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Motivation

• Studies of large-scale distribution and evolution of galaxies and (distant)
type-Ia supernovae (Perlmutter at al, Schmidt et al, 1998), have led to a discovery
of DARK MATTER and DARK ENERGY in the present Universe, with

ρtotal = ρvisible + ρdark matter + ρdark energy

in the proportion 4% + 22% + 74% = 100%, respectively.

• The DE is needed to balance the energy budget of the present Universe
and explain the accelerated rate of its expansion. The DE works against gravity
to boost the expansion of the Universe. A small positive cosmological constant
Λ > 0 may account for the present Universe accelerated expansion, due to the
(experimentally dictated) DE-equation of state with w = P/ρ = −0.97 ± 0.07

• The DM plays the key role in the formation of structure in our Universe and
holds the clusters and galaxies together. It does not interact electromagnetically
but it does interact gravitationally. The DM should be Cold and non-baryonic.
Possible candidates for the massive CDM particle include axion, gravitino and
neutralino (= WIMP in MSSM).
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Experimental evidence

The experimental evidence for DM and DE comes from at least 3 independent
sources:

• type Ia supernovae observations (S. Perlmutter, UC Berkeley, and B. Schmidt,
ANU Canberra, 1998),

• precision measurements of CMB temperature fluctuations (BOOMERANG,
MAXIMA, WMAP, 2000 and 2003)

• baryonic acoustic oscillations (Sloan Digital Skies Survey, 2005)

see Turner map (well known).
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DE and DM in Einstein equations

Rµν −
1

2
gµνR+Λgµν = 8π GN

(

T visible
µν +TDM

µν

)

or

Gµν ≡ Rµν −
1

2
gµνR = 8π GN

(

T visible
µν +TDM

µν +TDE
µν

)

• The present evolution of the Universe is phenomenologically well (and ac-
curately) described by the standard Λ-CDM scenario within Einstein theory,

but

• exact nature of both DE and DM is unknown,
• an underying microscopic derivation is absent.
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Modified Gravity and Dynamical Dark Energy

The late time acceleration of our Universe can be interpreted in two qualitatively
different ways: either as

(i) a manifestation of some (new) DE component (dynamical or not), as above
or as

(ii) an indication of the breakdown of Einstein gravity at cosmological distances.

The known (popular) modifications of Einstein gravity include
• adding higher-order curvature invariants into the action,
• adding extra fields with non-minimal coupling to gravity,
• adding large extra dimensions for gravity.

Dynamical DE = quintessence, ie. replacing a cosmological constant Λ by a scalar
field (or several scalars). It leads to a time- and space-dependent vacuum energy
density in cosmology, which is desirable for describing a more accurate and com-
plete history of our Universe, including inflation, etc. (perhaps, with the vanishing
cosmological constant!)
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Major Challenges

DE and DM are not the only challenges facing modern cosmology. In addition,
one has (the ‘old’ ones) to
• resolve the classical cosmological singularity (Big Bang) in the Einstein-

Friedmann Universe, which is accompanied by infinities in ρ and R,
• construct a consistent fundamental theory of Quantum Gravity,
• find the viable inflationary mechanism for the early Universe,
• explain the ‘observed’ small value of the cosmological constant Λ,

in a single package with a fundamental QFT of elementary particles beyond SM.

We would like to keep the most fundamental features of General Relativity such
as (i) its diffeomorphism invariance (relativity principle), and (ii) its universality
(equivalence principle), cf. Horava-Lifshitz gravity.
However, there is a priori no reason to restrict the gravitational Lagrangian to the
EH-term linear in curvature, unless it does not contradict an experiment. The first
attempt of this kind was as early as 1921 (Weyl). The main challenge here: there
exist too many possibilities beyond EH.
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Some prejudices

There is no doubt that any theory of Quantum Gravity is going to include the
higher-order curvature terms in the UV. Those terms are expected to be relevant
near curvature singularities. It may be possible that some higher-derivative gravity,
subject to suitable constraints, could be the effective action to quantized theory of
gravity (Sakharov, 1967), cf. String Theory.
• Objection #1: “all the higher-derivative field theories, including the higher-

derivative gravity theories, have ghosts”, because of Ostrogradski theorem (1850).
However, the theorem does not directly apply to the degenerate (read: gauge)
field theories (Woodard, 2007), and, in fact, a higher-derivative gravity does not
always have ghosts (see below for some explicit examples).
• Objection #2: “all the higher-order curvature terms are suppressed by the

inverse powers ofMPl and thus are irrelevant in IR”. However, the effective Planck
scale may be brought down to TeV scale with large extra dimensions (A-HDD),
there may be warp (RS) factors (eg., generated by fluxes in string theory) in a
higher-dimensional metric, and there may be singular perturbations in unstable
cases (see the next slide:)
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Lesson from Navier-Stokes hydrodynamics

The Navier-Stokes differential equations describe classical dynamics of a non-
ideal fluid with viscosity,

∂~v

∂t
+ (~v · ~∇)~v = −1

ρ
~∇P+ν∆~v

The higher derivatives enter this equation with the kinematic viscosity parameter
ν. The singular perturbation problem associated with the Navier-Stokes equation
is well known both physically and mathematically: namely, a radically different be-
haviour of the solutions at late times, even for arbitrary small values ν of viscosity.
The simplest mathematical example is given by the equation

−ε ••
y+

•
y +y = 0

When ε = 0, one gets exponentially decaying solutions y ∝ e−t, whereas for
small ε > 0, the general solution grows exponentially with time as et/ε. And it is
not the manifestation of bad modelling or unphysical boundary conditions! One
may now imagine the late time (present) Universe acceleration driven by quantum
modifications of Einstein equations!
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Some lessons from superstrings

• Theory of superstrings is the leading candidate for a unified Theory of all
fundamental interactions, it offers a consistent perturbative Quantum Gravity, and
is capable to generate the SM of elementary particles and the cosmological SM.
A fully non-perturbative superstring theory (or M-theory) is unknown. The pertur-
bative superstrings are defined on-shell (in the form of quantum amplitudes), and
they imply infinitely many higher-order curvature corrections to Einstein equations,
to all orders in Regge slope parameter α′ and string coupling gs (in 10 space-time
dimensions). Off-shell quantum corrections are largely unknown and ambiguous.
• String theory may resolve the Big-Bang singularity (see eg., pre-Big-Bang

scenario of Gasperini-Vaneziano, string gas cosmology of Brandenberger-Vafa).
String theory put limits on the maximal (Hagedorn) temperature T ≤ TH with
TH = 1/π(8α′)1/2 (for type-II strings) in the (free CFT, or Matsubara) string par-
tition function (Atick, Witten, 1988), due to the infinite tower of massive states in
the string spectrum.
• String theory also put limits on the maximal values of electric and magnetic

fields in Born-Infeld electrodynamics,
∣

∣

∣

~E
∣

∣

∣ ≤ 1/b and
∣

∣

∣

~H
∣

∣

∣ ≤ 1/b, with b = 2πα′.
• String theory gives rise to UV/IR mixing via dualities and non-commutativity.

