
Fuzzy spheres and M2-M5 systems in ABJM

Horatiu Nastase

Tokyo Institute of Technology

IPMU, Tokyo
November 10, 2009

based on HN, C. Papageorgakis, S. Ramgoolam, arXiv:0903.3966 and

HN and C. Papageorgakis, arXiv:0908.3263

1



PART I

•String theory and Matrix theory

•The ABJM model

•Fuzzy 2-spheres vs. fuzzy 3-spheres
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1. String theory and Matrix theory

•Quantum gravity unification: at Planck energy (dim. analysis)

EPl = (
~c5

G
)1/2 ∼ 1019GeV

for a relativistic (c) quantum (~) gravity (G) theory.

•At this energy, matter particles (leptons, quarks, Higgs and
exotics) and gauge bosons (force particles) are all tiny vibrating
strings.

•Different vibration modes → different particles (fields): Quan-
tum theory of different particles.
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•Also, classical spin-mass relation J = α0+α′M2 gets quantized.

•Each (Jn,Mn) → different particle species: infinite number or

species.

•Perturbative treatment: S matrices well defined. Need 10 di-

mensions.

•Nonperturbatively: No full definition.

•Coupling gs becomes 11th dimension. Nonperturbative objects:

Dp-branes (extended in p spatial dimensions), In particular, D-

particles.

•Spacetime and gravity should emerge from theory.
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•Matrix theory: partial attempt:

•Quantum mechanics of N D-particles as N →∞.

•Physics of N D0’s: matrices: N ×N d.o.f. (Xi)ab(t) and super-

partners. a, b = 1, .., N ; i = 1, ...,9. (transverse coordinates of an

object moving in 11th dimension).

•Spacetime is emergent. Position of classical objects 1,2

Xi =



xi11lN1×N1

0 0
0 x21lN2×N2

0
0 0 0




•Classical, perturbative, gravitational interaction from quantum

interactions of Matrix theory. E.G., 1-loop Matrix fluctuations

→ classical interaction of 2 gravitons in flat space.
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•1 graviton = collection of N1 D-particles.,

V
1−loop
(qu.,Matrix

= V class.grav.−grav.

(quantum theory version of Newtonian interaction)

•At quantum level, space= fuzzy: off-diagonal matrix d.o.f.
(Xi)

ab, a 6= b (instead of N positions, we have N2 d.o.f).

•Extended classical objects (Dp-branes) also from matrices.

•e.g. torus T2: X1 ∝ p, X2 ∝ q, where p, q are large-N matrices
satisfying [p, q] = 2πi/N → 0.

•→ become classical coordinates (p, q) on T2.
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2. The ABJM model

•Nonperturbative string theory should be 11d: ”M theory”

•It contains M2-branes (membranes) as fundamental objects,
M5-branes as solitons. Theory of M2-branes?

•Action of one membrane: known.

•ABJM (2008) → action on 3d worldvolume of N M2-branes, at
large distances

•Like Matrix theory, contains N × N matrices. In particular, 8
transverse coordinates become (ZI)a,b(x1, x2, t) matrices.

•However, now (ZI)a,b are U(N) × U(N̄) bifundamental fields,
and ∃ A(1)aa′

µ (x1, x2, t): U(N) adjoint and A
(2)bb′
µ (x1, x2, t): U(N̄)

adjoint → 2 types of gauge bosons (force particles).
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•Perhaps rules similar to Matrix theory?

•At least a stable solution looks like a fuzzy worldvolume, Matrix

theory-style: ”fuzzy funnel”: sphere with radius= function of x1.

•The section x1 = constant: ”fuzzy sphere” → defined by some

SU(2) generator Ji:

[Ji, Jj] = 2iεijkJk

•Extra classical coordinates emerge from membrane theory!
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•Matrix theory: derived from theory of N D-particles in flat space

(yet real spacetime + gravity: emergent)

•ABJM model: derived from theory of N M2-branes on C4/Zk
cone (cone of 2π/k deficit angle)

•U(N)× U(N̄) matrices with integer k = 1/coupling.

