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PART I

eString theory and Matrix theory

el he ABJM model

eFuzzy 2-spheres vs. fuzzy 3-spheres



1. String theory and Matrix theory

eQuantum gravity unification: at Planck energy (dim. analysis)

for a relativistic (¢) quantum (&) gravity (G) theory.

eAt this energy, matter particles (leptons, quarks, Higgs and
exotics) and gauge bosons (force particles) are all tiny vibrating
strings.
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eDifferent vibration modes — different particles (fields): Quan-
tum theory of different particles.
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e Also, classical spin-mass relation J = ao—l—a’M2 gets quantized.

eEach (J,, My) — different particle species: infinite number or
species.

ePerturbative treatment: S matrices well defined. Need 10 di-
mensions.

eNonperturbatively: No full definition.

eCoupling gs becomes 11th dimension. Nonperturbative objects:
Dp-branes (extended in p spatial dimensions), In particular, D-
particles.

eSpacetime and gravity should emerge from theory.



eMatrix theory: partial attempt:

eQuantum mechanics of N D-particles as N — oo.

ePhysics of N DO's: matrices: N x N d.o.f. (X")%(¢) and super-
partners. a,b=1,..,N; i =1,...,9. (transverse coordinates of an

object moving in 11th dimension).

eSpacetime is emergent. Position of classical objects 1,2

. x?[]-lleNl O O
X' = 0 zolln, N, O
0 0 0

eClassical, perturbative, gravitational interaction from quantum
interactions of Matrix theory. E.G., 1-loop Matrix fluctuations
— classical interaction of 2 gravitons in flat space.



el graviton = collection of N D-particles.,

Vl—loop class.

(qu.,Matrixz ~ ~grav.—grav.

(quantum theory version of Newtonian interaction)

oAt quantum level, space= fuzzy: off-diagonal matrix d.o.f.
(X,)® o # b (instead of N positions, we have N2 d.o.f).

eExtended classical objects (Dp-branes) also from matrices.

ec.g. torus T2: X1 x p, Xo x g, where p,q are large-N matrices
satisfying [p, q] = 27i/N — 0.

e— become classical coordinates (p,q) on T2.
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2. The ABJM model

eNonperturbative string theory should be 11d: "M theory”

eIt contains M2-branes (membranes) as fundamental objects,
M5-branes as solitons. Theory of M2-branes?

eAction of one membrane: known.

eABJM (2008) — action on 3d worldvolume of N M2-branes, at
large distances

el_ike Matrix theory, contains N x N matrices. In particular, 8
transverse coordinates become (Z1)%b(z{,z5,t) matrices.

oHowever,) now (Z1)®? are U(N) x U(N) bifundamental fields,
and 3 A (21,20, 1): U(N) adjoint and AP (21, 25,t): U(N)
adjoint — 2 types of gauge bosons (force particles).



ePerhaps rules similar to Matrix theory?

e At least a stable solution looks like a fuzzy worldvolume, Matrix

theory-style: " fuzzy funnel”: sphere with radius= function of x7.

-

e [ he section x1 = constant: "fuzzy sphere” — defined by some
SU(2) generator J;:

[Ji, Jj] = 2ie; 1)

eEXxtra classical coordinates emerge from membrane theory!
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eMatrix theory: derived from theory of N D-particles in flat space
(yet real spacetime + gravity: emergent)

eABJM model: derived from theory of N M2-branes on C%/Z,
cone (cone of 27 /k deficit angle) v
oU(N) x U(N) matrices with integer k£ = 1/coupling.

eCaveat: perturbation theory in N/k = need large k for most
calculations — not flat space.
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3. Fuzzy 2-spheres vs. fuzzy 3-spheres

oM theory has Mb-branes = natural guess: fuzzy 3-sphere trans-
verse to N M2's = M5 on S3. Seems to be correct.

e\Ve show that in fact: 2-sphere.

elnterpretation: 2-sphere = S3/Z,. Locally, S3 ~ S?xSt: §3/7, ~
SQ X Sl/Zk

eEffectively, reduce to 10 dimensional string theory

eBut: fuzzy space= approx. to classical space as N — oo.
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eFinite k = need finite N for perturbation in N/k.
eYet we find that even at finite N fuzzy space |looks like 2-sphere.
eHard to see how to obtain a 3-sphere.

eNew formulation of fuzzy 2-sphere in terms of fuzzy Killing
spinors= fermionic square root of classical coordinates on 52

