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Extended gauged supergravities and fluxes
or

Supersymmetric deformations of extended supergravities

deformation parameters:
charges ~ fluxes ~ embedding tensor

They can often be discussed in the context of
M-Theory compactifications.

The embedding tensor method is applicable to
any field theory with vector fields!




LD supergravity
ITA /1IB

reduction in presence of

reduction — p-form fluxes [, F?) = Cx,

on torus — torsion (geometric flux)  de® = T, e” A e

n .
T — nongeometric fluxes

4D ungauged 4D gauged
supergravity gauglng supergravity

Samtleben, 0808.4076

Truncation of the infinite tower of KK states. The
embedding of the gauged theory in the original theory
differs from the embedding of the ungauged theory.




The possible gaugings may teach us something about
BPS states of M-Theory that are not contained in the
supergravity approximation
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HIDDEN SYMMETRIES

The toroidal compactification of pure gravity (Kaluza-Klein)
MP — M x Tm (D =d+n)
IJMN — Guv T A,un - Imn

== massless states: graviton, n gauge fields (KK photons),

2n(n + 1)scalar fields

infinite tower of massive graviton states

resulting theory is invariant under the group GL(n)

GL(n)

non-linearly realized on the scalars:
SO(n)

the massive states carry KK photon charges

charge lattice of KK tower: symmetry restricted to GL(n, Z)




Lower space-time dimensions do not follow the generic pattern:

three space-time dimensions: the vector fields
can be dualized to scalars (Hodge duality)

massless: graviton (no states), 2n(n + 3) scalars

SL(n+1)

symmetry non-linearly realized on the scalars
4 4 4 O(n+1)

Systematic features of toroidal compactifications:

* the rank of the invariance group increases with n

* when starting with scalars that parametrize a homogeneous
target space, the target space remains homogeneous

* the presence of the massive states breaks the
symmetry group to an arithmetic subgroup




Another example: graviton-tensor theory

the symmetry of the resulting compactified theory
depends sensitively on the original theory

2
Lp=—-5vV9R - 390 Bnp))

gMN — YGuu =+ A,um =+ Imn
BMN — B,uz/ =+ Bm,u =+ an

= G C SO(n,n;7Z)

—> massless states: graviton, tensor, 2n spin-1
states, and n” spinless states

— tower of massive graviton and tensor states




not the generic pattern in five, four and three space-time dimensions !

e.g. upon including a dilaton in the original theory, one finds :

d>5 : G=RT" xSO(n,n;Z) (n,n) vectors
d=5 : G=RT" xSO(n,n;Z) (n,n) + 1 vectors
d=4 : G=8SL(2;Z) xSO(n,n;Z) (n,n)-+ 1vectors
d=3 : G=SOn+1,n+1;Z) 0 vectors

=3 GOAL: study all possible deformations induced by
gauging subgroups of G

The Hodge dilemma:

* to increase the symmetry = dualize to lower-rank form fields
* the presence of certain form fields may be an obstacle to certain gauge groups

* what to do when the theory contains no (vector) gauge fields




Example: maximal supergravity in 3 space-time dimensions
Nicolai, Samtleben, 2000

gauging versus scalar-vector-tensor duality

128 scalars and 728 spinors, but no vectors !
obtained by dualizing vectors in order to realize the symmetry Eg(g) (R)

solution:
introduce 248 vector gauge fields with Chern-Simons terms

1
Log ox gef? A, MOy N |:81/ApN — 39 fPQNAyPApQ}

EMBEDDING TENSOR

vectors ‘invisible’ at the level of the toroidal truncation

First: general analysis of gauge group embeddings.




GAUGING AND GAUGE GROUP EMBEDDINGS
There are restrictions on the possible gaugings

The gauge group must be a subgroup of the full rigid
symmetry group of the Lagrangian and/or the
equations of motion.

Restrictions follow from the consistency of the
combined p-form gauge transformations.

They can also follow from supersymmetry,.

The restrictions are subtle!
A gauge group must be a proper subgroup. In spite of that it may
nevertheless not be realizeable for a certain (ungauged) Lagrangian.




Hence the field content is important

But also the space-time dimension is relevant.
In particular even and odd dimensions are different




Gauge group embeddings

gauge a subgroup of (G, the symmetry group of the ungauged theory

with gauge fields Athransforming in some representation of G

gauge group encoded into the EMBEDDINGTENSOR ©jp/“

o
Xy =00 1o
gauge group generators  ¢— b G generators

O~ treated as a spurionic quantity,

transforming under the action of G

according to a product representation dW, Nicolai, Samtleben,
Trigiante, 2000-2008




This representation branches into irreducible representations.

