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Primordial non-Gaussianity

Why study primordial non-Gaussianity? 

The most common single (scalar) field, slow-roll 
inflation predicts the primordial perturbation to be 
Gaussian.

Detections of primordial non-Gaussianity can 
constrain inflation models.

Local       model: 

Φ = φg + fnl(φ2
g − 〈φ2

g〉)

fnl



A brief  history of  the Universe

NASA/WMAP Science team



Signatures of  Primordial non-Gaussianity

Modification in the primordial perturbation left signatures 
on CMB and LSS

Some debates on the current constraints on       from CMB:

Yadav & Wandelt (2008):

Komatsu et al. (2009): 

Using LSS to constrain        

difficulties: gravitational evolution transforms a Gaussian 
distribution to a non-Gaussian one AND 

the non-Gaussianity from gravitational evolution is much 
stronger than the primordial contribution

fnl

27 < fnl < 147 – 3σ detection

−9 < fnl < 111

fnl



Signature of  Primordial non-Gau on LSS

power spectrum and bi-spectrum (Scoccimarro, Sefusatti & 

Zaldarriaga 2004);

scale dependent halo bias (Dalal et al. 2008; Slosar et al. 2008);

halo mass function (Lo Verde et al. 2008; TYL & Sheth 2009; TYL, Sheth 

& Desjacques 2009);

probability distribution function of dark matter field 
(Grossi et al. 2008; TYL & Sheth 2009; TYL, Desjacques & Sheth 2009);

void abundances (Kamionkowski, Verde & Jimenez 2009; TYL, Sheth & 

Desjacques 2009);

weak lensing mass map of high z galaxy cluster (Jimenez & 
Verde 2009)

PDF of dark matter field
redshift space distortion
halo mass function
void abundances



PDF of dark matter field                   
--               measure the 
probability of having mass 
M in volume V

gravitational instability 
causes overdense region to 
collapse and underdense 
region to expand            

the resulting distribution is 
highly non-gaussian

PDF of  dark matter field

p(M |V )

provides foundation to study the distributions of 
bias tracers (halos, galaxies and 21 cm)

MPA (Garching)z=18.3 (t=0.21 Gyr) z=0 (t=13.6 Gyr) z=5.7 (t=1.6 Gyr) z=1.4 (t=4.7 Gyr) 



PDF of  dark matter field for fnl = 0



Spherical collapse model

Assume the gravitational evolution is spherical symmetric: 
there exists a 1-1 mapping to predict the nonlinear 
overdensity        from the linear overdensity δlδNL

ρ ≡ 1 + δNL =
M

ρ̄V
=

(
1− δl

δc

)−δc

(Bernardeau 1994; Sheth 1998) where δc = 1.66 for ΛCDM universe



ρnl diverges as δl → δc

 ρnl = 1 + δnl ≈ 1 + δl when δl ∼ 0.
 



PDF of  dark matter field
Given the linear-nonlinear mapping (spherical collapse 
model), what we need is a statistical method to relate the 
two distributions 

TYL & Sheth (2008) showed that the local deterministic 
perturbation theory approach fares well compared to 
more complicated excursion set approach (which 
includes the cloud-in-cloud effect)

p(δl) and p(δNL|V ) = p(ρ|V )

∫ ∞

M
dM ′ p(M ′|V )

M ′

M̄
=

∫ ∞

δl(M,V )
dδ p(δ|M, V )

extra weighting factor

Note: the correct smoothing scale in the initial field = volume containing the mass M



PDF of  DM field (Initial distribution)
When the initial perturbation is described by Gaussian 
distribution, the distribution on rhs is given by 

p(x)dx =
e−x2/2

√
2π

dx where x = δl
σ(M)

For non zero fnl, approximate the distribution by 
Edgeworth expansion:

p(δl|Rl)dδl =
e−ν2(Rl)/2

√
2π

[
1 +

σNG(Rl)S3(Rl)
6

H3(ν(Rl)) + . . .

]
dν(Rl)

where ν(Rl) = δl/σNG(Rl) H3(ν) = ν(nu2 − 3)
S3 = 〈δ3

l 〉/σ4
rmNG σNG = 〈δ2

l 〉

and terms higher than S3(Rl) are neglected



Nonlinear PDF in real space 

With the initial distribution, the nonlinear pdf can be 
computed:

ρ2p(ρ|V ) = pNG (δl(ρ)|Vl(ρ)) ν
d ln ν

d ln ρ

Hence its functional form is:

ρ2p(ρ|V ) =
1√

2πσ2(ρ)
exp

[
− δ2

l (ρ)
2σ2(ρ)

] [
1 +

σS3(ρ)
6

H3

(
δl(ρ)
σ(ρ)

)]

×
[
1− δl(ρ)

δc
+

γσ

6
δl(ρ)

]

