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Gravity Waves: An Introduction
Gravity waves are to General Relativity what light 
is to electromagnetism.

Everything we know about the Universe comes by 
studying light. 

Probe the earliest epochs of the Universe.

Many interesting astrophysical sources like black holes, 
neutron stars etc.

Can see cosmic strings, phase transitions, radion 
fluctuations...
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Gravity Wave Detection 

The gravity wave can be detected if this oscillation 
is observed

LConsider two objects separated by L

L(1 + h sin(ωt))

The distance between them oscillates with amplitude hL and frequency ω
when ωL! 1

ds2 = −dt2 + (1 + h sin(ω(t− z)))dx2 + (1− h sin(ω(t− z)))dy2 + dz2
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The Technical Challenge

h ∼ 10−20• Brightest source of gravity waves gives

hL ∼ 10−17m• With L ~ 1 km, need to measure length changes

• Need to ensure that the distance between the objects changes 
only due to gravity wave i.e. vibrational noise needs to be 
smaller than       in the frequency band of interest.hL
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LIGO 

Seismic vibrations rapidly cut off LIGO’s 
sensitivity at frequencies below 40 Hz
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Astrophysical Sources in the 10-2 Hz - 10 Hz band

More sources in the sub-Hertz band 
than in the LIGO band.

Astrophysical sources spend long times (> 106 s) moving through this 
band, compared to ~ 5 s in LIGO’s frequency band (40 Hz - 10 KHz). 

Long lifetime enhances detectability.

Bright gravitational wave sources like mergers of white dwarves and 
massive black holes do not enter LIGO’s band.
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Cosmological Sources in the 10-2 Hz - 10 Hz band

Cosmological sources characterized by         ΩGW

ΩGW(ω) ∼ h2ω3

For many sources (e.g. inflation),          is flat in ΩGW ω

These sources are brighter at lower frequencies. 

Gravitational wave detectors respond to h.   For fixed  ΩGW,

h ∝
(

1
ω

)( 3
2 )

Gravitational radiation from TeV scale first order phase transitions are red shifted 
to 10-2 Hz.

Source rich band probing a lot of interesting physics.



Atom Interferometry

• Established technology, successfully applied to 
many fields like precision navigation, gravity 
gradiometry etc.

• High precision sensors, e.g. 16 digit atomic clock 
synchronization, accelerometers with 12 digit 
sensitivity. 

• Rapidly evolving field.  Several future advances 
possible e.g. atom cooling techniques etc. 
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What is an atom interferometer?

Final State
1
2
((1 + ei∆φ)|p〉+ ((1− ei∆φ))|p + k〉)
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Light Pulse Atom Interferometry
(Kasevich and Chu, 1991)

ω2ω1

Beamsplitter and mirror must transfer momentum to the atom. 

|1, p〉
|2, p + k〉

Atom undergoes coherent Raman Scattering with momentum transfer

k = ω1 − ω2 ≈ 2 ω1 ∼ 1eV

|3〉



Light Pulse Atom Interferometry
(Kasevich and Chu, 1991)

ω2ω1

Atom can remain in the same internal level and 
receive momentum kick.
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Light Pulse Atom Interferometry
(Kasevich and Chu, 1991)

ω2ω1

Atom can remain in the same internal level and 
receive momentum kick.

|1, p〉

By driving the transition N times, large momenta can be transferred.

|1, p + k〉

keff ∼ Nω1

Large Momentum Transfer (LMT) beamsplitter

|1, p + 2k〉

|3〉
|3〉



Beamsplitter and Mirror Pulses

pulse is a beamsplitter
pulse is a mirrorπ
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Spacetime Diagram of the Atom Interferometer

Control Laser Passive Laser
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Τd

Typical Terrestrial 
Interferometer

∼ 107 atoms launched 
with velocities ~ 10 m/s

Atoms are in free fall 
during interferometer.

T ~ 1 s sets interferometer 
length to ~ 10 m.
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Phase Shift in the Interferometer

• Differences in the 
trajectories of the 
wavepackets. 

• The laser phase imprinted 
on the atom during the atom 
laser interaction. 