Not all these representations are allowed !!
(for instance, because of supersymmetry)

- Representation (linear) constraint
EMBEDDING TENSORS FOR MAXIMAL SUPERGRAVITY IND = 3,4,5,6,7

SL(5) 10 x 24 =10+ 15+ 40+ 175
SO(5,5) 16 x 45 =16 + 144 + 560

Ery 56 x 133 = 56 + 912 + 6480
Fss) 248 x 248 = 1+ 248 + 3875 + 27000 + 30380

T T T T dW, Samtleben, Trigiante, 2002
D G M o

® characterize all possible gaugings

® group-theoretical classification
@ universal Lagrangians




= Closure (quadratic) constraint

closure: [ Xpr, Xn]| = faunt Xp

& Op” s invariant under the gauge group

& [ Xy, Xn] = Xun' Xp

b contains the gauge group structure constants, but is
XMN in general not symmetric in lower indices, unless
contracted with the embedding tensor !!!!

ZMNp = X(NP)M ZMNpOp® =0




Constraint :

Oun® = 6pON® = On” 630N

must vanish!

= Q(MN)a = ZPMN Op* =0

Jacobi identity affected :
Xinp" Xqur" = 32 piv Xpgp™




in special basis:

problematic !!

Xy P — /

/

The gauge fields AMM not involved in the gauging can still carry charges.
This is known to be inconsistent ! To see this:

covariant derivative D, =0, —gA," Xy

Ricci identity D,,D,| =—g .7'—“,/M XM
field strength
Fu =0,A4M - 0,AM +gXnp™M ALNA,T

anti-symmetric part J




Palatini identity
0F ™ =2D,0A,M —29Z" pg §A ALY

NOT covariant indeed!

options:
% try to enlarge/change the gauge group

— NP

et

: : M M
* introduce an extra gauge transformation 0=A," = —gZ" nypZE,

and

) MN ..
introduce 2-form gauge fields B, whose variation
cancels the undesirable terms:

f,Lu/M — H,uz/M — f,uz/M + QZMNPBW/NP

ZM acts as an intertwining tensor between the gauge field
NP representation and the 2-form field representation

subtle: regard (N P) as a single index, which does not map into the

full symmetric tensor product !




This leads to, e.g.
0B, MN = 2Dy=,MN —2AMy, N
+2A,M5A,N

— g VMY prpg) @, 7S]

HWPMN — 3D[qup]MN

+6 Ag, ' (aVAp]NJ + 59Xpq) AVPAP]Q)

'+g§ZN“VPFRSJCmprFRSJ

etcetera

where new gauge parameter

P
(I),ul/ RS |
CMVprRSJ new tensor field

YMNP(RSJ new covariant tensor proportional to
: M
the embedding tensor, orthogonal to Z™~ np

Potentially there are complete p-form representations




HIERARCHY OF p-FORM FIELDS

this structure continues indefinitely

AM@—> B’uy@% C H IR (p-form gauge fields)

pp

A@ — EM@—> (I),UV — e (transformation parameters)

(intertwining tensors)

The covariant intertwining tensors are all proportional to the
embedding tensor and mutually orthogonal.
The intertwining tensors have been determined by induction.

dW, Samtleben, 2005
dWV, Nicolai, Samtleben, 2008




Alternative deformations (digression)

An obvious question is whether the gaugings discussed so far are the
only viable deformations. While it is true that other deformations are

known in supergravity, there are indications that these deformations are
already incorporated in the present approach.

Ho" = 0,4M-0,4M+gXnp™ AN A,
+9ZMNnpB N
SD[MBVP]MN

P[RS | C,prp | &S]

v O(go) :survives g = 0 limit  (known from Einstein-Maxwell SG)

v ZMypOy“=0= 0=0, Z+#0

(Romans massive deformation)




At this point there is no Lagrangian yet. (There exist universal
Lagrangians!) In the context of a Lagrangian the transformations
of the gauge hierarchy are subject to change.

Often the hierarchy breaks off at some point and higher rank forms do not
appear in the Lagrangian (projection)

The physical degrees of freedom are shared between the various tensor
fields in a way which depends on the embedding tensor.

studied/applied in D = 2,3,4,5,6,7 space-time dimensions
in D=4, for N = 0,1,2,4,8 supergravities
in D=3, for N =1,...,6,8,9,70,72,16 supergravities

by e.g.: Bergshoeff, Derendinger, de Vroome, dW, Herger, Hohm, Nicolai,
Petropoulos, Ortin, Prezas, Riccione, Samtleben, Schdn, Sezgin, Trigiante, Van
Proeyen, van Zalk, Weidner, West, Zagermann, etc.