= ρ2pG(ρ|V )
[
1 +

σS3(ρ)
6

H3

(
δl(ρ)
σ(ρ)

)]

modifications due to primordial non-Gaussianity



 

 

For typical value of                   , one find the following:

Modification factor in real space PDF
[
1 +

σS3(ρ)
6

H3

(
δl(ρ)
σ(ρ)

)]

σS3 = 0 when fnl = 0→ returns to Gaussian results

δl = 0 when ρ = 1→ little or no correction near ρ ≈ 1

H3 ∝ ρ3/5 for ρ" 1
∝ −ρ6/5 for ρ$ 1

γσ(≈ 6/5)

Contrary to the change in the initial distribution the modification 
in the nonlinear PDF is asymmetric
the effect is expected to be stronger in the underdense region



Comparisons to N-body measurements

r = 8 Mpc/h r = 4 Mpc/h

fnl = ±100



Signature on redshift space distortion

Our model successfully describes the signature of 
primordial non-Gaussianity in the real space PDF.

Note that, however, observations are made in redshift 
space coordinate.

Non zero fnl in the primordial perturbation also affects 
both the matter and velocity distributions. Hence 
modification in redshift space distortion is expected. 



Redshift space distortion

Hamilton 1997



The redshift space density power spectrum is related 
to the real space density power spectrum:

Redshift space distortion when fnl = 0

where µ = cosine of the angle to the line of sight
and f ≈ Ω0.6

m

The average over     gives the well-known Kaiser 
formula:

µ

(
1 +

2
3
f +

1
5
f2

)

Ps(k) = (1 + fµ2)2P (k)



Redshift space distortion for non zero fnl

In this talk I will use the ellipsoidal collapse model to 
compute the redshift space distortion for the case 
when fnl is non zero.

Ellipsoidal collapse model is an approximation which 
describes the gravitational evolution tri-axially.

It reduces to perturbation theory at early time (Bond & 

Myers 1996), but allows one to study more nonlinear 
structure (Sheth et al. 2001; Desjacques 2008).

Ohta et al. (2004) and TYL & Sheth (2008) showed that when fnl is 
zero, the ellipsoidal collapse predicts the Kaiser 
formula.



Ingredients for ellipsoidal collapse

Ellipsoidal collapse model requires the knowledge of the 
distribution of the eigenvalues of the shear field;

When              it is given by the Doroshkevich celebrated 
formula.

The extension to the local fnl model is given by TYL, Sheth & 

Desjacques (2009).

Denote      as the eigenvalues of the initial shear field 
which is proportional to       , where

fnl = 0

λi

Φij

Φij = φij + 2fnl(φiφj + φφij)



The correlations of        are important: we want to find 
a set of independent elements of the shear field 
components.

It turns out that the three off-diagonal components are 
not correlated.

The three diagonal components are correlated. Define

The new set                                        forms an 
independent set.

Five of the six components (except x) have zero 
skewness up to second order of fnl         those are drawn 
from Gaussian distributions. 

x =
∑

i

Φii y =
1
2
(Φ11 − Φ22) z =

1
2
(Φ11 + Φ22 − 2Φ33)

{x, y, z,Φ12,Φ23,Φ31}

Φij



Notice that x is the trace of the shear field tensor, 
hence it is equivalent to the linear overdensity    , 
whose distribution is approximated by the Edgeworth 
expansion. 

Therefore 

δl

p(λ|δl) = p0(λ|δl)

p(λ) = p(λ|δl)p(δl) = p0(λ|δl)p0(δl)
[
1 +

σS3

6
H3(δl/σ)

]

= p0(λ)
[
1 +

σS3

6
H3(δl/σ)

]

This property allows many useful results from Gaussian 
statistics to be extended to this local fnl model easily



Ellipsoidal collapse model
TYL & Sheth (2008) derived an improved approximation of 
the ellipsoidal collapse model: can be viewed as 
combining the Zeldovich approximation and the 
spherical collapse model.

ρr =
(1− δl/3)3

(1− δl/δc)δc

3∏

j=1

(1− λj)−1

where δc ≈ 1.66 and δl =
∑

i λi

When all      are equal, the above expression returns to 
the spherical collapse approximation.

The correction factor compared to the Zeldovich 
approximation is the ratio of a Zeldovich sphere to 
the “exact” spherical solution.

λi



r = 8 Mpc/h

r = 4 Mpc/h

Change in the distribution profile for fnl = ±100



Kaiser factor from ellipsoidal collapse model
Kaiser factor can be derived by expanding the ellipsoidal 
collapse in series form:

1 + δs = 1 + δ(1)
s + δ(2)

s + δ(3)
s + . . .