•Caveat: perturbation theory in N/k ⇒ need large k for most

calculations → not flat space.

9

Horatiu
Line

Horatiu
Line

Horatiu
Oval



3. Fuzzy 2-spheres vs. fuzzy 3-spheres

•M theory has M5-branes ⇒ natural guess: fuzzy 3-sphere trans-

verse to N M2’s = M5 on S3. Seems to be correct.

•We show that in fact: 2-sphere.

•Interpretation: 2-sphere = S3/Zk. Locally, S3 ' S2×S1: S3/Zk '
S2 × S1/Zk.

•Effectively, reduce to 10 dimensional string theory

•But: fuzzy space= approx. to classical space as N →∞.
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•Finite k ⇒ need finite N for perturbation in N/k.

•Yet we find that even at finite N fuzzy space looks like 2-sphere.

•Hard to see how to obtain a 3-sphere.

•New formulation of fuzzy 2-sphere in terms of fuzzy Killing

spinors= fermionic square root of classical coordinates on S2

Xi ∼ η̄I(γi)IJη
J; XiXi = 1

BREAK
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PART II

•1.BLG and ABJM

•2.Fuzzy 2-spheres and fuzzy 3-spheres

•3.Fuzzy 2-sphere structure of ABJM

•4.Action for fluctuations

•5.Interpretation and fuzzy sphere equivalence

•6.Fuzzy Killing spinors

•7.Supersymmetry and twisting the fields
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1. BLG and ABJM

•N = 8 susy BLG theory of multiple M2’s developped so that
the BPS fuzzy S3-funnel defined by (Xm ⊥ M2; S3 ∈ M5 by
XmXm = 1)

dXm

ds
= ikεmnpq[Xn, Xp, Xq]

for Xm = X̄m/
√
s, for fields living in 3-algebra

[T a, T b, T c] = fabcdT
d

defined by XM = XM
a T a; M = 1, ...,8.

•Commuting fields Xm
a satisfy

∂sX
m
a = ikεmnpqfbcdaX

n
bX

p
cX

q
d

•Only consistent solution has SO(4) invariance

fabcd = fabceTr(T
dT e) = f̃ εabcd
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•van Raamsdonk: reformulate it in terms of bifundamentals in

Lie algebra of SO(4) = SU(2)× SU(2).

XM =
1

2
XM
a τa =

1

2
(XM

4 1l + iXM
i σi)

•ABJM generalizes SU(2) × SU(2) to SU(N) × SU(N) theory

and N = 8 susy → N = 6 susy.

•A(1)
µ , A

(2)
µ for U(N)× U(N̄); bifundamentals CI = (Zα,Wα†).

•1/2 susy BPS fuzzy funnel equation

∂sZ
α = −4a(ZβZ†βZ

α − ZαZ
†
βZ

β)

Zα =
1√
8as

Gα
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•Gα gives fuzzy sphere equation

Gα = GβG
†
βG

α −GαG
†
βG

β

•Massive deformation (GRVV): preserves maximal N = 6 susy

(SU(4)-invariant susy rules), but R symmetry of L is broken to

SU(2)× SU(2).

•In split CI = (Rα, Qα), fully susy vacuum is

Qα = 0; Rα = fGα; f2 =
µk

2π
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2. Fuzzy 2-spheres and fuzzy 3-spheres

•Fuzzy 2-sphere: defined by SU(2) algebra:

[Xi, Xj] = 2iεijkXk

with the sphere condition XiXi = R2 satisfied by any N = 2j+1

dimensional representation of SU(2)

XiXi = N2 − 1 = 4j(j + 1)

•Is explicitly SU(2) = SO(3) invariant. All N ×N matrices can

be decomposed in spherical harmonics made up of Xi’s,

Ylm(Xi) = a
(i1...il)
lm (X(i1...Xil) − traces)

•Fluctuations of N × N theories around this solution can be

expanded in Ylm(Xi).