X~ () m?s XX =1

BREAK
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PART II

1. BLG and ABJM

o2.Fuzzy 2-spheres and fuzzy 3-spheres
e3.Fuzzy 2-sphere structure of ABJM

o4 Action for fluctuations

e5.Interpretation and fuzzy sphere equivalence
e6.Fuzzy Killing spinors

eo7.Supersymmetry and twisting the fields
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1. BLG and ABJM

o\ = 8 susy BLG theory of multiple M2's developped so that
the BPS fuzzy S3-funnel defined by (X™ 1 M?2: S3 € M5 by
Xmxm = 1)
dX™
ds
for X™ = X™/,/s, for fields living in 3-algebra

[Taij’Tc] — fabchd
defined by XM = xMpa: pf =1, .8,

= jkeMMPI[ X XP X1

eCommuting fields X satisfy
Bs X1 = ike™Pd foed X XP X1
eOnly consistent solution has SO(4) invariance

fabcd — fabceTT(TdTe) — ]'Eeabcd
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evan Raamsdonk: reformulate it in terms of bifundamentals in

Lie algebra of SO(4) = SU(2) x SU(2).
1 1 .
xM — EXCJLWT“ - 5(Xiw 14 ixMs?)
eABJM generalizes SU(2) x SU(2) to SU(N) x SU(N) theory
and NV =8 susy — N = 6 susy.

oAle),Asz) for U(N) x U(N); bifundamentals ¢! = (Z«, wot).

el /2 susy BPS fuzzy funnel equation
0s2° = —4a(2° 2} 2% — 2°2},27)
1

vV 8as

7% = G“
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o(G% gives fuzzy sphere equation

G = GPGlG* — goGle?
eMassive deformation (GRVV): preserves maximal N/ = 6 susy
(SU(4)-invariant susy rules), but R symmetry of L is broken to

SU(2) x SU(2).

oln split C1 = (R™, Q%), fully susy vacuum is

__ Mk

Qoz = 0: RY — fGoz; f2
27
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2. Fuzzy 2-spheres and fuzzy 3-spheres

eFuzzy 2-sphere: defined by SU(2) algebra:
(Xt XT] = 2i Tk xF

with the sphere condition X, X; = R? satisfied by any N = 2j+1
dimensional representation of SU(2)

X'X'=N2—-1=4j(i+1)

ols explicitly SU(2) = SO(3) invariant. All N x N matrices can
be decomposed in spherical harmonics made up of X''s,

Vi (X1 = ol (x (1 X7 _ traces)

eFluctuations of N x N theories around this solution can be
expanded in Y}, (X?).

e [ends to field theory on classical 52 as N — oo.
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eFuzzy 3-sphere: based on SO(4)-invariant Guralnik-Ramgoolam
formulation in terms of Sym(IM,)®" (simplified by Ramgoolam, 2002
and HN, 2004), formulate it for comparison to BLG/ABJM:

<7~+1><r+3)+1)X+

mnpgy+y— v+t —
€ XnXqu == 2(

r—+ 2 m
Emnquf;X];l_Xq_ _ 2<(T+1)(7:|__;3)+1)X77_1
T

with the constraints and sphere condition
XXt =X_X =0, XIX +X Xt =N
eBLG fuzzy funnel X, o< Xpm/v/5 =
R2X™ = jke™PI[X™, XP, X 1]
eFor the commuting fields X2 (X, = X% Ty)
R2X! = ike™nPdfbed X XP X1

eOnly for the SO(4) case, fabed = feabed similar to fuzzy S3 —
a index is algebra one: analog of m index for S3.
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eMore precisely, van Raamsdonk formulation:
R2X™ = —jke™mPa X" X TP X4
0S0: Xih — Xom, X — X

eABJM (fuzzy funnel, or massive: fuzzy sphere)

Re{G* = G’Gl,G* — G°G1,G}

eFor r =1, i.e. when X,, =1 ,,, it matches emnqu;J_Xp_X;_ =
[]X5, for r > 1 (~ (Fm)®7), it doesn't.

eSo, for r > 1 (SU(N) x SU(N) with N > 2), not a (usual?)
fuzzy S3!
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3. Fuzzy 2-sphere structure of ABJM

eProve that it is a fuzzy S2 (except forr =1 & N =2 « Ay
BLG), which can also be interpreted as (most fuzzy) S3.

eMassive ABJM: Q% = 0,R% = f(u)G% ABJM funnel:Z% =
f(s)G*.