δ(1)
s = δ(1)

r + ∆(1)
z

δ(2)
s = δ(2)

r + ∆(2)
z + δ(1)

r ∆(1)
z

δ(3)
s = δ(3)

r + ∆(3)
z + δ(2)

r ∆(1)
z + δ(1)

r ∆(2)
z

where

The variance can be computed by taking the average 
over the distribution of    ;λ

Non zero fnl only changes the values of the averages.



Signature of  fnl on redshift space distortion
The Kaiser factor can be derived by looking at the 
variance of the dark matter fluctuation.

The zeroth order gives the ordinary Kaiser factor and it 
is independent of fnl:

〈δ2
s〉 ≈ 〈(δ(1)

r )2〉 =
(

1 +
2
3
f1 +

1
5
f2
1

)
σ2

Signature of primordial non-Gaussianity is in the first 
order correction:

Pδδ

Pδv

Pvv

〈δ2
s〉(2) = 2

σS3

6
σ3

[
3ν2 + (ν2 +

2
3
)f1 −

44
45

f2
1 +

4
9
f3
1 +

ν2

3
f1f2 + ν2f2

]

∝ fnl



Short Summary
Primordial non-Gaussianity changes the distribution of the initial 
perturbations, hence left signatures on LSS.

Our analytical model describes the signature in the real space PDF 
accurately and was verified by comparing to N-body simulations.

The modification in the nonlinear PDF is asymmetric: the effect of 
fnl is stronger in underdense regions.

The redshift space distortion is expected to have primordial non-
Gaussianity signature -- the ellipsoidal collapse model is applied in 
this study.

I extended the Doroshkevich formula on the distribution of the 
eigenvalues of the shear field to the local fnl model -- other results 
with Gaussian initial conditions can be extended easily.

The redshift space PDF is accurately described by this analytical 
model -- primordial non-Gaussianity left a signal in the redshift 
space distortion.



Signature of  primordial non-Gaussianity on 
LSS -- halo (& void) abundances

Virialized dark matter halos are rare objects -- hence its 
distribution can probe the extremum of the matter 
distribution.

Halo mass function is an important cosmological 
quantity -- can also constrain fnl.

Press & Schechter (1974) formalism: halos form from sufficiently 
overdense regions in the initial field         count the 
number of regions exceeding a critical value     .

Lee & Shandarin (1998): halos form tri-axially        criteria for 
halo formation is 

δc

λl > λc



Excursion set approach and cloud-in-cloud effect
Both formalisms fail to take the cloud-in-cloud effect into 
account: an overdense region embedded in a bigger 
overdense region should not be counted.

One should then start with the biggest possible smoothing 
scale, count the number of regions with sufficient density. 
Then gradually decrease the smoothing scale.

Excursion set approach provides a formalism to perform 
such complicated procedures: it makes use of the fact that 
the rms fluctuation is a decreasing function of mass.

The critical density for halo formation is visualized by a 
barrier. Multiple random walks are created and the first 
crossing probability across the barrier is computed.



Sheth-Tormen mass function

          denotes the first crossing probability.

It can be obtained by either Monte-Carlo simulation or 
fitting formula.

Sheth & Tormen (2002) gave the following fitting 
formula:

n(m) =
ρ̄

m2

∂F

∂ ln ν

d ln ν

d lnm
where ν ≡ δc

σ(m)

f(S)dS = |T (S)| exp
[
−B(S)2

2S

]
dS/S√

2πS

∂F

∂ ln ν

B(S) is the barrierS = σ2where , , and T (S) =
5∑

n=0

(−S)n

n!
∂nB

∂Sn



Halo mass function forfnl = 0

Sheth & Tormen (2002)

B(σ) =
√

aδc[1 + β(σ/
√

aδc)2γ ]
where a = 0.7, β = 0.4, and γ = 0.6.

Press Schechter

Excursion set with moving barrier



Extension of  excursion set approach to fnl model  

Lo Verde et al. (2008) and Matarrese et al. (2000) used the Press Schechter 
formalism to estimate the halo mass function when fnl is non 
zero.

They found that, even though the halo mass function from the 
PS formalism does not match the N-body simulations when the 
primordial perturbation is Gaussian, the ratio n(m,fnl)/n(m,fnl=0) 
matches the measurements very well.

Aim of our study: provide a consistent approach to study the 
change in the halo mass function when fnl is non zero.

It turns out that our approach reveals some information either 
missed and neglected by previous studies. It also clarifies the 
approximation formula given in Sheth & Tormen (2002).



Excursion set approach in fnl model

As shown earlier, the distributions of shape parameters 
are unchanged for a given linear overdensity.

Hence the same barrier found in Sheth & Tormen (2002) can 
be used.

However the first crossing probability across the same 
barrier B(S) is changed.