It is natural to expect similar features in the string-generated gravity.
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Effective higher-derivative supergravity from M-theory

• M-theory is a non-perturbative upgrade of superstrings (Witten, 1995).
(i) M-theory low-energy effective action is unique=supergravity in 11 dimensions;
(ii) the next quantum gravitational corrections to the 11-dimensional supergravity
from M-theory are all quartic in the curvature;
(iii) Superstring/M-theory has no free parameters. After a compactification, there
are many effective coupling constants given by the moduli VEVs.
The quartic bosonic terms of the M-theory corrected 11-dim supergravity are

S11 = − 1

2κ2
11

∫

d11x
√
−g

[

R− 1

2 · 4!
F2 − 1

6 · 3! · (4!)2
ε11CFF

]

− T2

(2π)4 · 32 · 213

∫

d11x
√
−g

(

J − 1

2
E8

)

+ T2

∫

C ∧X8

where κ11 is the gravitational constant (in 11 dims), T2 is the M2-brane tension,

T2 =

(

2π2

κ2
11

)1/3
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Our notation in 11 (spacetime) dimensions

C is a 3-form gauge field of the 11-dimensional supergravity, and F = dC is
its four-form field strength, R is the gravitational scalar curvature, ε11 stands for
the 11-dimensional Levi-Civita symbol in the Chern-Simons-like coupling, while
(J,E8, X8) are the certain quartic polynomials in the 11-dimensional full (Weyl)
curvature:

J = 3 · 28
(

RmijnRpijqRm
rspRqrsn +

1

2
RmnijRpqijRm

rspRqrsn

)

+O(Rmn)

the E8 is the 11-dimensional extension of the 8-dimensional Euler density,

E8 =
1

3!
εabcm1n1...m4n4εabcm′

1n
′
1...m

′
4n

′
4
Rm

′
1n

′
1m1n1

· · ·Rm
′
4n

′
4m4n4

and the X8 is the 8-form

X8 =
1

192 · (2π2)4

[

trR4 − 1

4
(trR2)2

]

• The J-contribution is defined modulo Ricci-dependent terms by its very
derivation (on-shell). Let’s consider much simpler gravity theories [// Break!]
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FLRW metric and cosmological acceleration

• The main Cosmological Principle of a spatially homogeneous and isotropic
(1 + 3)-dimensional universe (at large scales) gives rise to the FLRW metric

ds2FLRW = dt2 − a2(t)

[

dr2

1 − kr2
+ r2dΩ2

]

where the function a(t) is known as the scale factor in ‘cosmic’ (co-moving) co-
ordinates (t, r, θ, φ), and k is the FLRW topology index, k = (−1,0,+1). The
FLRW metric (1) admits a 6-dimensional isometry groupG that is either SO(1,3),
E(3) or SO(4), acting on the orbits G/SO(3), with the spatial 3-dimensional
sections H3, E3 or S3, respectively. Important notice: Weyl tensor CFLRW

ijkl = 0.
• Present Universe acceleration and early Universe inflation are defined by

••
a (t) > 0 , or equivalently ,

d

dt

(

H−1

a

)

< 0

where H =
•
a /a is Hubble ‘constant’. The amount of inflation (# e-foldings) is

given by

N = ln
a(tend)

a(tstart)
=
∫ tend

tstart
H dt
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R+R2 gravity toy-model (well studied)

In 4 dimensions, there are only 3 independent quadratic curvature invariants:
RµνλρRµνλρ, R

µνRµν and R2. In addition,
∫

d4x
√
−g

(

RµνλρRµνλρ − 4RµνRµν +R2
)

is topological for any metric, while
∫

d4x
√
−g

(

3RµνRµν −R2
)

is also topological for any FLRW metric. Hence, as regards the FLRW metrics,
the most general quadratic curvature action is given by (8πGN = 1)

S = −1

2

∫

d4x
√
−g

(

R− 2Λ + αR2
)

There is the exact inflationary dS solution (with Λ = 0) to this model: a(t) ∝ eHt

and H2 = (24α)−1. It is stable (attractor!) when α > 0.

The simplest (R+R2)-gravity toy-model is not phenomenologically viable for the
present Universe (Navarro, van Acoyelen, 2006), so let’s now discuss a generic
f(R) gravity, in the model-independent way.
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f(R) gravity theories

An f(R) gravity is specified by the action Sf = − 1
2κ2

∫

d4x f(R) where R

is the Ricci scalar curvature of a metric gµν(x), and κ is the gravitational coupling
constant, κ2 = 8πGN . A matter action Sm, minimally coupled to the metric, is
supposed to be added to Sf . We use the ‘mostly minus’ spacetime signature.

The gravitational equations of motion derived from the action Sf + Sm read

f ′(R)Rµν −
1

2
f(R)gµν + gµν2f

′(R) −∇µ∇νf
′(R) = κ2Tµν

where the primes denote differentiation. Those equations of motion are the 4th-
order differential equations with respect to the metric (ie. with the higher deriva-
tives). Taking the trace of the equation above yields

2f
′(R) +

1
3f

′(R)R− 2
3f(R) = κ2T

Hence, in contrast to General Relativity having f ′(R) = const., in f(R) gravity
the field φ = f ′(R) is dynamical and represents an independent propagating
(scalar) degree of freedom. In terms of the fields (gµν, φ) the equations of motion
are of the 2nd order in the derivatives.
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f(R) gravity and present Universe acceleration

The equations of motion in the f(R)-FLRW cosmology (generalizing Friedmann
and Raychaudhuri equations, respectively) are given by

H2 =
κ2

3f ′
ρR and

••
a

a
= − κ2

2f ′
(ρR + 3PR)

with the energy density ρR and pressure PR are due to the curvature modification,

ρR =
Rf ′ − f

2
− 3H

•
R f ′′ , PR = 2H

•
R f ′′+

••
R f ′′ +

1

2

(

f − f ′R
)

+ f ′′′
•
R 2

The ρR and PR identically vanish in Einstein gravity, where f(R) = R.