Related work by, e.g.:D’Auria, Ferrara, Hull, Louis, Micu, Reid-Edwards,
Sommovigo, Vaula, etc.




Another example: 5 space-time dimensions

42 scalars and 27 vectors, and no tensors !
in order to realize the symmetry Eg,' x USp(8)".

introduce a local subgroup such as Egg) — SO(6)"°°* x SL(2)
GUnaydin, Romans, Warner, 1986

inconsistent! o B
vectors decompose according to: 27 — (15,1) + (6,2)

charged vector fields Y
must be (re)converted to tensor fields !

® linear constraint follows from supersymmetry:
On” € 351 —— 27 x 78 = 2K+ 351 + LGB

® quadratic constraint follows from closure:

(351 x 351), = X+ L3ZB + 351’ + 7722 + 17550 + 34398
dW, Samtleben, Trigiante, 2005




digression:
consider the representations appearing in (27 x 27); = (27 + 351')

X(MN)P = dI,MN ARL dvNT E6(6) invariant tensor(s)

27
XU

two possible representations can be associated with the new index {

27 x (27 x 27), = 851 + 27 + 27 + 351 + 1728 + 7722

indeed: (27 x 27), =351 ——> X(MN)P = dMNQ VAR
anti-symmetric !
from the closure constraint:
ZMN QN =0 — ZMN Xy =0  orthogonality

Xunt 29N = gauge invariant tensor

this structure is generic !




Rather than converting and tensors into vectors and reconverting
some of them them when a gauging is switched on, we introduce
both vectors and tensors from the start, transforming into the

representations 27 and 27, respectively.
extra gauge invariance

SAM —

n

}—,W/M — 8MAVM _ 61/AMM s gX[NP]M AHNAVP not fully covariant

introduce fully covariant field strength  H,, ™ = F,, " +9ZMY B, v

to compensate for lack of closure:

0Buwm = 20,2 8 — 9 XpNC AL Eng + 9 ZMY AP Xpn© B g
— g <2 dripq Oy’ — 9 Xrm' dposAp” AV]S)AQ

because of the extra gauge invariance, the degrees

of freedom remain unchanged (subtle)

upon switching on the gauging there will be a balanced
decomposition of vector and tensor fields




Universal invariant Lagrangian containing
kinetic terms for the tensor fields combined with a
Chern-Simons term for the vector fields

projects higher-p gauge transformations

1 1
£VT — iiguypaT{gZMNBuuM |:DpBO'TN + 4dNPQ App (aO'ATQ + §9X[RS]Q AO'R ATS>i|

- ngNP A4, 0,4, 0,4,7

zeroth order in the coupling constant !

this term is present for ALL gaugings
there is no other restriction than the constraints on
the embedding tensor dW, Samtleben, Trigiante, 2005




The embedding tensor approach yields universal
results for any theory of interest.

Crucial: one works with complete duality representations
of all the p-forms. Therefore there is a considerable
redundancy of degrees of freedom which are controlled by
the extra gauge invariances. There are also (unexpected)
additional symmetries in the context of specific actions.

The previous examples concerned odd space-time dimensions.
Now we turn to even dimensions and consider D=4.




THE p-FORM HIERARCHY IN 4 SPAGE-TIME DIMENSIONS

Here the ungauged Lagrangian is not unique because of
electric/magnetic duality

Consider with n abelian gauge fields A,,"

Field equations & Bianchi identities: O[MFVP]A =0=01,G. A

oL

where G, A =¢ —
[12% wv po ano‘A

2n-component vector of electric and magnetic fields and inductions:

M Fiu®
G =
(GWA>

Its rotations leave the field equations and Bianchi identities invariant!




FA UAE 7 A% e
_— _ — E
Ga Was  Va Gy
The equations can be described on the basis of a new Lagrangian
provided the rotation matrix is symplectic,

0
-1 0

i.e. when it leaves the matrix () = (

) invariant.

The new Lagrangian, which describes equivalent field equations
and Bianchi identities, does not follow from straightforward
substitution. Instead:

E(F) —l_ %gul/pO'FMVA épo‘A — E(F) _|_ %8MVPO_FIU,VA GpO'A

“Hamiltonian”

The Lagrangian does not transform as a function: L(F) # L(F)

but L(F) + £e"P7F,,» G,op does.