eEXplicit matrices
(Gl)m,n =vm—1 Om,n
(G2 = /(N =m) Spy1n
(G;)m,n =vm-—1 Om,n
(GYYmn = ¢ (N = 1) Spg1m
eSatisfy Zﬁ L XpXP = GoeGl = N — 1 — suggests fuzzy S37

eBUT (first hint) G1 =G| — X, = 07

oStill, G could be transformed to different basis.
19



e\We have two U(2) algebras defined by

i
Br
splitting into two SU(2) algebras

Jaﬁ — GC\{G J_aﬁ — GLGB
Ji = (Uér)agjaﬁ = [J;, Jj]2ie€;51,.J)

and two U(1) generators proportional to the identity in a subspace

J = Jaa = (N— 1)1|N><N
(Nmn = (Ja “Ymn = Némn — N&yp10,1 = N(ll(N—l)x(N—l))mn

oIt would seem that we have SO(4) = SU(2) x SU(2) invariance,
as for fuzzy S3. but they are not independent!
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ePhysical fluctuations: bifundamentals of U(N) x U(N): G¢; GE,
transform as

JiG*—GT; = (5)%G”

GlJi = TGl = G(E)
— only a combination of U(N) and U(N) — fields on a single S2.
eExample of fuzzy S3: Ishii, Ishiki, Shimasaki, Tsuchiya, 2008 — BMN

plane wave matrix model.
X; — Ng x Ny subsets X,L.(S’t). Then SU(2) in js representations

L,SjS) act separately on two sides, by

Lo x&D = [0 x (50 _ x (01 (0

eFields of fuzzy S?2 expanded in fuzzy spherical harmonics:

Vi (Ji) =) fl(;ll“'”)Jil /3
i
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eMatrices (fluctuations) in adjoint of U(N) and in adjoint of
U(N) expand as:

N—1 l
A= Z amY'lm(Jz')
=0
) N—2
A=a0E11+ ) @Y () + Z brg{r + Z be9ry
1=0 k=2 k=2
where
E11 = leg ><eq]
Ehg = |€£><€;3| = 91
Er1 = leg)ler| = g1
v, (J) = Z (771.. %l) j%z

eFluctuating bifundamental matrlces (e.g. 6R%) expand as

r¢ = rﬁGﬁ—I— Z tkEkl = rG© +S%G6+Ta
k=1
and r,s%g,t are expanded in Y}, (J;)
eNote that we could have expanded in Y}, (J;)!
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5. Action for fluctuations

eABJM — massive u deformation changes the potential in cl =
(R%, Q%) and gives a mass u to the fermions.

eFluctuations

fGO‘—I—r RT—fGT+r
QO‘ = q“
A= Ay, o W
oAt finite N, [J;,.] acts as a " fuzzy derivative” operator (~ 0;)
acting on Y},,,(J;) and the "fuzzy Laplacean” is [J;, [J;,.]].
eFermions: subtle. We could decompose

v =G + GO0 = Ja* + UaG"
Xa — onﬂGB (onoz)T = x*
where v, UsP, x4 are expanded in Yy, (J;), or keep @, x, as they

are.
23



e [ he bosonic potential gives at finite N

Vo WV VT
— _%% [B(N = 4)Tr ([Ji,r][Ji,r]) — 45(N — 1) Tr (r?)]
A2 f4 3
—??[ (N — 1)Tr (SZSZ) — —(N + ]_)TI’ ([J’L7 Sz] ) + 4(4N - 1)Z€ij’—rr (SZJk?Sk?)

_§NTr( O 4meft HCDWAC
4 s;0s;) + ’LewkTI’ (Jis;Osy + siJ; Dsk)} 352 6Tr (£ (¢")'L5(q ))
_4?71'2‘]];_2 [ — ZTI’ (r(Os;J; + J;0s;)) + —TI’ (TD(J'SZ' + s;Ji)) — gTr (]-’I“(SZ'Ji + Jisi))}
[ (N — 1)Tr (sis;) + (N — 1)Tr (7~2) 1 Tr (r(sii 4 Jisi)) — JiegeTr (siJjs)
+q“q3;} + [ — i€ T (rJis;Jy) + ETF (r(sidi + Jisi))}
e [ he fermions give at finite N
i [ Tr @)l — Ttlwa — [ Tr ity oua + iyl

+g€jz’kTr [(5k)aﬁjj><5ﬁ JiX5a] + / Tr [—xT*v"Dyxe + inx™xa]

8myuf?
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Classical S2 in large N limit

e\We describe it in terms of J;, but we could use JL- as well.
(J)?=N?-1; (J)?=(N-1)"-1

e [ he classical coordinates differ at subleading order

Ji J;
T, = N 1
N2 _1 JIN—1)2-1
e [ hen
21
vy =1, [z;,z;] = ~——CijkThk 0
N< —1

1 —
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eSelected bosonic objects in the Lagrangean