It is not diffiicult to choose the function f(R) in order to get
••
a> 0, with a desired

equation of state for DE. Actually, it is possible a reconstruction of the function

f(R) from any desired scale factor (history) a(t), withR = −6

[

••
a
a +

( •
a
a

)2

+ k
a2

]

15



f(R) gravity = quintessence

• The easiest way to make a connection between f(R) gravity and scalar-
tensor gravity is to apply a Legendre-Weyl transform. The action Sf is classically
equivalent to

SA =
−1

2κ2

∫

d4x
√
−g {AR− V (A)}

where the real scalar A(x) is related to the scalar curvature R by the Legendre
transformation

R = V ′(A) and f(R) = RA(R) − V (A(R))

A Weyl transformation of the metric gµν(x) → exp

[

2κφ(x)√
6

]

gµν(x) with an arbi-

trary field parameter φ(x) yields

√
−g R →

√
−g exp

[

2κφ(x)√
6

]{

R−
√

6

−g∂µ
(√

−ggµν∂νφ
)

κ− κ2gµν∂µφ∂νφ

}
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Hence, when choosing A(κφ) = exp

[

−2κφ(x)√
6

]

and ignoring the total derivative,

we can rewrite the above action to the form

Sφ =

∫

d4x
√
−g

{

−R
2κ2

+
1

2
gµν∂µφ∂νφ+

1

2κ2
exp

[

4κφ(x)√
6

]

V (A(κφ))

}

in terms of the physical (and canonically normalized) scalar field φ(x).
• Applicability of the Legendre-Weyl transform implies the invertibility of the

function f ′(R) at the reference point R0 ie. both f ′(R0) and f ′′(R0) 6= 0. The
R0 = const. is a solution to the pure f(R)-gravity provided that f ′(R0)R0 =

2f(R0). When considering small perturbations, R = R0+Z, and linearizing the
equations of motion with respect to Z, one gets

(

2 +m2
)

Z = 0 with m2 =
1

3

[

R0 − f ′(R0)/f
′′(R0)

]

Hence, the R0-background is stable when m2 > 0 (Starobinsky,1988).
• After the Weyl transform, the gravity-coupled matter fields in Sm become

conformally coupled to φ. Hence, some stabilization mechanism is needed for φ.
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Local tests of f(R) gravity

• Any modification of Einstein gravity has to be consistent with local physics
constraints, eg., those coming from our Solar System. There are many choices of
f(R) that fit all known experimental data. For instance, the function

f(R) = R+ λR0











1
(

1 + R2

R2
0

)n − 1











with properly chosen parameters R0 ∼ H2
0 , λ > 0 and n > 0, may fit all known

Solar System observations (Starobinsky et al, 2009)
• To recover Einstein gravity for stellar systems, the extra scalar should ef-

fectively decouple when one gets close to a star — it is known as the Chameleon
effect (Khoury, Veltman, 2003). The relevant distance from the star of mass M
(inside it the scalar gets hidded or screened) is given by the Vainstein radius

RV =
(

GNM/H2
0

)1/3
. The mass of the scalar depends upon the background, it

should be at least of 103H0, in order to have the Chameleon effect, and it should
also meet the experimental bound on the (absence of) 5th force (fine-tuning).
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F(R) Supergravity

• Supersymmetry is the symmetry between bosons and fermions, it is well
motivated in particle physics beyond the SM, and it is also needed for the consis-
tency of strings. Supergravity is the theory of local supersymmetry. Supergravity
is also the only known consistent route to couple spin-3/2 particles (gravitinos).
• Most of studies of superstring- and brane- cosmology are based on their

effective description in the 4-dimensional N = 1 supergravity.
• AnN = 1 locally supersymmetric generalization of f(R) gravity is possible

(Gates Jr., SVK, 2009). It is non-trivial because, despite of the apparent presence
of the higher derivatives, there should be no ghosts, and the auxiliary freedom
(Gates Jr., 1996) is to be preserved. The modified supergravity action turns out to
be classically equivalent to the standard N = 1 Poincaré supergravity coupled to
a dynamical chiral superfield whose Kähler potential and superpotential are dic-
tated by a single holomorphic function (= super-quintessence).
A possible connection to the Loop Quantum Gravity was investigated by Gates Jr.,
N. Yunes and SVK, in Phys. Rev. D80 (2009) 065003, arXiv:0906.4978 [hep-th].
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Basic facts about 4-dim, N = 1 supergravity in superspace

A concise and manifestly supersymmetric description of supergravity is given by
Superspace. We use here the natural units c = ~ = κ = 1.

The chiral superspace density (in the supersymmetric gauge-fixed form) reads

E(x, θ) = e(x)
[

1 − 2iθσaψ̄
a(x) + θ2B(x)

]

, (1)

where e =
√

−det gµν, gµν is a spacetime metric, ψaα = eaµψ
µ
α is a chiral grav-

itino, B = S − iP is the complex scalar auxiliary field. We use the lower case
middle greek letters µ, ν, . . . = 0,1,2,3 for curved spacetime vector indices, the
lower case early latin letters a, b, . . . = 0,1,2,3 for flat (target) space vector
indices, and the lower case early greek letters α, β, . . . = 1,2 for chiral spinor
indices. Supergravity 6= curved Superspace (off-shell SUSY constraints needed)!

The solution of the superspace Bianchi identitiies and the constraints defining the
N = 1 Poincaré-type minimal supergravity results in only three covariant tensor
superfields R, Ga and Wαβγ, subject to the off-shell relations:
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Ga = Ḡa , Wαβγ = W(αβγ) , ∇̄ •
α
R = ∇̄ •

α
Wαβγ = 0 , (2)

and

∇̄
•
αG

α
•
α

= ∇αR , ∇γWαβγ = i
2∇α

•
αG

β
•
α

+ i
2∇β

•
αG

α
•
α
, (3)

where (∇α, ∇̄ •
α
.∇

α
•
α
) represent the curved superspace N = 1 supercovariant

derivatives, and bars denote complex conjugation.