•Tends to field theory on classical S2 as N →∞.
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•Fuzzy 3-sphere: based on SO(4)-invariant Guralnik-Ramgoolam
formulation in terms of Sym(Γm)⊗r (simplified by Ramgoolam, 2002

and HN, 2004), formulate it for comparison to BLG/ABJM:

εmnpqX+
n X

−
p X

+
q = 2

(
(r+ 1)(r+ 3) + 1

r+ 2

)
X+
m

εmnpqX−
nX

+
p X

−
q = 2

(
(r+ 1)(r+ 3) + 1

r+ 2

)
X−
m

with the constraints and sphere condition

X+
mX

+
n = X−

mX
−
n = 0; X+

mX
−
m +X−

mX
+
m = N

•BLG fuzzy funnel Xm ∝ X̄m/
√
s⇒

R2X̄m = ikεmnpq[X̄n, X̄p, X̄q]

•For the commuting fields Xa
m (X̄m = Xa

mTa)

R2Xm
a = ikεmnpqfbcdaX

n
bX

p
cX

q
d

•Only for the SO(4) case, fabcd = f̃ εabcd, similar to fuzzy S3 →
a index is algebra one: analog of m index for S3.
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•More precisely, van Raamsdonk formulation:

R2Xm = −ikεmnpqXnX†pXq

•So: X+
m → Xm, X−

m → X
†
m.

•ABJM (fuzzy funnel, or massive: fuzzy sphere)

Re{Gα = GβG
†
βG

α −GαG
†
βG

β}

•For r = 1, i.e. when Xm = Γm, it matches εmnpqX+
n X

−
p X

+
q =

[...]X+
m , for r > 1 (∼ (Γm)⊗r), it doesn’t.

•So, for r > 1 (SU(N) × SU(N) with N > 2), not a (usual?)

fuzzy S3!
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3. Fuzzy 2-sphere structure of ABJM

•Prove that it is a fuzzy S2 (except for r = 1 ↔ N = 2 ↔ A4
BLG), which can also be interpreted as (most fuzzy) S3.

•Massive ABJM: Qα = 0, Rα = f(µ)Gα; ABJM funnel:Zα =
f(s)Gα.

•Explicit matrices

(G1)m,n =
√
m− 1 δm,n

(G2)m,n =
√

(N −m) δm+1,n

(G†1)m,n =
√
m− 1 δm,n

(G†2)m,n =
√

(N − n) δn+1,m

•Satisfy
∑p
p=1XpX

p = GαG
†
α = N − 1 → suggests fuzzy S3?

•BUT (first hint) G1 = G
†
1 → X2 = 0?

•Still, Gα could be transformed to different basis.
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•We have two U(2) algebras defined by

Jαβ = GαG
†
β; J̄α

β = G†αGβ

splitting into two SU(2) algebras

Ji = (σTi )αβJ
β
α; [Ji, Jj] = 2iεijkJk

J̄i = (σTi )αβJ̄α
β ⇒ [J̄i, J̄j]2iεijkJ̄k

and two U(1) generators proportional to the identity in a subspace

J ≡ Jαα = (N − 1)1lN×N
(J̄)mn = (J̄α

α)mn = Nδmn −Nδm1δn1 = N(1l(N−1)×(N−1))mn

•It would seem that we have SO(4) = SU(2)×SU(2) invariance,

as for fuzzy S3, but they are not independent!
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•Physical fluctuations: bifundamentals of U(N)×U(N̄): Gα;G†α,
transform as

JiG
α −GαJ̄i = (σ̃i)

α
βG

β

G†αJi − J̄iG
†
α = G

†
β(σ̃i)

β
α

→ only a combination of U(N) and U(N̄) → fields on a single S2.

•Example of fuzzy S3: Ishii, Ishiki, Shimasaki, Tsuchiya, 2008 → BMN

plane wave matrix model.