Control Laser Passive Laser
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What can cause a phase shift?

Control Laser Passive Laser
x

0

T

2T

T
i
m
e

Τa

Τb

Τc

Τd

Interferometer symmetric 
about the mirror pulse at T.

Need to break symmetry to 
cause phase shift.

Interferometer is an 
accelerometer.
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The Gravitational Wave Signal in the Interferometer
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The Gravitational Wave Signal in the Interferometer

Distance between passive laser and the 
atom altered by gravity wave.

Emission time of passive laser pulse 
altered by ~ hL
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The Gravitational Wave Signal in the Interferometer

Distance between passive laser and the 
atom altered by gravity wave.

Emission time of passive laser pulse 
altered by ~ hL

Imprinted laser phase altered by ~ khL

ds2 = −dt2 + (1 + h sin(ω(t− z)))dx2 + (1− h sin(ω(t− z)))dy2 + dz2

Pulse control laser at 0, T and 2 T.
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The Gravitational Wave Signal in the Interferometer

Phase difference maximal when T ∼ 1
ω

ds2 = −dt2 + (1 + h sin(ω(t− z)))dx2 + (1− h sin(ω(t− z)))dy2 + dz2

Control Laser Passive Laser
L

0

T

2T

T
i
m
e

!L!hL

T!L"hL

2T!L!hL



The Gravitational Wave Signal in the Interferometer

Phase difference maximal when T ∼ 1
ω
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The Gravitational Wave Signal in the Interferometer

Phase difference maximal when T ∼ 1
ω

ds2 = −dt2 + (1 + h sin(ω(t− z)))dx2 + (1− h sin(ω(t− z)))dy2 + dz2

Maximal phase shift  ~ keffhL

Control Laser Passive Laser
L
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T
i
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!L!hL

T!L"hL

2T!L!hL

Full calculation: 2keffhL sin2

(
ωT

2

)
sin (ωt)



Comparison of two distant clocks (atom, 
laser) in the presence of a gravitational 

wave.

The Gravitational Wave Signal in the Interferometer

Phase difference maximal when T ∼ 1
ω

ds2 = −dt2 + (1 + h sin(ω(t− z)))dx2 + (1− h sin(ω(t− z)))dy2 + dz2

Maximal phase shift  ~ keffhL
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The Gravitational Wave Signal in the Interferometer

ds2 = −dt2 + (1 + h sin(ω(t− z)))dx2 + (1− h sin(ω(t− z)))dy2 + dz2

Control Laser Passive Laser
L

0

T

2T

T
i
m
e

!L!hL

T!L"hL

2T!L!hL

Measuring acceleration ~ h L 
between atom and laser due 

to gravitational wave.
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What about vibrational noise?

The atoms are in free fall during the course of the 
interferometry.  

Atoms coupled to vibrations only 
gravitationally.  A much smaller effect!

BUT

The lasers are not in free fall. 

Laser phase noise?
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Differential Measurement

Run two, widely separated atom interferometers using common lasers. 

Laser vibration and phase 
noise cancels (up to finite 
light travel time effects).

Measure differential 
phase shift.

Gravitational wave 
signal is retained  ~

keff hL
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Take LIGO’s 
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free fall.

Differential Measurement

Run two, widely separated atom interferometers using common lasers. 
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Take LIGO’s 
mirrors, drop them 

and measure relative 
acceleration during 

free fall.

Differential Measurement

Run two, widely separated atom interferometers using common lasers. 

Control Laser Passive LaserL
Distance

0

T
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T
i
m
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Τa1

Τa2

Τb1

Τb2
Τc1

Τc2

Τd1

Τd2

Atoms are LIGO’s 
mirrors.

Role of laser similar 
to LIGO’s laser.
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Terrestrial Configuration

Two 10 m atom interferometers at either ends 
of a vertical mine shaft.

Both interferometers are operated by common 
lasers.

Allows free fall time ~ 1s.  Maximally sensitive in 
the 1 Hz band.

One possible site: DUSEL Homestake Mine in South 
Dakota (longest shaft ~ 2.5 km).

Signal scales with the length ~ 1 km between 
interferometers.