The covariantly chiral complex scalar superfield R has the scalar curvature R as
the coefficient at its θ2 term, the real vector superfield G

α
•
α

has the traceless Ricci

tensor, Rµν + Rνµ − 1
2gµνR, as the coefficient at its θσaθ̄ term, whereas the

covariantly chiral, complex, totally symmetric, fermionic superfield Wαβγ has the
self-dual part of the Weyl tensorCαβγδ as the coefficient at its linear θδ-dependent
term. A generic higher-derivative supergravity Lagrangian (e.g., representing the
supergravitational part of the superstring effective action) is given by

L = L(R,G,W, . . .) (4)

where the dots stand for arbitrary supercovariant derivatives of the superfields.
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New proposal: F(R) supergravity

Let’s concentrate on the particular sector of the generic higher-derivative super-
gravity (4), by ignoring the tensor superfields Wαβγ and G

α
•
α

, as well as the deriva-
tives of the scalar superfield R:

SF =

∫

d4xd2θ EF(R) + H.c. (5)

with a holomorphic function F(R). Besides manifest local N = 1 supersym-
metry, the action (5) also possess the auxiliary freedom, since the auxiliary field
B does not propagate. It distinguishes the action (5) from other possible trunca-
tions of eq. (4). The action (5) gives rise to the spacetime torsion generated by
gravitino, while its bosonic terms have the form

Sf =
∫

d4x
√
−g f(R) (6)

Hence, eq. (5) can also be considered as a locally N = 1 supersymmetric exten-
sion of the f(R)-type modified gravity, often used to ‘explain’ the present Universe
acceleration.
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Getting fields from superfields

Applying the superspace chiral density formula
∫

d4xd2θ EL =

∫

d4x e {Llast +BLfirst} (7)

to our action (5) yields its bosonic part as

F ′(X̄)
[

1
3R∗ + 4X̄X

]

+ 3XF(X̄) + H.c. (8)

where primes denote differentiation. We have used the notation

X = 1
3B , R∗ = R+

i

2
εabcdRabcd (9)

Varying eq. (8) with respect to the auxiliary fields X and X̄ gives rise to merely
algebraic equation on the auxiliary fields,

3F̄ +X(4F̄ ′ + 7F ′) + 4X̄XF ′′ + 1
3F

′′R∗ = 0 (10)

• Let’s first consider the simple special case when

F ′′ = 0 or, equivalently, F(R) = f0 + f1R (11)
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with some complex constants f0 and f1, where Ref1 < 0. Then eq. (10) is easily
solved as

X̄ =
−3(f0 + f1R∗)

4f1 + 7f̄1
(12)

Substituting the solution (12) back into the Lagrangian (8) yields

2
3(Ref1)R∗ −

9 |f0|2
14(Ref1)

≡ − 1

2κ2
R∗ − Λ = − 1

2κ2
R(Γ + T) − Λ (13)

where we have reintroduced the standard gravitational constant κ0 = M−1
Planck

in terms of the (reduced) Planck mass, the standard supergravity connection (i.e.
Christoffel symbols Γ plus torsion T ), and a cosmological constant Λ,

κ =

√

3

4 |Ref1|
, Λ =

−9 |f0|2
14 |Ref1|

(14)

Hence, the cosmological constant in the standard supergravity is always negative
or zero. (A large negative Λ forces a universe to collapse quickly.) It is yet another
reason to go to the modified supergravity having F ′′ 6= 0.
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Supersymmetric Legendre-Weyl-Kähler transformation

The superfield action (5) is classically equivalent to

SV =

∫

d4xd2θ E [ZR− V (Z)] + H.c. (15)

with the covariantly chiral superfield Z as the Lagrange multiplier. Varying the
action (15) with respect to Z gives back the original action (5) provided that

F(R) = RZ(R) − V (Z(R)) (16)

where the function Z(R) is defined by inverting the function

R = V ′(Z) (17)

Equations (16) and (17) define the superfield Legendre transform, and imply

F ′(R) = Z(R) and F ′′(R) = Z ′(R) =
1

V ′′(Z(R))
(18)

where V ′′ = d2V/dZ2. The second formula (18) is the duality relation between
the supergravitational function F and the chiral superpotential V .
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A super-Weyl transform of the acton (15) can be done entirely in superspace. In
terms of components, the super-Weyl transform amounts to a Weyl transform, a
chiral rotation and a (superconformal) S-supersymmetry transformation (Howe).
The chiral density superfield E is a chiral compensator of the super-Weyl transfor-
mations,

E → e3ΦE , (19)

whose parameter Φ is an arbitrary covariantly chiral superfield, ∇̄ •
α
Φ = 0. Under

the transformation (19) the covariantly chiral superfield R transforms as

R → e−2Φ
(

R− 1
4∇̄

2
)

eΦ̄ . (20)

The super-Weyl chiral superfield parameter Φ can be traded for the chiral La-
grange multiplier Z by using a generic gauge condition

Z = Z(Φ) (21)

where Z(Φ) is a holomorphic function of Φ. It results in the equivalent action

SΦ =
∫

d4xd4θ E−1eΦ+Φ̄ [Z(Φ) + H.c.] −
∫

d4xd2θ Ee3ΦV (Z(Φ)) + H.c.

(22)
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Equation (22) has the standard form of the action of a chiral matter superfield
coupled to supergravity,

S[Φ, Φ̄] =

∫

d4xd4θ E−1Ω(Φ, Φ̄) +

[∫

d4xd2θ EP(Φ) + H.c.