Xi → Ns × Nt subsets X(s,t)
i . Then SU(2) in js representations

L
(js)
i act separately on two sides, by

Li ◦X(s,t)
i = L

(js)
i X

(s,t)
i −X

(s,t)
i L

(jt)
i

•Fields of fuzzy S2 expanded in fuzzy spherical harmonics:

Ylm(Ji) =
∑

i

f
(i1...il)
lm Ji1 . . . Jil
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•Matrices (fluctuations) in adjoint of U(N) and in adjoint of
U(N̄) expand as:

A =
N−1∑

l=0

almYlm(Ji)

Ā = ā0Ē11 +
N−2∑

l=0

ālmYlm(J̄i) +
N∑

k=2

bkg
−−
1k +

N∑

k=2

b̄kg
−−
k1

where

Ē11 = |e−1 >< e−1 |
Ē1k = |e−1 〉〈e−k | ≡ g−−1k
Ēk1 = |e−k 〉〈e−1 | ≡ g−−k1

Ylm(J̄i) =
∑

i

f
(i1...il)
lm J̄i1 . . . J̄il

•Fluctuating bifundamental matrices (e.g. δRα) expand as

rα = rαβG
β +

N∑

k=1

tαk Êk1 = rGα + sαβG
β + Tα

and r, sαβ, t
α
k are expanded in Ylm(Ji)

•Note that we could have expanded in Ylm(J̄i)!
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5. Action for fluctuations

•ABJM → massive µ deformation changes the potential in CI =
(Rα, Qα) and gives a mass µ to the fermions.

•Fluctuations

Rα = fGα + rα , R†α = fG†α + r†α
Qα̇ = qα̇ , Q

†
α̇ = q

†
α̇

Aµ = Aµ , ψ†I = ψ†I

•At finite N , [Ji, .] acts as a ”fuzzy derivative” operator (∼ ∂i)
acting on Ylm(Ji) and the ”fuzzy Laplacean” is [Ji, [Ji, .]].
•Fermions: subtle. We could decompose

ψα = Gαψ+GβŨαβ = ψ̃Gα + Uα
βGβ

χα̇ = χα̇βG
β; (χα̇α)

† = χα̇α

where ψ,Uαβ, χαα̇ are expanded in Ylm(Ji), or keep ψα, χα̇ as they
are.
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•The bosonic potential gives at finite N

V = V r2

6 + V s2

6 + V ⊥
6 + V r-s

6 + V r-s-q
2 + V r-s

4

= −4π2

3

f4

k2

[
3(N − 4)Tr ([Ji, r][Ji, r])− 45(N − 1)Tr (r2)

]

−4π2

3

f4

k2

[3
4
(N − 1)Tr (sisi)− 3

4
(N + 1)Tr ([Ji, si]

2) +
3

4
(4N − 1)iεijkTr (siJksk)

−3

4
NTr (si2si) +

3

8
iεijkTr (Jisj2sk + siJj2sk)

]
+

4π2f4

3k2
6Tr

(
Lγα(qβ̇)†Lαγ(qβ̇)

)

−4π2

3

f4

k2

[
− 9

4
Tr (r(2siJi + Ji2si)) +

3

4
Tr (r2(Jisi + siJi))− 9

2
Tr (r(siJi + Jisi))

]

−µ2
[1
4
(N − 1)Tr (sisi) + (N − 1)Tr (r2) +

1

2
Tr (r(siJi + Jisi))− 1

4
iεijkTr (siJjsk)

+qα̇q†α̇
]
+

8πµf2

k

[
− iεijkTr (rJisjJk) +

1

2
Tr (r(siJi + Jisi))

]

•The fermions give at finite N

iµ
∫

Tr (σ̃i)
α
β[ψ

†βJi − J̄iψ
†β]ψα −

∫
Tr [ψ†αγµ∂µψα + iµψ†αψα]

+
µ

2
εjikTr

[
(σ̃k)

α
βJjχ

δ̇βJiχδ̇α

]
+

∫
Tr [−χ†α̇γµDµχα̇ + iµχ†α̇χα̇]

24



Classical S2 in large N limit

•We describe it in terms of Ji, but we could use J̄i as well.