[Jia : ] — —Qieijkaj‘jak — —QiKi — —QiK,f‘@a
0= [J; ;] = —4——8,(Vh 87) = —40
- 1 1 - = —
Vh
KCLKb hab
ab

ab _ €
sin 6
e\Ve can also define the adjoint action of K; on G“ by

szksz?Klg = W

—Qinaa(GO‘) — —QiKi(GOé) — N(asza — Gafi) — [(5‘1)5 xzé ]Gﬁ
such that K;(x;) = €57, as we need, and obtain

1 -
0a(G*) = —-hap K} (5:)§G”

which is a fermionic object, to be defined later.
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eln the parallel scalar fluctuation r® = rGO‘—I—ngﬁ,si = (04)%35"a
IS decomposed in the classical limit as

S; — K,?Aa —|— azng
eBut then at large N (!), we have

GP +

(54)3
r =G + 5407 = - K Aa— &

2r + c/bGa
2
oAt finite N, the expansion of s; (thus of r%) is not clear: 3
inconsistencies, though they could be ~ gauge transformations.
e [ he transverse scalars are decomposed as
N—-1

¢® = QG =Y (QY)mYim(J:)G®
[=0
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eHiggs mechanism for CS-Higgs system
A/(LLQ) (Z])(x) R A(1’2)(:13;0)
"eDefine linear combinations of the U(1) gauge fields on the S2:

1
Ay = E(Af})JrAff))

= Lo 4
el hen

Scs — N% / &3z d20\/ﬁ<e“”pBqup)

-~ / d*z Tr (DMC}LD“CI) — f?N? / &Pz d’oV/h ( APOA@r — (AL — A£2>)2)
eSubtlety: 1/N? correction kept

G (F)Gl, = (N — 1) Yy () —

Do)

eAlthough a priori different whether we use x; or x; — same
result for 1/N?2 corrections to action.
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e T hen B, is auxiliary and subleading

1k
— G'W/AFI/)\
8f2N 27

— reason why we needed to keep 1/N? terms.

BH

— k&
/ Bz 2oV (N;e“”pBqup _4f2N2B,BF + 24,041 — fQBMDB“>

— E\° 1
= /d3md20 \/E (— f28aAuaaA“ - ( ) FWFW)

27w ) 8f2

eFinal action

1 1 1 2 .
Sphys = 5 d3.’13d20'\/ﬁ [ — —FABFAB — —8ACD8ACD — 'u_q)Q _ angéana + H wabFabCD
9y M 4 2 2 2

1. - . — )
+(5T9DsTa + SuT5Ta + hee.) = (WS)Ds(S7) + Sp(wS) (S wh)]
where S is a fixed rotation matrix for spinors and T& = (P_S— 1y,

29



5. Interpretation and fuzzy sphere equivalence

eFuzzy BPS funnel of pure ABJM — same unrescaled bosonic
action, with

RY = [()G  f(s) = /-7

471s

eThus, only replace u < 1/(2s).

eM5 compactified to D4 due to large k (large N: classical, but
N/k fixed)

eRadius of sphere is
2

R2, = ST (XIxT) = 8n2f2Ni3

eEnergy in M5/D4 picture: S3/7Z; vs. S2:

T2 272 Rop )\ 2
E = 272T/ Z R3, dRpndz1 =T4/4W(T"h) dRppda1

30



elndeed,
32y, "= 8% o x Sk 20— 212k 0 71 4 2miZ k

oIf Z1 = v+ i0; Z23% =0, then X2 has radius v/k.
o7, reduces k times the S1 in the S3: 52 over S Hopf fibration.

e(Classical Hopf fibration:
xr; = (O‘,’zr)aﬁZBZ; = T;T; = 1

eNote that the Stis: Z% — ¢ Z% — this is in fact a map between
S2 and CPL.

CPl: {29 - \Z29) & (2% < W22 Y1292 = 1}
(87
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Fuzzy sphere equivalence

e(Classically, we saw that the Hopf fibration

I

z; = (6)%39"gk: 7 = (5:)%g949"

means that if we define the S3 coordinates ¢® modulo a U(1)
phase (the Hopf fiber), the resulting g% are some coordinates on
SQ

oFuzzy version: G® = UG or G = GoU, with (U,U) unitary
— () Then G satisfy the same GRVV algebra

~Go = GOGLG™ — GoGLGY

— its representations should be & SU(2).
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elrreps: Indeed, the J, — matrices of the general [jm > rep. of
SU(2) and J; — |j —1/2,m > rep. of SU(2), and