]

, (23)

in terms of a ‘Kähler’ potential Ω(Φ, Φ̄) and a chiral superpotential P(Φ). In our
case (22) we find

Ω(Φ, Φ̄) = eΦ+Φ̄ [Z(Φ) + Z̄(Φ̄)
]

, P(Φ) = −e3ΦV (Z(Φ)) . (24)

The truly Kähler potential K(Φ, Φ̄) is given by

K = −3 ln(−Ω

3
) or Ω = −3e−K/3 , (25)

because of the invariance of the action (23) under the supersymmetric Kähler-
Weyl transformations

K(Φ, Φ̄) → K(Φ, Φ̄) + Λ(Φ) + Λ̄(Φ̄) , E → eΛ(Φ)E , (26)

P(Φ) → −e−Λ(Φ)P(Φ), with an arbitrary chiral superfield parameter Λ(Φ).
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Scalar potential

(in components) is given by the standard formula (Cremmer et al, 1979)

V(φ, φ̄) = eΩ
{

∣

∣

∣

∂P
∂Φ + ∂Ω

∂ΦP
∣

∣

∣

2 − 3 |P |2
}∣

∣

∣

∣

(27)

where all superfields are restricted to their leading field components, Φ| = φ(x).
Equation (27) can be simplified by making use of the Kähler-Weyl invariance (26)
that allows us to choose the gauge

P = 1 (28)

It is equivalent to the well known fact that the scalar potential (27) is actually
governed by the single (Kähler-Weyl-invariant) potential

G(Φ, Φ̄) = Ω + lnP + ln P̄ (29)

In our case (24) we have

G = eΦ+Φ̄ [Z(Φ) + Z̄(Φ̄)
]

+ 3(Φ + Φ̄) + ln(−V (Z(Φ)) + ln(−V̄ (Z̄(Φ̄))

(30)

28



Let’s now specify our gauge (21) by choosing the condition

3Φ + ln(−V (Z(Φ)) = 0 or V (Z(Φ)) = −e−3Φ (31)

that is equivalent to eq. (28). Then the potential (30) gets simplified to

G = Ω = eΦ+Φ̄ [Z(Φ) + Z̄(Φ̄)
]

(32)

Equations (16), (17) and (32) are the one-to-one algebraic relations between a
holomorphic function F(R) in our modified supergravity action (5) and a holo-
morphic function Z(Φ) defining the scalar potential (27)

V = eG





(

∂2G

∂Φ∂Φ̄

)−1
∂G

∂Φ

∂G

∂Φ̄
− 3





∣

∣

∣

∣

∣

∣

(33)

in the classically equivalent scalar-tensor supergravity. The latter may be used
for embedding a slow-roll inflation into supergravity. In our setup the correspon-
dence can be promoted even further, by embedding the slow-roll inflation into the
‘purely geometrical’ (apparently) higher-derivative supergravity theory (5), defined
in terms of a single holomorphic function.
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No-scale modified supergravity

The no-scale supergravity arises by demanding the scalar potential (33) to vanish.
It results in the vanishing cosmological constant without fine-tuning. The no-scale
supergravity potential G has to obey the non-linear 2nd-order partial differential
equation

3
∂2G

∂Φ∂Φ̄
=
∂G

∂Φ

∂G

∂Φ̄
(34)

A gravitino mass m3/2 is given by the vacuum expectation value (Wess, Bagger)

m3/2 =
〈

eG/2
〉

(35)

so that the spontaneous supersymmetry breaking scale can be arbitrarily chosen.

• We get extra bonus, when identifying the N = 1 modified supergravity
gravitino with CDM particle (cf. Moroi, Murayama, 1993). The gravitino CDM is
the darkest DM candidate since it cannot be produced at colliders. If gravitino is
LSP, it would also be stable.
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Imposing the no-scale condition (34) in our case (32) gives rise to the 1st order
non-linear differential equation

3
(

eΦ̄X ′ + eΦX̄ ′) =
∣

∣

∣eΦ̄X ′ + eΦX̄
∣

∣

∣

2
(36)

where we have introduced the notation

Z(Φ) = e−ΦX(Φ) , X ′ =
dX

dΦ
(37)

Accordingly, the gravitino mass (35) is given by

m3/2 =

〈

exp
1

2

(

eΦ̄X + eΦX̄
)

〉

(38)

• We are not aware of any non-trivial holomorphic exact solution to eq. (36).
For instance, should it obey the holomorphic differential equation

X ′ = eΦg(X,Φ) (39)
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with a holomorphic function g(X,Φ), eq. (36) gives rise to the functional equation

3 (g+ ḡ) =
∣

∣

∣eΦ̄g+ X̄
∣

∣

∣

2
(40)

• Being restricted to the real variables Φ = Φ̄ ≡ y and X = X̄ ≡ x, eq. (36)
reads

6x′ = ey(x′ + x)2 , where x′ =
dx

dy
(41)

This equation can be integrated after the change of variables ∗

x = e−yu (42)

that leads to a quadratic (!) equation with respect to u′ = du/dy,

(u′)2 − 6u′ + 6u = 0 (43)

It follows

y =

∫ u dξ

3 ±
√

3(3 − 2ξ)
= ∓

√

1 − 2
3u+ ln

(

√

3(3 − 2u) ± 3

)

+ C . (44)

∗I am grateful to A. Starobinsky who pointed it out to me.

32



Conclusion

• f(R) gravity may pass local gravity tests, while modifying Einstein gravity at
cosmological distances. The characteristic distance entering these modifications
is of the order 10 pc for the Sun and of the order 100 Kpc for a galaxy;

• within the Vainstein distance, linearlization of modified gravity breaks down
(van Acoyelen, 2006), ie. gravity is in the non-perturbative regime (Dvali, 2006);

• in f(R) gravity the present Universe acceleration is the manifestation of
a new geometry of the Universe (presumably generated by Quantum Gravity or
Superstrings - however, no claim yet);

• f(R) gravity is classically equivalent to the quintessense (or Dynamical
Dark Energy). The late time acceleration of the Universe may be driven e.g., by
the cosmological constant Λ = 〈V 〉0 in the quintessence scalar potential V ;
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• f(R) gravity may provide a unified description of the early Universe inflation
and the present Universe acceleration;

• the transition from the ordinary matter-dominated FLRW Universe to the
modified evolution is controlled by the extra dimensional constantR0, whose value
is of the order of the present Hubble parameter H0;

• though it may be impossible to distinguish between a modified gravity and
DE in the FLRW Universe, it may well be possible in an inhomogeneous Universe;