I1

I2

 ~10 m

 ~ 1 km

 ~10 m
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Backgrounds

Systematics due to finite light travel time: 

For L ~ 1 km, light travel time ~ 

Laser vibration control requirement: 10−7 m√
Hz

(
1 Hz

f

) 3
2

(
1 km

L

)

(
for frequencies 1 Hz < f < 3× 105 Hz

)

Control over laser phase noise       : −140
dBc
Hz

@ 3× 105Hz

Fractional frequency stability          : δf

f
∼ 10−15 over time scales of 1 s

(demonstrated with lasers locked to high finesse cavities)

A lot of other backgrounds. While 
non-trivial, they all seem controllable. 

3× 10−6s
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Ultimate Background for Terrestrial Gravitational Wave 
Detection

Seismic vibrations gravitationally couple 
to the free falling atoms. 

Cannot be shielded.

Allows for gravitational wave detection 
down to

ω ∼ 0.3 Hz

(Thorne and Hughes)
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Satellite based Gravitational Wave Detection

LISA
Technical Details

Measure length changes
between free floating mirrors 

due to gravitational wave.

Arm length L ~ 5 million km.

A gravity wave of amplitude
h ∼ 10−20 causes a length
change hL ∼ 10−10 m.
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The LISA Challenge

Mirror Position should fluctuate by < 0.1 nm 
in the frequency band of interest.

LISA Satellite

Mirror is inside a satellite of mass of a few
hundred kg. 

Free floating mirror gravitationally coupled
 to vibrations of the satellite.

Requires position control of the satellite ~ 1
nm√
Hz

at 10−2 Hz
(LISA Pre Phase A Report)

Major hurdle for LISA
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Atom Interferometer Satellite Configuration

Two widely separated atom interferometers run by common lasers.

Atom sources and lasers need to be housed in the satellite.

BUT

Do the atom trajectories have to lie inside the satellite?
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Atom Trajectory Environmental Requirements 

Mean collision time with background gas and photons must be larger 
than the interferometer operation time.

Interplanetary gas at 1 AU has n ~ 5 particles/cm3,  moving at v ~ 500 
km/s. Mean collision time >> 1000 s. 

Stable magnetic field direction required during the interferometer 
operation time to stabilize the atom’s quantization axis. 

Interplanetary magnetic field at 1 AU ~ 5 nT.  Permanent magnet can 
provide bias field ~ 20 - 100 nT over 100 m region from satellite.
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Satellite Experiment Setup

IL~100 md~30 m

S1

IL~100 m d~30 m

S2

L ~ 1000 km

Atoms brought d ~ 30 m from satellites through laser manipulations.  
Run interferometer over region IL ~ 100 m.  

Position fluctuation δr of the satellite causes an acceleration ∼
(

GMsat

d2

) (
δr

d

)

Effects of satellite position noise strongly suppressed with increasing d. 
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Satellite Experiment Setup

IL~100 md~30 m

S1

IL~100 m d~30 m

S2

L ~ 1000 km

Final phase shift can be read either by kicking the atoms back to the base 
satellite or by imaging the cloud using lasers from the opposite satellite.

Signal again scales with the distance L between interferometers.  Distance 
limited by laser power.  With One  Watt, L ~ 1000 km. 

With IL ~ 100 m,   T < 100 s.  Can probe gravitational waves with frequencies 
greater than 10-2 Hz.
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Ideally...

Three independent channels with directional information.

Increases confidence in detection. 

Further suppresses laser phase noise. 

S1 S2

S3

L ~ 1000 km

Enhances sensitivity to stochastic gravitational wave sources by cross-
correlation. 



Backgrounds

For gravitational wave sensitivity similar to LISA,  the atom 
interferometer requires position control of the satellite at 

∼ 10
µm√
Hz

at 10−2 Hz for d ∼ 30 m.



Backgrounds

For gravitational wave sensitivity similar to LISA,  the atom 
interferometer requires position control of the satellite at 

∼ 10
µm√
Hz

at 10−2 Hz for d ∼ 30 m.

