY

SKETCH OF A (FUTURE) CALCULATION

SKETCH OF A (FUTURE) CALCULATION

$$K[B^{I}|B^{F}] = \int_{R} [dA] \exp(iI_{CS}), \qquad R = \{A \in SL(2, R)\}$$

ON THE BOUNDARY (INITIAL AND FINAL SURFACES) ONLY HALF OF THE COMPONENTS OF THE GAUGE FIELD A ARE SET EQUAL TO B

SKETCH OF A (FUTURE) CALCULATION

$$K[B^{I}|B^{F}] = \int_{R} [dA] \exp(iI_{CS}), \qquad R = \{A \in SL(2,R)\}$$

ON THE BOUNDARY (INITIAL AND FINAL SURFACES) ONLY HALF OF THE COMPONENTS OF THE GAUGE FIELD A ARE SET EQUAL TO B

SADDLE POINTS ARE GENERICALLY IN SL(2,C)

STEEPEST DESCENT PATHS ARE LEFSHETZ THIMBLES HOMOLOGOUS TO R

SKETCH OF A (FUTURE) CALCULATION

$$K[B^{I}|B^{F}] = \int_{R} [dA] \exp(iI_{CS}), \qquad R = \{A \in SL(2,R)\}$$

ON THE BOUNDARY (INITIAL AND FINAL SURFACES) ONLY HALF OF THE COMPONENTS OF THE GAUGE FIELD A ARE SET EQUAL TO B

SADDLE POINTS ARE GENERICALLY IN SL(2,C)

STEEPEST DESCENT PATHS ARE LEFSHETZ THIMBLES HOMOLOGOUS TO R

IF SL(2,C) SADDLE POINT DEFINES A REGULAR EUCLIDEAN METRIC, THEN IT CONTRIBUTES TO FUNCTIONAL INTEGRAL

$H_{CQG} = \{ |v\rangle_h \otimes \sum_g C(g,h) \langle V^h \rangle_{\Sigma_g} : |v\rangle \in V_L, \ h \in \mathbb{R}^+ + (c-1)/24 \}$

$H_{CQG} = \{ |v\rangle_h \otimes \sum_g C(g,h) \langle V^h \rangle_{\Sigma_g} : |v\rangle \in V_L, \ h \in \mathbb{R}^+ + (c-1)/24 \}$

LIOUVILLE CFTs HAVE NO VACUUM STATE BAD FOR PURE GRAVITY!

$H_{CQG} = \{ |v\rangle_h \otimes \sum_g C(g,h) \langle V^h \rangle_{\Sigma_g} : |v\rangle \in V_L, \ h \in \mathbb{R}^+ + (c-1)/24 \}$

LIOUVILLE CFTs HAVE NO VACUUM STATE BAD FOR PURE GRAVITY!

ALSO CONTINUOUS SPECTRUM=INFINITE ENTROPY

$$H_{CQG} = \{ |v\rangle_h \otimes \sum_g C(g,h) \langle V^h \rangle_{\Sigma_g} : |v\rangle \in V_L, \ h \in \mathbb{R}^+ + (c-1)/24 \}$$

LIOUVILLE CFTs HAVE NO VACUUM STATE BAD FOR PURE GRAVITY!

ALSO CONTINUOUS SPECTRUM=INFINITE ENTROPY

ANY DISCRETIZATION GIVES EFFECTIVE CENTRAL CHARGE

$$c_{eff} = c - 24\Delta_{min} = c - 24\frac{c-1}{24} = 1$$

MULTIPLICITY OF STATES NOT ENOUGH TO GIVE BEKENSTEIN-HAWKING ENTROPY A POSSIBILITY:

 $c_{eff} < c$

SIGNALS A PHASE OF QG WITHOUT DYNAMICAL BLACK HOLES

ARGUED IN hep-th/0503121 USING LINEAR DILATON BACKGROUND AND STRINGS ON ADS3 AT

 $L_S > L_{AdS} \gg L_{Planck}$

FOR c<1 (HIGHLY CURVED ADS) SL(2,R) INVARIANT VACUUM IS ALLOWED

$$\Delta = 0 > \frac{c-1}{24}$$

FOR c<1 (HIGHLY CURVED ADS) SL(2,R) INVARIANT VACUUM IS ALLOWED

$$\Delta = 0 > \frac{c-1}{24}$$

ALSO FOR MINIMAL MODELS THERE EXISTS A SUBGROUP OF THE MODULAR GROUP THAT ACTS TRIVIALLY ON ALL ONE-POINT CONFORMAL BLOCKS (BANTAY, GANNON)

THIS SUBGROUP \mathcal{N} IS NORMAL, FINITE INDEX

FOR c<1 (HIGHLY CURVED ADS) SL(2,R) INVARIANT VACUUM IS ALLOWED

$$\Delta = 0 > \frac{c-1}{24}$$

ALSO FOR MINIMAL MODELS THERE EXISTS A SUBGROUP OF THE MODULAR GROUP THAT ACTS TRIVIALLY ON ALL ONE-POINT CONFORMAL BLOCKS (BANTAY, GANNON)

THIS SUBGROUP \mathcal{N} IS NORMAL, FINITE INDEX

 $T/\mathcal{N} =$ finite cover of \mathcal{M}

 $(T/\mathcal{N} \times \bar{T}'/\mathcal{N})/M$

HAS FINITE VOLUME= DISCRETE SPECTRUM FOR c<1 MINIMAL MODELS WE CAN GET A REASONABLE THEORY, WITH DISCRETE SPECTRUM AND A DUAL TO THE ADS VACUUM IF WE IMPOSE A NEW NON-GEOMETRICAL GAUGE SYMMETRY THAT ACTS ON THE MODULI SPACE AS THE NORMAL, FINITE INDEX KERNEL OF THE MODULAR GROUP

(SEE CASTRO ET AL.)

FLY IN THE OINTMENT: WHEN MORE THAN ONE MODULAR INVARIANT COMBINATION OF CHARACTERS EXISTS, A GENERIC VECTOR IN THE HILBERT SPACE CANNOT BE ASSOCIATED TO ANY GIVEN CFT GENERICALLY IT IS:

$$|v\rangle_h \otimes \sum_I \sum_g C_I(g,h) \langle V^h \rangle_{\Sigma_g}^I$$

A LINEAR COMBINATION OF VEVs COMPUTED IN DIFFERENT CFTs

TENTATIVE CONCLUSIONS

- A CANONICAL QUANTIZATION OF PURE GRAVITY IN 3D ADS YIELDS A HILBERT SPACE THAT CAN BE INTERPRETED AS THE TARGET SPACE FOR LIOUVILLE-LIKE CFTs
- LIOUVILLE APPEAR IN THE HILBERT SPACE AS SUPERSELECTION SECTOR DEFINED BY A TOPOLOGICAL PROJECTION
- FOR c>I THERE ARE SEVERAL PROBLEMS WITH THIS PICTURE SUCH AS ABSENCE OF THE DUAL TO ADS SPACE AND CONTINUOUS SPECTRUM
- FOR c<I WE FOUND THAT IMPOSING A NEW, NON GEOMETRIC GAUGE SYMMETRY GIVES A REASONABLE PICTURE (DISCRETE SPECTRUM, VACUUM)
MANY OPEN QUESTIONS

- DOES ALL THIS MAKE SENSE?
- CAN ONE EXTEND THE MINIMAL MODEL PICTURE TO HIGH SPIN 3D ADS THEORIES, OR SL(N,R)XSL(N,R) CS? (ANY RCFT ADMITS A NONTRIVIAL KERNEL OF THE MODULAR GROUP)
- TOPOLOGICAL TRANSITION AMPLITUDES
 SHOULD BE UNDERSTOOD PROPERLY
- IS c>I IN A DIFFERENT PHASE THAN GRAVITY WITH MATTER? DO PHASE TRANSITIONS EXIST FROM STRINGY ADS3 INTO A PURE GRAVITY PHASE?