(Ji)
2 = N2 − 1; (J̄i)

2 = (N − 1)2 − 1

•The classical coordinates differ at subleading order

xi =
Ji√

N2 − 1
; x̄i =

J̄i√
(N − 1)2 − 1

•Then

x2i = 1; [xi, xj] =
2i√

N2 − 1
εijkxk → 0

1

N
Tr →

∫
d2σ

√
ĥ

25
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•Selected bosonic objects in the Lagrangean

[Ji, · ] = −2iεijkxj∂k = −2iKi = −2iKa
i ∂a

2 = [Ji, [Ji, ·]] = −4
1√
ĥ
∂a(

√
ĥ ∂a) ≡ −42̂

Ka
iK

b
i = hab

εijkxiK
a
jK

b
k = ωab =

εab

sin θ
•We can also define the adjoint action of Ki on Gα by

−2iKa
i ∂a(G

α) = −2iKi(G
α) ≡ N(xiG

α −Gαx̄i) = [(σ̃i)
α
β − xiδ

α
β ]G

β

such that Ki(xj) = εijkxk as we need, and obtain

∂a(G
α) =

1

−2i
habK

b
i (σ̃i)

α
βG

β

which is a fermionic object, to be defined later.
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•In the parallel scalar fluctuation rα = rGα+sαβG
β, si = (σi)

α
βs
β
α

is decomposed in the classical limit as

si = Ka
i Aa + xiφ

•But then at large N (!), we have

rα = rGα + sαβG
β ⇒ ...→ Ka

i Aa
(σ̃i)

α
β

2
Gβ +

2r+ φ

2
Gα

•At finite N , the expansion of si (thus of rα) is not clear: ∃
inconsistencies, though they could be ∼ gauge transformations.

•The transverse scalars are decomposed as

qα̇ = Qα̇αG
α =

N−1∑

l=0

(Qα̇α)lmYlm(Ji)G
α

27
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•Higgs mechanism for CS-Higgs system

A
(1,2) (ij)
µ (x) → A(1,2)(x;σ)

•Define linear combinations of the U(1) gauge fields on the S2:

Aµ =
1

2
(A(1)

µ + A(2)
µ )

Bµ =
1

2
(A(1)

µ −A(2)
µ )

•Then

SCS → N
k

2π

∫
d3x d2σ

√
ĥ
(
εµνρBµFνρ

)

−
∫
d3x Tr

(
DµC

†
ID

µCI
)
→ f2N2

∫
d3x d2σ

√
ĥ
( 1

N2
A(1)
µ 2̂A(2)µ − (A(1)

µ −A(2)
µ )2

)

•Subtlety: 1/N2 correction kept

GαYlm(x̄i)G
†
α = (N − 1)Ylm(xi)−

l(l+ 1)

2N
Ylm(xi) +O

(
1

N2

)

•Although a priori different whether we use xi or x̄i → same
result for 1/N2 corrections to action.
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•Then Bµ is auxiliary and subleading

Bµ =
1

8f2N

k

2π
εµνλFνλ

→ reason why we needed to keep 1/N2 terms.
∫
d3x d2σ

√
ĥ

(
N
k

2π
εµνρBµFνρ − 4f2N2BµB

µ + f2Aµ2̂A
µ − f2Bµ2̂B

µ
)

=

∫
d3xd2σ

√
ĥ

(
− f2∂aAµ∂aA

µ −
(
k

2π

)2 1

8f2
F µνFµν

)

•Final action

Sphys =
1

g2YM

∫
d3xd2σ

√
h

[
− 1

4
FABF

AB − 1

2
∂AΦ∂

AΦ− µ2

2
Φ2 − ∂Mq†α̇∂Mq

α̇ +
µ

2
ωabFabΦ

+
(1

2
Ῡα̇D̃5Υα̇ +

i

2
µῩα̇Υα̇ + h.c.