LISA Requirement: 1
nm√
Hz

at 10−2 Hz



Backgrounds

For gravitational wave sensitivity similar to LISA,  the atom 
interferometer requires position control of the satellite at 

∼ 10
µm√
Hz

at 10−2 Hz for d ∼ 30 m.

LISA Requirement: 1
nm√
Hz

at 10−2 Hz

Stray electrostatic forces are a problem for LISA



Backgrounds

For gravitational wave sensitivity similar to LISA,  the atom 
interferometer requires position control of the satellite at 

∼ 10
µm√
Hz

at 10−2 Hz for d ∼ 30 m.

LISA Requirement: 1
nm√
Hz

at 10−2 Hz

Stray electrostatic forces are a problem for LISA

Background absent for atom interferometer. 
Neutral atoms in magnetically insensitive states.



Backgrounds

For gravitational wave sensitivity similar to LISA,  the atom 
interferometer requires position control of the satellite at 

∼ 10
µm√
Hz

at 10−2 Hz for d ∼ 30 m.

LISA Requirement: 1
nm√
Hz

at 10−2 Hz

Stray electrostatic forces are a problem for LISA

Background absent for atom interferometer. 
Neutral atoms in magnetically insensitive states.

Collisions with background gas also a problem for LISA.



Backgrounds

For gravitational wave sensitivity similar to LISA,  the atom 
interferometer requires position control of the satellite at 

∼ 10
µm√
Hz

at 10−2 Hz for d ∼ 30 m.

LISA Requirement: 1
nm√
Hz

at 10−2 Hz

Stray electrostatic forces are a problem for LISA

Background absent for atom interferometer. 
Neutral atoms in magnetically insensitive states.

Collisions with background gas also a problem for LISA.

Not a problem for atom interferometer.
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Laser Requirements

S1 S2

S3

L ~ 1000 km

Phase noise cancellation up to knowledge of arm length.
1m arm length resolution, need laser frequency stability 

∼ 104 Hz√
Hz

@ 10−2 Hz

LISA ∼ 10
Hz√
Hz

@ 10−2 Hz



Laser Requirements

S1 S2

S3

L ~ 1000 km

A lot of other backgrounds. While 
non-trivial, they all seem controllable. 
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Sensitivity of the Atom Interferometer

Ultimate sensitivity depends on the smallest detectable phase 

and the momentum        transferred to the atom.keff

Status of the technology?

The phase shift in the interferometer is ∼ keffhL sin2

(
ωT

2

)

δφ ∼ 1√
Natoms
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The Stanford 10 m Atom Interferometer

drop colocated 85Rb and 87Rb clouds to test Principle 
of Equivalence

10 m atom drop tower.

10
 m

 Test equivalence principle to 10-15

in controlled (lab) conditions. Improves current 
bounds by ~ 300. 

Goal

Phase sensitivity δφ ∼ 3× 10−4 rad√
Hz

Might get up to

(Hogan, Johnson and Kasevich)

Results expected soon!

            

10 m

            

Demonstrated 

keff ∼ 100 k

keff ∼ 88 k



Projected Terrestrial Sensitivity

L= 1 km and 4 km
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Terrestrial Stochastic Sensitivity

WD background
(Farmer & Phinney)
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Projected Satellite Sensitivity

L= 100 km, 103 km, and 104 km
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Satellite Stochastic Sensitivity
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Satellite Stochastic Sensitivity

also get observable gravity waves from some SUSY models (NMSSM)
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Morals
Free falling atoms are fantastic inertial proof masses.

Ideal for high precision gravitational experiments.

Competitive with optical interferometers.

Sensitivity limited by atom technology, not backgrounds.

Improved technology (e.g. more photon kicks, squeezed atom 
states etc.) imply direct sensitivity gain. 



Conclusions
• The discovery of gravitational waves will open a new 

window into the Universe. 

• The frequency band 10-2 Hz - 10 Hz is rich with a large 
number of expected astrophysical sources. It also 
probes the cosmology of the Universe during the 
electroweak transition. 

• Frequency band complementary to LIGO.

• The atom interferometer configuration discussed in this 
talk allows for large signal enhancements while 
simultaneously suppressing backgrounds. 

• Potentially easier systematics than conventional light 
interferometers.
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