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Recently, entanglement entropy draw a lot of attention from
different regions

In this work, we will use entanglement entropy as a
measurement to check AdS3/CFT2
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AdS3/CFT2

AdS/CFT claim that a d + 1 dimensional quantum gravity is
dual to a d dimensional field theory, and
Zgravity = Zfield theory Maldacena(1996)

AdS3/CFT2 is a good arena to check AdS/CFT
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There are a lot of check for AdS3/CFT2 including: the
asymptotic symmetry group, the thermal-dynamics, and
conformal block Brown, Henneaux (1986) Strominger, Vafa (1998)

It is believed that weakly coupled three dimensional gravity
should correspond to a large central charge CFT with sparse
light spectrum; c = 3l

2G
Hartman arXiv:1303.6955, 1405.5137

Furthermore for pure gravity, we expect the corresponding
field theory only has vacuum module states in light spectrum
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Entanglement entropy

Dividing a quantum system into two
part A

⋃
B, the reduced density

matrix for subsystem A is

ρA = trBρ (1.1)

All physics in sub-system A is described by ρA

The entanglement entropy can be defined as

SEE (A) = −trAρA log ρA (1.2)

For pure state, ρ =| ψ〉〈ψ |, SEE (A) = SEE (Ac)

For thermal state, where ρ = e−βH , SEE (A) 6= SEE (Ac)
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In field theory, we usually calculate the entanglement entropy
by replica trick

SEE (A) = lim
n→1

Sn(A) (1.3)

where

Sn = − 1

n − 1
log trρnA = − 1

n − 1
log

Zn

Zn
1

(1.4)
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The n-sheeted surface can be written as a n-copied field
theory on one surface and the twist boundary condition can be
replaced by some twist operators localted at the branch point

trρnA =
Zn

Zn
1

= 〈T (z1)T (z2)...〉 (1.5)
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Because of the infinite degree of freedom, the entanglement
entropy in field theory is quite hard to calculate

In 2d CFT, the conformal symmetry give more constrain for
the entanglement entropy

When the Riemann surface is genus-0 there is universal result

For example, single interval Rényi entropy in infinite space at
zero temperature

SEE =
c

6
(1 +

1

n
) log

l

ε
(1.6)
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When the Riemann surface has higher genus, for example the
Rényi entropy for two interval case or one interval on finite
space at finite temperature, the result depend on spectrum
and OPE in CFT

(a) double interval: genus n-1 (b) finite temperature: genus n
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For a CFT with holographic correspondence, it is suggested
the entanglement entropy can be evaluated by
Ryu-Takayanagi formula

SEE =
Area(ΣA)

4G
, with ∂(ΣA) = ∂(A)

(1.7)

Shinsei Ryu and Tadashi Takayanagi Phys.Rev.Lett.96:181602,2006

In AdS3/CFT2 the minimal surface is a geodesic
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An interesting case is in black hole background

Tatsuo Azeyanagi, Tatsuma Nishioka, Tadashi Takayanagi

Phys.Rev.D77:064005,2008

There is a phase transition when the interval is large enough

SEE (L− ε) = Sth + SEE (ε) (1.8)
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By using replica trick in bulk, the Ryu-Takayanagi formula can
be derived for single connected regain based on some
assumptions A.Lewkowycz, J.Maldacena (2013)

and more rigorously in AdS3/CFT2 for vacuum state with
multi-interval
Hartman, arXiv: 1303.6955

Faulkner, arXiv: 1303.7221
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In this work, we study one interval entanglement entropy in
finite space at finite temperature

We consider all different cases: low/high temperature,
small/large interval

In gravity side, we derive the Ryu-Takayanagi formula in black
hole background and also study the phase transition for
small/large interval

In field theory side, we consider a large c CFT with sparse
light spectrum where c = 3l

2G

The result in field theory and gravity match with each other
up to some level and imply a correspondence for AdS3/CFT2