~

Invariance when L(F) = L(F)

Electric groups (Z =0): FZL\V =U%s F,,~>

then L(UMs F¥) = L(FY) — Lo (UTW)z5 F M Fop™

\ “Peccei-Quinn”

Electric gaugings
5loca1£ E,ul/,oa AA XAEI‘ ‘;E,uy -;Epar

/ N

function of coordinates non-abelian field strengths

this requires an extra term
»Cftop 3g gh’Pe XAZF A A (apAaF + %g XEAF ApEAUA)

dW, Lauwers, Van Proeyen, 1985




The gauge generators should be consistent with the symplectic
property of the electro/magnetic duality transformations:

and are subject to a representation (linear) constraint:

4 )
X(AEI‘) — 0
2X(FA)§] _ XZAF

Xz =0

\ Xioa)” = X™ar
N ol J

s

hence, not in general anti-symmetric !

Xun® Qpyg =0 = {




Consider also:
Xouny' =2 un = 297 0% tam® QUng = Z0% damn
This leads to the definitions:

daun = (to)u’ Qnp

ZAa _ 1 @Aa
- 2

ZM,a lQMN@Na —
e = he i

magnetic electric
=) 2-forms transform in adjoint representation

Quadratic constraint:
ZM 0y  dopg = sOMN O "ONY dopg = 0
Possibly stronger version: QMY 0,705 =0

=) there exists a purely electric duality frame!




The Lagrangian:
1 - Define new electric and magnetic covariant field
strengths:

HMVM — FMVM -+ gZM’aB'uVOé

where B, ., = daMNBWMN

2 - Include electric and magnetic gauge fields in the
covariant derivatives and replace the (electric) field strengths

by the modified ones given above.

3 - Add the following term to the Lagrangian:

Liop = 2ge™P7OM B0 (20,A5n + gXnuna A, AN —
+ 29e"P7 Xpna A M ALY (0,400 + 29X po™ AT AG9)
+ 29e" P X n A AN (8,408 + 29X pon AT AL9)

This represents the universal Lagrangian for any gauging. It depends on the
embedding tensor whose constraints ensure its full gauge invariance !




4 - In principle the tensor fields can be integrated out. One
then finds a conventional Lagrangian with electric gaugings
written in an another electric/magnetic duality frame.




MAXIMAL SUPERGRAVITIES

Apply the embedding tensor formalism to the maximal
supergravities, with the duality group, the representations

of the vector gauge fields and the embedding tensor as
iInput.

At this point, the number of space-time dimensions is not used!

This purely group-theoretic analysis yields all the
representations for the hierarchy of p-form fields.




Leads to :

rank —

3 4 S 6

SL(5)
SO(5, 5)

Eg(+6)

5 10 24 15 + 40

10 16, 45 144, 10+126,+320

27 78 351 27+1728

Er7 47

133 912 13348165

Es(is) | 248

3875 38754147250

Striking feature:

rank D-2 : adjoi

A

nt representation of the duality group

dW, Samtleben, Nicolai, 2008

note: restricted representation, not the full symmetric tensor product



rank — 4 5 6

SL(5) 10 24 15+ 40

SO(5,5) 45 144, 10+126,+320

E6(—|—6) 351 2741728

Er7 47 56 133 912 13348165

Fgsg) 248 |3875 38754147250

Striking feature:

rank D-7 : embedding tensor !




rank — 1 2 4

S

6

SL(5) 10 5 10
SO(5,5) 16, 10 45

Eore) 27 27 351

24

144,

15+ 40

10+126,+320

27+1728

Ery7y 56 133 912 133+8165

Egsg) 248 3875 | 3875+147250

Striking feature:

rank D : closure constraint on the embedding tensor !




rank — 4 5 6

SL(5) 10 24 15+ 40

SO(5,5) 10 45 144, 104+126,+320

Eo(+6) 27 351  27+1728

Erin) 133 912 133+8165

Fgsg) 248 3875 38754147250

Perhaps most striking:

implicit connection between space-time electric/magnetic
(Hodge) duality and the U-duality group

© dial

Probes new states in M-Theory!




M-theory implications:

1 2 3 4 S 6

SL(5) 10 5 5 10 24 15+ 40

SO(5,5) 16, 10 16, 45 144, 104+126,+320

Egre) 27 27 78 351  27+1728
Erry 56 133 912 133-+8165

Fgsg) 248 3875 38754147250

The table coincides substantially with results based on several
rather different conceptual starting points:

M(atrix)- Theory compactified on a torus: duality representations of states

Correspondence between toroidal compactifications of M-Theory
and del Pezzo surfaces

E11 decompositions




® Algebraic Aspects of Matrix Theory on 1™

Elitzur, Giveon, Kutasov, Rabinovici, 1997

Based on the correspondence between super-Yang-Mills on 7™
and M-Theory on 7", a rectangular torus with radii R, Rs, ... R,
in the infinite-momentum frame.