• It is possible to avoid ghosts in a higher-derivative gravity and supergravity.
In some special cases, a higher-derivatve gravity may be classically equivalent to
a scalar-tensor gravity without ghosts or higher derivatives;



• A locally N = 1 supersymmetric extension of the modified f(R) gravity
exist, and is parametrized by a single holomorphic function. It is classically equiv-
alent to the standard theory of a chiral scalar superfield (with non-trivial Kähler
potential and chiral superpotential) coupled to the (minimal) N = 1 Poincaré su-
pergravity in four space-time dimensions;
• F(R) supergravity gives rise to the spacetime torsion and has the natural

candidate for a CDM-particle: a massive gravitino. We conjectured the identi-
fication of the dynamical chiral superfield in the modified supergravity and the
dilaton-axion chiral superfield in superstring theory (more opportunities for CDM
and hybrid inflation!);
• we computed a scalar potential in the dual version of the modified super-

gravity via the Legendre–Kähler-Weyl transform in superspace. The Kähler poten-
tial, the superpotential and the scalar potential of the dual theory are all governed
by a single holomorphic function;
• we also found the conditions for the vanishing cosmological constant and

spontanenous supersymmetry breaking, without fine-tuning, defining the no-scale
F(R) modified supergravity.
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Comments and Discussion
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Warped compactification to 4 spacetime dimensions

• To match the constraints imposed by particle physics, M-theory should be
compactified on a 7-dimensional space of special (G2) holonomy (Atiyah, Witten)
• In the presence of fluxes, we consider a warped compactification

ds211 = e2A(y)ds2FRW + e−2A(y)ds27 (45)

where ds2FRW(x) is the (uncompactified) 4-dim FLRW metric, ds27(y) is a (com-
pactified) 7-dim metric, and A(y) is a warp factor, ∇2A ∝ (fluxes)2 .
• Since we are interested in the purely gravitational terms in 4 dims, the ex-

plicit form of the 7-metric ds27 is not needed. After dimensional reduction, the only
gravitational terms in 4 dims are

S4 = − 1

2κ2

∫

d4x
√
−g (R+ βJR) (46)

where we have introduced the Einstein coupling κ in four dimensions, and the
four-dimensional counterpart JR of J in eq. (1), i, j = 0,1,2,3,

JR = RmijnRpijqRm
rspRqrsn +

1

2
RmnijRpqijRm

rspRqrsn+O(Rmn) (47)

36



Couplings and scales

The relation between the coupling constants κ11 and κ is κ2 = e5AM7
KKκ

2
11

where the Kaluza-Klein (KK) compactification scale isM−7
KK = V ol7 ≡ ∫

d7y
√
g7,

and the average warp factor A (of integer weight p) is defined by

epA =
1

V ol7

∫

d7y
√
g7 e

pA(y) (48)

It follows

β =
1

3

(

κ2

223/2π5e14AM7
KK

)2/3

(49)

of mass dimension −6. When using the Planck scale κ ≈ 10−33cm and M−1
KK ≈

10−15cm, and ignoring the warp factor, A = 0, we get (in fact, unacceptable)
value β ≈ 10−118 cm6. Altogether it leads to the modified gravitational equations

Rij − 1
2gijR+ β

1√−g
δ

δgij

(√
−gJR

)

= κ2Tij (50)

where Tij stands for the energy-momentum tensor of all matter fields (including
dilaton and axion)
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On-shell structure of the quartic gravity terms

Detailed structure and physical meaning of the quartic curvature terms are re-
vealed via their connection to the four-dimensional Bel-Robinson (BR) tensor

T iklmR = RipqlRkpq
m + ∗Ripql∗Rkpqm (51)

whose structure is quite similar to that of the Maxwell stress-energy tensor, cf.

TMaxwell
ij = FikFj

k + ∗Fik
∗Fjk , Fij = ∂iAj − ∂jAi (52)

Weyl cousin T ijlmC of the BR tensor is obtained by replacing all curvatures by Weyl
tensors. It is factorized in the 2-component (spinor) formalism,

(TC)
αβγδ

•
α
•
β
•
γ
•
δ
= CαβγδC̄ •

α
•
β
•
γ
•
δ

(53)

Important! : here we consider all the quartic terms on-shell, i.e. modulo Ricci-
tensor-dependent terms. Then we find

T2
ijkl = 8JR = 1

4(RijklR
ijkl)2 + 1

4(
∗RijklR

ijkl)2 (54)
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and

T2
ijkl = 8JR = − 1

4(
∗R2

ijkl)
2 + 1

4(
∗RijklR

ijkl)2

= 1
4(P

2
4 − E2

4) = 1
4(P4 + E4)(P4 − E4) (55)

in terms of the Euler and Pontryagin topological densities in four dimensions.

The on-shell BR tensor is fully symmetric and traceless,

Tijkl = T(ijkl) , T iikl = 0 (56)

is covariantly conserved

∇iTijkl = 0 (57)

and has a positive ‘energy’ density,

T0000 > 0 (58)

When using Riemann Normal Coordinates (RNC) at a given spacetime point, one
has

gij = ηij , gij,k = 0 , gij,mn = −1
3(Rimjn +Rinjm) (59)
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and

Γijk,l = −1
3(R

i
jkl +Rikjl) (60)

Raising and lowering of vector indices are done with Minkowski metric ηij and its
inverse ηij, so that all traces in the last two eqs. (59) and (60) vanish.

BR tensor is simply related to the gravitational energy-momentum pseudo-tensors
in RNC (Deser):

Tijkl = ∂k∂l
(

tLLij + 1
2t
E
ij

)

(61)

where the symmetric Landau-Lifshitz gravitational pseudo-tensor is

(tLL)
ij = − ηipηjqΓkpmΓmqk + ΓimnΓ

j
pqη

mpηnq

−
(

ΓmnpΓ
j
mqη

inηpq + ΓmnpΓ
i
mqη

jnηpq
)

+ hijΓmnpΓ
n
mqη

pq (62)

and the non-symmetric Einstein gravitational pseudo-tensor is

(tE)ij =
(

−2ΓimpΓ
m
jq + δijΓ

n
pmΓmqn

)

ηpq (63)
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Modified cosmological (Friedmann) equations

Substituting the FRW metric into a generic (about 100 different terms!) quartic
gravity equations of motion yields the generalized Friedmann equation having the
form (k = 0)