In another work, we study the partition function on any higher
genus Riemann surface and keep c0 order of 1

c expansion. We
find agreement with holographic calculation
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5 Minutes Break
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AdS3/CFT2

The AdS3/CFT2 correspondence for pure gravity is not fully
understood Alexander Maloney, Edward Witten JHEP 1002:029,2010

For torus partition function:

In field theory Z =
∑

i e
−βEi , we don’t know the full spectrum

In gravity

Z =
∑

saddle point

e−
1
4G

SEZquantum (1.9)

We don’t know which saddle point should include in the
summation
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In semi-classical limit, both the gravity and CFT are simplified

In field theory, the contribution from heavy operators (h ∼ c)
is non-perturbatively depressed in partition function as e−βhi .

If we expand the partition function properly, such that the
expansion converge fast enough, it is believed that only light
representation have perturbative contribution

Light operator h ∼ O(1)

Heavy operator h ∼ O(c) (1.10)

In gravity side, because of e−
1
4G

SE , only the saddle point with
smallest action dominate in the partition function and other
saddle points are non-perturbatively depressed as O(e−c)
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There is a phase transition between low and high temperature
In field theory, because we only insert vacuum Virasoro
representation, we need the expansion converge fast enough,
such that the heavy operators have no perturbative
contributions
In low temperature we expand in imaginary time direction; in
high temperature we expand in spacial direction
In gravity side, the on-shell action will change with
temperature. For high temperature BTZ black hole’s action is
smaller, while for low temperature thermal AdS is smaller

(c) torus (d) BTZ black hole (e) Thermal AdS
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For higher genus Riemann surface, the discussion is similar

In field theory we use sewing
construction: cutting the Riemann
surface and inserting a complete
bases

If the expansion converge fast enough, only vacuum Virasoro
representation state give perturbative contribution and others’
are depressed non-perturbatively

In gravity side we find gravity solution whose boundary is the
higher genus Riemann surface

The solution with smallest on-shell action dominate

We expect the classical, 1-loop, 2-loop, ... orders in gravity
match with c , c0, c−1... orders in CFT

There is also phases transition:
in field theory, we insert state in different cycle
in gravity, different saddle point dominate
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Rényi entropy in CFT

We study the Rényi entropy Sn in finite space at finite
temperature

By replica trick the Rényi entropy transform to partition
function on a genus-n Riemann surface

We will to cut and insert Vacuum Virasoro representation at
some cycles

For different parameter condition we should cut and insert
state in different cycles
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Low temperature

We insert a complete
bases at each sheet of
the torus

After cutting the surface at n cycles it transform to a
summation of multi-point correlation function on genus zero
surface
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We can calculate Sn as an expansion with respect to e−
β
L

We also take an expansion with 1
c , the c c0 c−1 order should

match with classical, 1-loop, 2-loop order in gravity

S classical
n

= c{ 1

6n
(1 + n) log sin

πl

L
− 1

9

1

n3
(n2 − 1)(n + 1) sin4(

πl

L
)e−

4πβ
L

−4

9

1

n3
(n2 − 1)(n + 1) sin4(

πl

L
) cos2(

πl

L
)e−

6πβ
L + O(e−

8πβ
L )

S 1-loop
n = {− 2n

n − 1
(

1

n4
sin4(πlL )

sin4 πl
nL

− 1)e−
4πβ
L + O(e−

6πβ
L )

When n→ 1 we can read the entanglement entropy

The classical entanglement entropy gives geodesic length in
global AdS space which support RT formula

From the S 1-loop we see SEE (l) 6= SEE (L− l)
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High temperature small interval

For high temperature with small interval, we just need to take
a modular transformation

We insert a complete bases at each imaginary time circle; the

result is an expansion with respect to e−
L
β
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Sn |classical