J=(N—-Dlyxn: J=NUn_1yx(Nn-1)

eReducible: Casimir J;J;: is diagonal and

J = diag(JIny, INys ) J = dz'ag(J_Nl, jN2> )
eGRVYV algebra = SU(2) algebras in general.

eReversely, in the classical limit

g% = gl — e'? 1+ a3 — eiqbga
) \2( a3\ T1 i
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eOn the fuzzy sphere
Gl J+J3 \T1 _
o (D)= (14 ) v =t
Gl 7 T_l J_—I— j3 ~ =
Ga:< )ZUNXNT( = — :UGa

and we define V]d,' — Vy_1®V]{ and J = (N — 1) lyxn, J =
N(1 — FEq1) Uiy for irreps and similar for reducible reps.

eFuzzy superalgebra

J; 0O 0 VNG
0 J; —V NG, 0
Ji, ;] = 2ie;5.d%
[Ji,Ja]l = (5i)apd”
{Ja,Jgt = —(6i)apdi = —(i025;)apJ;

is OSp(1|2) for the fuzzy supersphere: trivial, i.e. < bosonic
supersphere.
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6. Fuzzy Killing spinors

eClassical objects on S3 modulo a phase

o 1 ( 14 x3 )
g~ = o
V2(1 +a3) \ #1712
— (Majorana) spinors of the SO(2);; — related to Killing spinor

oKilling spinor on S™ satisfy

;
Dyn(z) = iEmwn(w)

satisfy orthonormality, completeness and modified Majorana
spinor conditions
oln terms of Killing spinors

v, = (o) j(n")Tyan’ = (5i)IJ<\6P+nI>T<\6P+UJ)

suggesting the identification
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eOn S2, 3 matrices Saﬁ that takes us between spherical and
Euclidean spinors on SQ, giving in particular
(ST3S™ 1) = —2:(:)%  (STaS™ 1% = —hapK[(5:)% 5
eOne gets the Killing spinor
1
V2

eComparing 9qg* and 9,(v/2P1n'), we see an extra term

(S—l)aﬁeﬁf — n?zl_l

0u(V2P ") = ~ 2 (STuS D! j (V2P + Tu(V2Py 1)

since g% and nI are only identified up to a phase.

eOther Hopf fibrations suggests generalizations to S7 — S4,
S15 . 98 o7 . CP3, but details of fuzzy constructions need
to be worked out.
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7. Supersymmetry and twisting the fields

QGO‘ — fuzzy Killing spinors (fermionic) — redefining the fields
by G% amounts to twisting the fields.

eFuzzy spinorial spherical harmonics can be obtained from G¢
OR

e(usual): spinorial spherical harmonics El:';fj‘
cients of exp. in usual spherical harmonics.

arise from coeffi-

eNoOw, qd and Y, expansion still contains Ge,

elLarge N limit of susy rules is subtle — simpler to twist:
qOé — géa 1
woz — @Zéoz + Uaﬁéﬁ Uozﬁ — EUi(&i)aﬁ
U; = K{'ga + ha;
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e [ O preserve susy on D-branes with curved worldvolume = need
to twist D-brane fields: On S2, embed the S2 spin connection
(SO(2) = U(1) valued) into R-symmetry = max N = 1 after
dimensional reduction.

e3d N = 6 theory at large N = 5d U(1) theory on ~ classical S=2.
After dim. red. back to 3d, at most N/ = 1. Actually, N = 0.

eAction for ¢® and 1, becomes after twisting
N2/d3xd20\/ﬁ[%§d(—i2p@52)25d — %aﬂzo‘aﬂ— —3ulE0=,
+N? / d%\/ﬁ[l/‘\a/\ + %gaaga + %“Aab(‘;ab/\ + iuAA]

where A = 2(zp zZ) and = is the modified Majorana spinor

=5 = (Q*SPy)a +i(Q*SP) = (C%,iD?)
¢’ Fermonic Higgs mechanism”: —|—¢/2 disappears.
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Conclusions

eAlthough the hope of BLG/ABJM was to see M-theory, and
obtain M2-M5 systems on a fuzzy S3, the solution is a fuzzy S2

el_arge N classical limit and M5 theory perturbative treatment in
N/k effectively force large k, reducing S3/7; — S2.

e Two potential SU(2)'s act in tandem on ABJM fields, giving
an SO(3) = SU(2) invariance at finite N = fuzzy 52,

eFuzzy S? construction in terms of G% is < SU(2) construction,
and G% is a fuzzy Killing spinor.

eThe susy action of D4 on S2 is obtained.

e T wisting the fields simplifies the analysis. G% relates twisted to
untwisted fields.
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