3H2 ≡ 3





•
a

a





2

= βP8





•
a

a
,

••
a

a
,

•••
a

a
,

••••
a

a



 , (64)

where P8 is a polynomial with respect to its arguments,

P8 =
∑

n1+2n2+3n3+4n4=8,
n1,n2,n3,n4≥0

cn1n2n3n4





•
a

a





n1




••
a

a





n2




•••
a

a





n3




••••
a

a





n4

(65)

The sum goes over the integer partitions (n1,2n2,3n3,4n4) of 8, the dots stand
for the derivatives with respect to time t, and cn1n2n3n4 are some real coefficients.
The highest derivative enters linearly at most, n4 = 0,1.
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For instance, the FLRW Ansatz with k = 0 results in the non-vanishing curvatures

R0
µ0ν = δµν

••
a a, Rµνλρ =

(

δ
µ
λδνρ − δµρδνλ

)

(
•
a)2, Rµν = −δµν







••
a

a
+ 2





•
a

a





2






(66)
where µ, ν, λ, ρ = 1,2,3. As regards the (BR)2 gravity, we find

3H2 + β





9





••
a

a





4

− 36H2





••
a

a





3

+ 84H4





••
a

a





2

− 36H





••
a

a





2



•••
a

a





+63H8 − 72H3





••
a

a









•••
a

a



+ 48H6





••
a

a



− 24H5





•••
a

a







 = 0 (67)

It is remarkable that the 4th order time derivatives cancel, whereas the square of
the 3rd order time derivative of the scale factor,

•••
a 2, does not appear at all.
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Exact non-perturbative inflationary solutions

The structure of eqs. (64) and (65) admits the existence of rather generic exact
inflationary solutions without a spacetime singularity, when using the most naive
(de Sitter) Ansatz for the scale factor,

a(t) = a0e
Bt (68)

with some real positive constants a0 and B. Substituting eq. (68) into eq. (64), we
get 3B2 = (#)βB8, whose coefficient (#) is just a sum of all c-coefficients in
eq. (65). Assuming the (#) to be positive, we find (68) as the exact solution with

B =

(

3

#β

)1/6

(69)

This solution in non-perturbative in β, i.e. it is impossible to get it when considering
the quartic curvature terms as a perturbation. The assumption that we are dealing
with the leading correction, implies Bt ≪ 1. Because of eqs. (49) and (69), it
leads to the natural hierarchy

κMKK ≪ 1 or lPl ≪ lKK (70)
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where we have introduced the four-dimensional Planck scale lPl = κ and the
compactification scale lKK = M−1

KK .

The effective Hubble scale B of eq. (69) should be lower than the effective (with
warping) KK scale Meff.

KK = eAMKK, in order to validate our four-dimensional
description of gravity, i.e. our ignorance of all KK modes,

B < Meff.
KK (71)

It rules out the naive KK reduction (with A = 0) but still allows the warped com-
pactification (45), when the average warp factor is tuned as

eA <
(κMKK)2/5

(9/#)3/10223/10π
∼ O

(

10−3
)

(72)

where we have used eq. (49) and estimated (#) as of order 10.

Our exact solution (68) is non-singular, while it describes an inflationary isotropic
and homogeneous universe; cf. Starobinsky (1980), Maeda, Ohta (2004)
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Stability analysis

To be truly inflationary solutions, eqs. (68) and (69) should correspond to the
stable fixed points (or attractors). When using the parametrization

a(t) = eλ(t) (73)

we find
•
a

a
=

•
λ , (74)

••
a

a
=

••
λ +(

•
λ)2 ,

•••
a

a
=

•••
λ +3

••
λ

•
λ +(

•
λ)3 ,

••••
a

a
=

••••
λ +4

•••
λ

•
λ +6

••
λ (

•
λ)2 + 3(

••
λ)2 + (

•
λ)4

The polynomial (65) now takes the form

P8 =
∑

n1+2n2+3n3+4n4=8,
n1,n2,n3,n4≥0

dn1n2n3n4

( •
λ

)n1
(••
λ

)n2
(•••
λ

)n3
(••••
λ

)n4
(75)
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where the d-coefficients are some simple linear combinations of the c-coefficients.

Equations (68) and (69) are also simplified as

λ(t) = Bt+ λ0 , where a0 = eλ0 and d8000 = # (76)

The equations of motion (64) can be rewritten to the form

3y21 = βP8(y1, y2, y3,
•
y3) ≡ βP8,0(y1, y2, y3) + βP4(y1, y2, y3)

•
y3 , (77)

where we have introduced the notation

y1 =
•
λ , y2 =

••
λ , y3 =

•••
λ . (78)

Equation (77) can now be put into the autonomous form

•
y1 = y2 ,
•
y2 = y3 ,

•
y3 =

3y21 − βP8,0(y1, y2, y3)

βP4(y1, y2, y3)
≡ f(y1, y2, y3) (79)
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that is quite suitable for the stability analysis against small perturbations about the
fixed point, ya = yfixed

a + δya, where a = 1,2,3.
We find

δ
•
y1 = δy2 ,

δ
•
y2 = δy3 ,

δ
•
y3 =

∂f

∂y1

∣

∣

∣

∣

∣

δy1 +
∂f

∂y2

∣

∣

∣

∣

∣

δy2 +
∂f

∂y3

∣

∣

∣

∣

∣

δy3 ,

(80)

where all the partial derivatives are taken at the fixed point (denoted by |). The
fixed point is stable when all the eigenvalues of the matrix

M̂ =









0 1 0
0 0 1
∂f
∂y1

∣

∣

∣

∂f
∂y2

∣

∣

∣

∂f
∂y3

∣

∣

∣









(81)

in eq. (80) are negative or have negative real parts. Then our fixed point is a
stable attractor.
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Scale factor duality

More restrictions on the cosmological polynomial P8 of eq. (65) arise in specific
superstring-inspired cosmological scenarios, e.g. in the pre-Big Bang scenario
of Gasperini-Veneziano. They imposed the scale factor duality, by requiring the
cosmological Friedmann equation to be invariant under the duality transformation

a(t) ↔ 1

a(t)
≡ b(t) (82)

This duality is a cosmological version of the genuine stringy T-duality (which is a
symmetry of the non-perturbative string spectrum), in the case of time-dependent
backgrounds. The scale factor duality is merely the symmetry of the perturbative
equations of motion of the background fields. It is used to exclude the cosmologi-
cal singularity (Big Bang) in the pre-Big Bang scenario.