=
c

6

1 + n

n
log sinh(2πTl)− c

9

(n + 1)(n2 − 1)

n3

{
sinh4(πTl)e−4πTL

+4 sinh4(πTl) cosh2(πTl)e−6πTL}+ O(e−8πTL),

This result is only for small interval case; for large interval
case l ∼ L, the expansion converge slowly

It implies for large interval case this expansion cannot evaluate
the perturbative result
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For small interval case, we insert a complete bases at A(i)

cycle; however in large interval case, the geometry near A(i)

change fast,

We insert a complete basis at Ã(1) cycle
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Cutting along Ã(1) cycle the Riemann surface still have
higher-genus, we need to take an OPE expansion for the two
twist operators

For classical level we can read out the entanglement entropy
by taking n→ 1

SEE (L− l) = Sth + SEE (l) (2.1)

For quantum level, the Rényi entropy is an expansion with

e−
2πL
nβ and l ,
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Holographic Rényi entropy

For holographic Rényi entropy, we still use replica trick

We calculate the gravity partition function whose boundary is
the n-sheeted Riemann surface

Z =
∑

e−SEZ | quantum (3.1)

In semi-classical limit, only the saddle point with smallest
action dominate; while other saddle points are depressed
non-perturbatively
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Schottky Uniformization

Every genus-g Riemann surface can be described by Schottky
Uniformization as M = Ω/Γ, where Γ is sub-group of global
conformal transformation generated by g element Lj

We choose 2g circles Cj C
′
j and

global conformal transformation Lj
Lj identify Cj with C

′
j

The regain outside the circles Cj and
C
′
j is a genus-g Riemann surface

L(z)− aj
L(z)− rj

= q
z − aj
z − rj

(3.2)

where q is called the multiplier of L
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The Schottky uniformization can be extended into the bulk:
Riemann surface Ω/Γ, the handle-body solutions AdS3/Γ

AdS3 : ds2 =
dzdz̄ + dy2

y2
(3.3)

Using quaternion u = z + jy

L : z =
az + b

cz + d
L : u = (au + b)(cu + d)−1 (3.4)

where a b c d are complex numbers

K. Krasnov, Adv. Theor. Math. Phys. 4, 929 (2000)
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Conformal transformation Σn → Ω/Γ

We can solve a differential equation on Σn

∂2ψ(z) +
6

c
T (z)ψ(z) = 0 (3.5)

If we choose T (z) properly, such that ψ(z) is single valued

along A(i) cycle then w(z) = ψ1(z)
ψ2(z)

gives a conformal
transformation to universal covering

For each choice of trivial cycles, we can find a Schottky
uniformization

Most of time, we cannot solve the differential equation
analytically

We can take an expansion with respect to some parameter on
the Riemann surface and solve it order by order, for example

e−
β
L (in low temperature), e−

L
β (in large temperature),

L− l (large interval)
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For genus-g Riemann surface we can find the gravity solution
systematically:

Choose 2g canonical cycles Ai Bi

Transform to the coordinate for
Schottky Uniformization

Extend the identification to the bulk

Ai cycles are contractible in bulk

Different choice of Ai Bi

cycles give different
gravity solutions
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We can evaluate the classical action and quantum correction
for the handle-body solution

The classical action equals to an on-shell Liouville action in
the boundary

The 1-loop partition function in handle body solution was
derived by heat kernel method

Z1-loop =
∏
γ

∞∏
m=2

1

|1− qmγ |
, (3.6)

where γ is primary conjugate class in Schottky group γ 6= γn0
Simone Giombi, Alexander Maloney, Xi Yin JHEP 0808:007,2008
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For a Riemann surface there are infinite gravity solutions with
the same asymptotic boundary Maloney, Witten 2007

Faulkner, arXiv: 1303.7221

We assume the dominate saddle point have replica symmetry

For two interval case there are two choices for saddle point

The holographic entanglement entropy can be computed in
classical and 1-loop level; the classical result equals to RT
formula Thomas Faulkner 1303.7221