Use the Edgeworth expansion and the bi-variate 
Edgeworth expansion to approximate the distributions
p(δ, s) and p(δ1, s|δ2, S)



First crossing probability across B(S)

p(δ, s) =
∫ s

0
dSf(S, B(S))p(δ, s|B(S), S,first) for δ > B(S)

and
P (b, s) =

∫ ∞

b(s)
dδ p(δ, s)

=
∫ s

0
dS f(S, B)

∫ ∞

b
dδ p(δ, s|B, S,first)

derivative wrt to s fields an integral equation of the 
first crossing distribution f(S,B)



Case 1 -- fnl = 0

The above argument leads to the following solution of 
the first crossing probability across a moving barrier:

sf0(s, b) =
[
b− s

∂b

∂s

]
e−b2/2s

√
2πs

−
∞∑

i=2

si

i!
∂ib

∂si

∫ s

0
dS f0(S, B)

e−(b−B)2/2(s−S)

√
2π(s− S)

(S/s− 1)i−1

The approximation formula given in Sheth & Tormen (2002) 
corresponds to ignoring the S/s terms and keeping only the 

first few terms in the series.



Case 2 -- 

For non zero fnl, the conditional probability is more 
complicated as

Use bivariate Edgeworth expansion to approximate this 
conditional probability

 This ignores the correlation between steps and the fact 
that the walk did not cross      

fnl != 0

p(δ1, s|δ2, S) != p(δ1 − δ2|s− S)

δ2 before S



The resulting integral equation is 

f0(s, b)
2

[
1 +

σS3

6
H3

(
b√
s

)]

=
f(s, b)

2

{
1 + 2

∫ s

0
dS

∂

∂s
P0

(
b−B√
s− S

)
f(S, B)− f0(S, B)[1 + (σS3/6)H3(b/

√
s)]

f(s, b)

+ 2
σS3

6

∫ s

0
dS

f(S, B)
f(s, b)

∂

∂s

[
E(s, S)p0

(
b−B√
s− S

)]}
.

← f (0)(s, b)

Keeping terms to the first order of σS3

f(s, b) = f (0)(s, b)
(

1 +
f (1)

f (0)

)
≈ f0(s, b)

[
1 +

σS3

6
H3

(
b√
s

)
− σS3

6
G(s)

]

where G(s) is a complicated function depending on the
barrier and the first crossing distribution for fnl != 0

and it is non zero for constant barrier



Previous studies either explicitly neglected (Matarrese et al. 2000) 
or missed (LoVerde et al. 2008) this term.







Short Summary (on halo mass function)
extension of the excursion set approach to the local fnl 
model yields an extra term that is either missed or 
neglected in earlier studies;

this term turns out to be small: it explains why earlier 
studies match N-body measurements without this 
term;

however, our approach is the only consistent approach 
that can match the ratio change when comparing the 
halo mass function n(m, fnl)/n(m, fnl=0)

as well as the halo mass function when fnl=0;

it also explains an approximation formula given in Sheth 
& Tormen (2002)



 Void abundances in local fnl model

Primordial non-Gaussianity modifies the tails of the 
PDF of the dark matter field;

the signature in the underdense region is stronger;

hence, in addition to halo mass function, void 
abundances can also probe primordial non-Gaussianity;

the excursion set formalism can be used to study the 
void abundances -- includes both the cloud-in-cloud 
AND the void-in-cloud effect



Void-in-Cloud effect

Unlike halos, which can reside in underdense region, 
voids cannot sit inside a halo       void-in-cloud effect;

In the excursion set language, it is a two-barrier 
problem (     for halo formation,     for void);

want to count: all first crossings across the void barrier, 
without crossing the halo barrier at smaller s (more 
massive scale);

δc δv



Excursion set approach: 2 barrier problem

F(s, δv, δc) = f(s, δv)−
∫ s

0
dS1F(S1, δc, δv)f(s, δv|S1, δc)

Probability of crossing      at s, but did not cross  δv δc

Swapping δv and δc

Recurrence relation between F and f

F(s, δv, δc) = f(s, δv)

+
∞∑

n=1

(−1)n

∫ S0

0
dS1 . . .

∫ Sn−1

0
dSn

n−1∏

m=0

f(Sm, δm|Sm+1, δm+1)f(Sn, δn)

where S0 ≡ s, δn = δv (n even) or δc (n odd)



Void Abundances when fnl = 0



fnl = 100
fnl =-100

Combining with the halo mass function comparison, 
they can break the degeneracy of σ8 and fnl



Conclusions

Primordial non-Gaussianity is of much recent attractions 
due to its ability to distinguish inflation models;

LSS can be used a probe to primordial non-Gaussianity: 
this is complementary to the CMB constraints;

In this talk we look at 4 different probes: PDF of dark 
matter field, redshift space distortion, halo mass function 
& void abundances;

Future work: combining these methods with other LSS 
probes to tighten constraints;

Extension to other primordial non-Gaussianity models 