In the λ-parametrization (73) the scale-factor duality transformation (82) takes the
very simple form

λ(t) ↔ −λ(t) (83)
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The equations of motion in the form (77) are manifestly invariant under the trans-
form λ(t) → λ(t) + λ0, where λ0 is an arbitrary constant. We also find

•
a

a
= −

•
b

b
,

••
a

a
= −

••
b

b
+ 2







•
b

b







2

,

•••
a

a
= −

•••
b

b
+ 6







•
b

b













••
b

b





− 6







•
b

b







3

, (84)

••••
a

a
= −

••••
b

b
+ 6







••
b

b







2

+ 8







•
b

b













•••
b

b





− 36







•
b

b







2





••
b

b





+ 24







•
b

b







4

To illustrate, how the scale factor duality affects the polynomial P8, let’s consider
the case with the 3rd order time derivatives, motivated by eq. (67), in the notation

•
a

a
= x ,

••
a

a
= y ,

•••
a

a
= z (85)
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The duality invariance condition reads

P8(−x,2x2 − y,6xy − 6x3 − z) = P8(x, y, z) (86)

The structure of the polynomial P8 in eq. (65), as the sum over partitions of 8,
restricts a solution to eq. (86) to be most quadratic in z,

P8(x, y, z) = a2(x, y)z
2 + b5(x, y)z + c8(x, y) , (87)

whose coefficients are polynomials in (x, y), of order given by subscript,

a2(x, y) = a0x
2 + a1y ,

b5(x, y) = b0x
5 + b1x

3y+ b2xy
2 , (88)

c8(x, y) = c4y
4 + c3y

3x2 + c2y
2x4 + c1yx

6 + c0x
8

Their substitution into eq. (86) yields an overdetermined system of linear equa-
tions on the coefficients. Nevertheless, we find a consistent general solution,

P8(x, y, z) = a0x
2z2 + (b0x

5 − 3a0xy
2)z

+ c4y
4 + (9a0 − 4c4)y

3x2 + c2y
23x4 (89)

+ (8c4 − 18a0 − 3b0 − 2c2)yx
6 + c0x

8

parameterized by five real coefficients (a0, b0, c4, c2, c0).
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Demanding the existence of the exact solution (68), i.e. positivity of (#) in
eq. (69), yields

5c4 + c0 > 11a0 + 2b0 + c2 (90)

• As regards the (BR)2 gravity representing the ‘minimal’ candidate for the
off-shell superstring quartic effective action, we checked that neither the duality in-
variance nor the inequality (90) are satisfied by the coefficients present in eq. (67).
We interpret it as the clear indications that some additional Ricci-dependent terms
have to be added to the (BR)2 terms or, equivalently, the (BR)2 gravity is ruled
out as an off-shell quartic effective action for superstrings.

• Our results are generalizable to any higher order in the spacetime curva-
tures, because it amounts to increasing the order of the polynomial P . It leads to
the ALL-orders or non-perturbative speculative cosmological equation:

H2 =

•
a 2

a2
= βP [a(t)] (91)

whose function P is subject to the scale-factor duality condition

P [a(t)] = P [1/a(t)] . (92)
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Problems with String-generated Quartic Gravity

• The Quartic Gravity terms are merely the leading terms in the gravitational
superstring effective action. When they become large, there is no reason why the
higher-order curvature terms are to be ignored;

• the higher-order (full) curvature terms, when considered non-perturbatively,
may easily lead to unphysical solutions, and violate unitarity and causality.

• We treated the Quartic Gravity as the toy model only.
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Remarks

• Finding a Graceful Exit from the geometrical inflation to a matter-driven in-
flation, as well as getting the right number of e-foldings, need further investigation

• A possibility to get inflation by modifying Einstein equations with the 2nd-
order curvature terms (representing the gravitational anomalies of matter fields)
was first discovered a long time ago by Starobinsky (1980). A similar mechanism
is known in the four-dimensional supergravity, with inflation being generated by
the R2-term originating from the one-loop Kähler anomaly (Cardoso, Ovrut)

• Instabilities in the cosmological scenarios based on the 2nd-order curvature
terms, against adding higher order curvature terms, were analyzed by Maeda

• In General Relativity, only the spin-2 part of a metric is dynamical. A dynam-
ical generation of a massive scalar field is known to occur already in the presence
of the quadratic curvature terms (Buchbinder et al) out of the spin-0 part of the
metric. In supergravity, as we found, the whole chiral scalar superfield becomes
dynamical, while it can be identified with the super-Weyl compensator.

53



• In superstring theory, the superspin-0 part of the supervielbein is given by a
chiral scalar superfield, whose leading complex component represents a dilaton-
axion field, φ| = ϕ(x) + iB(x). It is tempting to identify ϕ(x) with a superstring
dilaton, and B with a superstring B-field (or axion). In string theory, the dilaton
field controls the superstring loops and (D-brane) instantons, which may be the
source of the function F(R). The B-field is the source of the non-minimal space-
time torsion in string theory.

• Unfortunately, the string theory technology at present does not allow us to
compute the function F(R) in eq. (5). It is mainly because of the on-shell nature
of the known string theory. However, its R-dependence may be fixed by some
additional (off-shell) physical requirements such as no-ghosts, stability, and the
scale-factor self-duality, etc.
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• Sometimes, a positive cosmological constant and a slow-roll inflation are
achieved by demanding a shift symmetry of the Kähler potential (i.e. its flatness in
one direction), and then perturbing the scalar potential around that flat direction.

• In the context of superstrings, the effective supergravity potential (32) may
capture some ‘stringy’ features, such as T-duality and maximal curvature.

• Since we used the (old) minimal formulation of an off-shell supergravity
multiplet, with a fixed superconnection, adding the minimal coupling to a (scalar-
or vector-type) supermatter is straightforward in superspace, just by using the
supercovariant derivatives, while it does not change our results. However, adding
a non-minimal coupling of matter to the scalar supercurvature would drastically
change everything, so it deserves a separate investigation (work in progress).
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