Taylor Barrella, Xi Dong, Sean A. Hartnoll, Victoria L. Martin JHEP

1309:109,2013
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For finite temperature case the Σn is a genus-n Riemann
surface

(o) low
temperature

(p) high temperature
small interval
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For high temperature large interval we suggest a new
monodromy condition

The trivial cycles A(i) in holograpic calculation are the same
cycles to cut and insert bases in field theory
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In each case we can calculate the holographic Rényi entropy in
classical and 1-loop level

The result is an expansion with respect to some parameter in
Riemann surface, and we can calculate it order by order

By brute force, we can calculate the Rényi entropy to some
finite orders and find agreement with the field theory

Is it possible to prove this correspondence to all orders?

Jie-qiang Wu Entanglement entropy and higher genus partition function in AdS3/CFT2



Introduction RE HRE Partition function Conclusion

Higher genus partition function

We study the partition function on any higher genus Riemann
surface

The c1 order contribution in partition is captured by the
conformal anomaly, which is a Liouville action and match with
the on-shell action in gravity K. Krasnov, Adv. Theor. Math. Phys. 4,

929 (2000)

We will calculate the c0 order partition function in field
theory and match with the 1-loop partition function in
gravity handle body solution

Z |1−loop=
∏
γ

∞∏
m=2

1

|1− qmγ |
(4.1)
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The partition function can be calculated by sewing
construction

Zg =
∑

m1,m2,...mg

〈L1Ō(1)
m1 O

(1)
m1
L2Ō

(2)
m2 O

(2)
m2 ...

Lg Ō
(g)
mg O

(g)
mg 〉 (4.2)

where O
(j)
mj is inserted in Cj and Lj Ō

(j)
mj is inserted in C

′
j

As previous discussion, only vacuum Virasoro representation
states give perturbative contributions
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If we only keep leading order of 1
c expansion, there are some

simplifications in calculation :

1) The Virasoro algebra is decoupled to a series of creation
and annihilation operators

[Lm, Ln] ∼ c

12
m(m2 − 1)δm+n (4.3)

2) The vacuum Virasoro representation states are orthogonal
each other

∞∏
m=2

Lrm−m | 0〉 :
∞∏

m=2

∂m−2T (z) : (4.4)

3) The multi-stress tensor correlation function is captured by
a summation of two point functions’ product

〈T (z1)T (z2)T (z3)T (z4)...〉 =
∑
P

〈T (zP1)T (zP2)〉〈T (zP3)T (zP4)〉...

(4.5)
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For state
∏∞

m=2 L
rm
−m | 0〉, we define the particle number as

r =
∑∞

m=2 rm

We can classify the vacuum Virasoro representation by
particle number

Single particle operator: Vm ∼ ∂m−2T (z)
r-particle operator: :

∏r
j=1 Vmj :
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Genus-1 as a warm-up

The result is well know Z1 =
∏∞

m=2
1

1−qm
We try to derive it in another way

Z1 =
∞∑
r=0

1

r !

∑
{mj}

〈: (
r∏

j=1

LV̄m(r1)) : : (
r∏

j=1

Vm(a1)) :〉+ O(
1

c
)

There are contributions from different particle number states :

Z (0) = 1 (4.6)

Z (1) =
∞∑

m=2

〈LV̄m(r1)Vm(a1)〉 = TrH1q
L0 =

∞∑
m=2

qm (4.7)

where q is the multiplier of conformal transformation L

Z (2) =
1

2

∞∑
m1=2

∞∑
m2=2

〈: LV̄m1(r1)LV̄m2(r1) :: Vm1(a1)Vm2(a1) :〉

(4.8)
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For multi-particle states, the c0 order is captured by a
summation of two point functions product

〈: LV̄m1(r1)
L
V̄m2(r1)...