Invariance group consist of permutations of the R;
combined with the T-duality relations (¢ # 7 # k) :

Ly b s

> R. — R >
R; Ry, Ry R; “ " RiR,

R; 2

generate a group isomorphic with the Weyl group of L,

The explicit duality multiplets arise as representations of
this group.




Example n=4 —>» D=7/

4 KK states on 1"

6 2-brane states wrapped on T

R R;
Iy
Ri1R1RyR3 Ry

4 2-brane states wrapped on 7" x z'' M ~

1 5-brane state wrapped on 7" x z'* M

the dimensions of these two multiplets coincide with those of the
multiplets presented previously for vectors and tensors

for higher n the multiplets are sometimes incomplete, because
they are not generated as a single orbit by the Weyl group.




® A Mysterious Duality lgbal, Neitzke, Vafa, 200 |

This cannot be a coincidence!

It is important to uncover the physical interpretation of these
duality relations. One possibility is that the del Pezzo surface is
the moduli space of some probe in M-Theory. It must be a
U-duality invariant probe

Such probe is the gauging encoded in the embedding tensor!

® E11 decomposition

Based on the conjecture that E11 is the underlying symmetry
of M-Theory. Decomposing the relevant E11 representation to
dimensions D<11 yields representations that substantially
overlap with those generated for the gaugings.

West et. al,, 2001-2007
Bergshoeff et. al.,2005-2007/




LIFE AT THE END OF THE p-FORM HIERARCHY

1 2 3 4 S 6

SL(5) 10 5 5 10 24 15+ 40

SO(5,5) 16, 10 16, 45 144, 10+126,+320
Eore) 27 27 78 351  27+1728
Ers7y 56 133 912 133-+8165

Fgsg) 248 3875 38754147250

It is possible to construct the hierarchy starting from the
intermediate (D-3)-forms, assuming that they transform
according to the conjugate of the representation associated with
the vector fields. In this way one generates the (D-2)-, the (D-1)-,
and the D-form fields, in accordance we the results found in the
table. Note that the latter two forms are not related to any other

forms by Hodge duality!




A

p-forms transforming in the conjugate of the representations of the 7-forms,
the adjoint representation, the embedding tensor and the constraints:

[D—3] [D—4]
A C D & ,;+--- DUALto 7-forms

[D—2] [D—=3]

D—2
A C D o ,+--- DUAL to 0-forms (adjoint)

[D—1] [D—2]
A C M D & M_4+... DUALtoembedding tensor

[D] [D—1]
A C MN D & MYV 4+ ...DUALto quadratic constraint

[D+1] [D]
c PRE_~— Do PRE_4 ... notrelevant




p-forms transforming in the conjugate of the representations of the 7-forms,
the adjoint representation, the embedding tensor and the constraints:

[D—3] (D —4] [D—3]
A C D & ,+---—Yyu® &

[D—2) [D—3) [D—2)
A C D & ,+--—You” © Mg

[p-1] [D-2] " [D-1]
A C M, D & M +...-YM pof @ P9

J

Dl v PN MN 3 D] PQR
A C a = D P at =Y o, POR P 3

1] D]
S8,

intertwiners




closure constraint

Oun® = 6ON® = On° 630N

intertwiners
Oy
5oz@MB

0

6]
50,0 Apo

—5?34 YNa,QRﬁ + XPQM 5%5(6 + XPRN 53245(5 —




Alternative form for the intertwiners
(closer to the generic formulae that follow by induction)

tar Y — XuPo

—6pM Y, 0" — (Xp)o® M, ,

—0p™M YN L or” — (Xp)or" MY,

orthogonality:




What is the role of the higher form fields ?

This construction supports the following idea which has been worked
out completely for three and four space-time dimensions:

Regard the embedding tensor as a space-time field transforming in the
appropriate representation, but not satisfying the quadratic closure
constraint. Add the gauge invariant Lagrangian with (D-7)- and D-form

fields:

_ H1p2 D M Q
L = ge Coionp MaD, On

2 MN Qo
—I—g €’u1'u2 = C,ul“',uD QQMN

dW, Samtleben, Nicolai, 2008
dW, van Zalk, 2009




Conclusions

4+ General gaugings of a large variety of theories can be constructed
and studied in the framework of the embedding tensor technique,
which, in principle, entails a hierarchy of p-forms.

4+ Maximal supergravity theories contain subtle information
about M-Theory. This may be interpreted as an indication
that supergravity needs to be extended towards string/M-
theory.