)
− (ψS)D̃5(S

−1ψ†) +
i

2
µ(ψS)(S−1ψ†)

]
,

where S is a fixed rotation matrix for spinors and Υα
α̇ = (P−S−1χα̇)

α.
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5. Interpretation and fuzzy sphere equivalence

•Fuzzy BPS funnel of pure ABJM → same unrescaled bosonic
action, with

Rα = f(s)Gα; f(s) =

√
k

4πs

•Thus, only replace µ↔ 1/(2s).

•M5 compactified to D4 due to large k (large N : classical, but
N/k fixed)

•Radius of sphere is

R2
ph =

2

N
Tr (XIX

†
I) = 8π2f2Nl3p

•Energy in M5/D4 picture: S3/Zk vs. S2:

E =
T2
2

2π

∫ 2π2

k
R3

phdRphdx1 = T4

∫
4π

(
Rph

2

)2
dRphdx1

30



•Indeed,

S3/Zk
k→∞→ S2

R/2 × S1
R/k;Z

i → Zie2πi/k ' Zi + 2πiZi/k

•If Z1 = v+ i0; Z2,3,4 = 0, then X2 has radius v/k.

•Zk reduces k times the S1 in the S3 : S2 over S1 Hopf fibration.

•Classical Hopf fibration:

xi = (σTi )αβZ
βZ∗α ⇒ xixi = 1

•Note that the S1 is: Zα → eiθZα ⇒ this is in fact a map between

S2 and CP1.

CP1 : {Zα ↔ λZα} ⇔ {Zα ↔ eiθZα,
∑
α
|Zα|2 = 1}

31



Fuzzy sphere equivalence

•Classically, we saw that the Hopf fibration

xi = (σ̃i)
α
βg
βg†α; x̄i = (σ̃i)

α
βg
†
αg
β

means that if we define the S3 coordinates gα modulo a U(1)

phase (the Hopf fiber), the resulting g̃α are some coordinates on

S2

•Fuzzy version: Gα = UG̃α or Gα = ˆ̃GαÛ , with (U, Û) unitary

→ eiα(x). Then G̃α satisfy the same GRVV algebra

−G̃α = G̃βG̃
†
βG̃

α − G̃αG̃
†
βG̃

β

→ its representations should be ⇔ SU(2).
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•Irreps: Indeed, the Ji → matrices of the general |jm > rep. of

SU(2) and J̄i → |j − 1/2,m > rep. of SU(2), and

J = (N − 1)1lN×N ; J̄ = N1l(N−1)×(N−1)

•Reducible: Casimir JiJi: is diagonal and

J = diag(JN1
, JN2

, ...); J̄ = diag(J̄N1
, J̄N2

, ...)

•GRVV algebra ⇒ SU(2) algebras in general.

•Reversely, in the classical limit

gα =

(
g1

g2

)
=

eiφ√
2(1 + x3)

(
1 + x3
x1 − ix2

)
= eiφg̃α

33
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•On the fuzzy sphere

Gα =

(
G1

G2

)
=

(
J + J3
J1 − iJ2

)
T−1

2
UN×N̄ = G̃αUN×N

Gα =

(
G1

G2

)
= ÛN×N̄

T̃−1

2

(
J̄ + J̄3
J̄1 − iJ̄2

)
= Û ˜̂Gα

and we define V+
N → V −N−1 ⊕ V −1 and J = (N − 1)1lN×N , J̄ =

N(1− E11) 1lN×N for irreps and similar for reducible reps.

•Fuzzy superalgebra

Ji =

(
Ji 0
0 J̄i

)
and Jα =

(
0

√
NG̃α

−√NG̃†α 0

)

[Ji,Jj] = 2iεijkJk
[Ji,Jα] = (σ̃i)αβJ

β

{Jα,Jβ} = −(σ̃i)αβJi = −(iσ̃2σ̃i)αβJi

is OSp(1|2) for the fuzzy supersphere: trivial, i.e. ⇔ bosonic
supersphere.
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6. Fuzzy Killing spinors

•Classical objects on S3 modulo a phase

g̃α =
1√

2(1 + x3)

(
1 + x3
x1 − ix2

)