L
V̄mr (r1) :: Vm1(a1)Vm2(a1)...Vmr (a1) :〉

=
∑
{P}

〈LV̄mP1
(r1)Vm1(a1)〉〈LV̄mP2

(r1)Vm2(a1)〉...〈LV̄mPr
(r1)Vmr (a1)〉

+O(
1

c
) ,(4.9)
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We develop a diagram language to calculate the partition
functions

Figure: Diagram Language

The lower and upper dots
denote single vertex operators
Vm inserting at the cycle

The number of dots denote
particle number of the state

The dashed lines denote
summation over m

The solid line denotes the
contraction of two
single-particle operator.

A closed contour with dashed
and solid lines is called a link

The number of dashed line is
called the length of link
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A link is a product of two point functions, such that the
previous ket state equals the next bra state∑
{mt}

〈LV̄mt2
Vmt1
〉〈LV̄mt3

Vmt2
〉 ... 〈LV̄mt1

Vmts
〉 =

∞∑
m=2

qms(4.10)

In the expansion for partition function, each term is a product
of links

Z1 ∼ (1+(1)+(1)2+...)(1+(2)+(2)2+...)(1+(3)+(3)2+...)...
(4.11)

(i) denote a length-i link, and (1)2(2) denote product of two
length-1 link and a length-2 link

With coefficients, we can calculate the partition function
exactly

Z1 =
∞∏
s=1

∞∑
t=0

1

st
1

t!
(
∞∑
r=2

qsr )t =
∞∏
r=2

1

1− qr
. (4.12)
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Genus-g

For higher genus cases we need to
insert vacuum Virasoro
representation in each handle(cycle),
for example

Z2 =
∑
m1,m2

〈L1Ō(1)
m1 O

(1)
m1
L2Ō

(2)
m2 O

(2)
m2 〉

(4.13)

O
(1)
m1 O

(2)
m2 can be any multi-particle

states

Figure: Higher genus
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In c0 order the partition function is still an expansion of two
point functions’ product

We can use diagram language to describe them

In diagram language we use different kinds of dots to denote
states inserting at different cycles
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Links

We still define a closed contour with solid and dashed line as
a link

There can be contraction between operators in different cycle

(a) link(1)(2) (b) link(12) (c) link(12−1)
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Another example

Figure: Link(112−13)
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A link is a product of two point functions, such that the
previous ket state is the same as the next bra state∑
{mt}

〈LV̄mt2
(r2)Vmt1

(a1)〉〈LV̄mt3
(r3)Vmt2

(a2)〉 ... 〈LV̄mt1
(r1)Vmts

(as)〉(4.14)

For a link with diagram γ = (j1j2...js) it equals to

∞∑
m=2

qm (4.15)

where q is the multiplier of Lj1Lj2 ...Ljs .
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There is a one-to-one correspondence between a link and an
element in Schottky group

We can define a primitive link γ, such that γ 6= γ(0)γ(0)...γ(0),
for example (1), (2), (12), (12−1) are primary links while
(11), (1212) are not

Assuming we we have all of primitive links as {γ(1) γ(2) ...},
we can build all the links as
γ(1), γ(1)γ(1), γ(1)γ(1)γ(1), ..., γ(2), γ(2)γ(2), ..., γ(3)γ(3), ...

Each terms in the partition function is a product of these links

With proper coefficient, we can calculate the partition function

Z =
∏
γ

(
∞∏

m=2

1

1− qmγ
) (4.16)

where γ is primary conjugate in Schottky group
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Conclusion

We study the Rényi and entanglement entropy in finite space
at finite temperature

We study different cases low/high temperature, small/large
interval

We do calculation in field theory and in gravity and find
agreement in classical and 1-loop level

In high temperature we find the phase transition when the
interval is close to the whole space

We also calculate the c0 partition function on a general higher
genus Riemann surface and the result match with gravity
1-loop partition function in handle-body solution
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Outlook

Higher order of 1
c expansion, related to gravity interaction

Rényi entropy in higher spin black hole
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Thanks

Thanks for your attention!
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