→ (Majorana) spinors of the SO(2)l.L. → related to Killing spinor

•Killing spinor on Sn satisfy

Dµη(x) = ± i
2
mγµη(x)

satisfy orthonormality, completeness and modified Majorana
spinor conditions
•In terms of Killing spinors

xi = (σi)
I
J(η

I)†γ3ηJ = (σ̃i)
I
J

(√
2P+η

I
)†(√

2P+η
J

)

suggesting the identification

G̃α√
N
≡ g̃α ↔ g̃I ≡

√
2P+η

I
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•On S2, ∃ matrices Sαβ that takes us between spherical and
Euclidean spinors on S2, giving in particular

(SΓ3S
−1)αβ = −xi(σ̃i)αβ; (SΓaS

−1)αβ = −habKb
i (σ̃i)

α
β

•One gets the Killing spinor

1√
2
(S−1)αβε

βI = ηαI+

•Comparing ∂ag̃α and ∂a(
√

2P+η
I), we see an extra term

∂a(
√

2P+η
I) = − i

2
(SΓaS

−1)IJ(
√

2P+η
J) + T̃a(

√
2P+η

I)

since g̃α and ηI are only identified up to a phase.

•Other Hopf fibrations suggests generalizations to S7 → S4,
S15 → S8, S7 → CP3, but details of fuzzy constructions need
to be worked out.
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7. Supersymmetry and twisting the fields

•G̃α → fuzzy Killing spinors (fermionic) → redefining the fields
by G̃α amounts to twisting the fields.

•Fuzzy spinorial spherical harmonics can be obtained from G̃α

OR
•(usual): spinorial spherical harmonics Ξ±αlm arise from coeffi-
cients of exp. in usual spherical harmonics.

•Now, qα̇ and ψα expansion still contains G̃α.

•Large N limit of susy rules is subtle → simpler to twist:

qα̇ = Qα̇αG̃
α

ψα = ψ̃G̃α + Uα
βG̃β Uα

β =
1

2
Ui(σ̃i)α

β

Ui = Ka
i ga + ψ̂xi
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•To preserve susy on D-branes with curved worldvolume ⇒ need
to twist D-brane fields: On S2, embed the S2 spin connection
(SO(2) = U(1) valued) into R-symmetry ⇒ max N = 1 after
dimensional reduction.

•3d N = 6 theory at large N ⇒ 5d U(1) theory on ' classical S2.
After dim. red. back to 3d, at most N = 1. Actually, N = 0.

•Action for qα̇ and ψα becomes after twisting

N2
∫
d3xd2σ

√
ĥ

[
1

2
Ξ̄α̇(−i2µ∇̂S2)2Ξα̇ −

1

2
∂µΞ̄

α̇∂µΞα̇ − 3µ2Ξ̄α̇Ξα̇

]

+N2
∫
d2σ

√
ĥ[

1

4
Λ̄/∂Λ +

1

4
ḡa/∂g

a +
iµ

2
ω̂abḠabΛ + iµΛ̄Λ]

where Λ ≡ 2(ψ̃ − 1
2ψ̂), and Ξ is the modified Majorana spinor

Ξα̇
α ≡ (Qα̇SP+)α + i(Qα̇SP−) = (Cα̇, iDα̇)

•”Fermonic Higgs mechanism”: ψ̃+ ψ̂/2 disappears.
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Conclusions

•Although the hope of BLG/ABJM was to see M-theory, and
obtain M2-M5 systems on a fuzzy S3, the solution is a fuzzy S2

•Large N classical limit and M5 theory perturbative treatment in
N/k effectively force large k, reducing S3/Zk → S2.

•Two potential SU(2)’s act in tandem on ABJM fields, giving
an SO(3) = SU(2) invariance at finite N ⇒ fuzzy S2,

•Fuzzy S2 construction in terms of Gα is ⇔ SU(2) construction,
and Gα is a fuzzy Killing spinor.

•The susy action of D4 on S2 is obtained.

•Twisting the fields simplifies the analysis. Gα relates twisted to
untwisted fields.
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