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Primordial non-Gaussianity

* Why study primordial non-Gaussianity?

% The most common single (scalar) field, slow-roll
inflation predicts the primordial perturbation to be
(Gaussian.

* Detections of primordial non-Gaussianity can
constrain inflation models.

¥ Local f,,; model:
b = ¢g =t fnl(% = <¢3>)
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Signatures of Primordial non-Gaussianity

* Modification in the primordial perturbation left signatures
on CMB and LSS

* Some debates on the current constraints on f,,; from CMB:

* Yadav & Wandelt (2008): 27 < f,,; < 147 — 30 detection

* Komatsu et al. (2009): —9 < f,,; < 111

% Using LSS to constrain fn

* difficulties: gravitational evolution transforms a Gaussian
distribution to a non-Gaussian one AND

* the non-Gaussianity from gravitational evolution is much

stronger than the primordial contribution




Signature of Primordial non-Gau on LSS

* poOwer spectrum and bi—spectr Um (Scoccimarro, Sefusatti &

Zaldarriaga 2004);

¥ scale depengypivio BFetRtk et fietd

* halo mass f@eeelshifespacedivtontions: TYL, Sheh
& Desiacques 20G¥h alo mass function

* probability @stgbdtidydvrdtineef dark matter field

(Grossi et al. 2008; TYL & Sheth 2009; TYL, Desjacques & Sheth 2009);

¥ VOid abundances (Kamionkowski, Verde & Jimenez 2009; TYL, Sheth &

Desjacques 2009);

* weak lensing mass map of high z galaxy cluster (imenez &
Verde 20009)




PDF of dark matter field

¥ PDF of dark matter field
—p(M|V') measure the e ™ 550
probability of having mass [REEEEEE
M in volume V P o

* gravitational instability
causes overdense region to s
collapse and underdense |
region to expand

. . . . . #ﬁwﬂﬁ)’ |
the resulting distribution is

highly non-gaussian

¥ provides foundation to study the distributions of
bias tracers (halos, galaxies and 21 cm)

| MPA (Gching)




PDF of dark matter field for f,,; = 0
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Spherical collapse model

* Assume the gravitational evolution is spherical symmetric:
there exists a 1-1 mapping to predict the nonlinear
overdensity ont, from the linear overdensity 9;

Source: Florida Center for Instructional Technology Clipart
(Tampa: University of South Florida, 2007)
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¥ pn1 =140, ~ 14 §; when §; ~ 0.
% pn1 diverges as 0; — 0.




PDF of dark matter field

% Given the linear-nonlinear mapping (spherical collapse
model), what we need is a statistical method to relate the
two distributions p(d;) and p(dnw|V) = p(p|V)

% TYL & Sheth (2008) showed that the local deterministic
perturbation theory approach fares well compared to
more complicated excursion set approach (which
includes the cloud-in-cloud effect)

extra weighting factor
- N
[ awpar )G = [ asp(6v)
M M 51 (M,V)

Note: the correct smoothing scale in the initial field = volume containing the mass M




PDF of DM field (Initial distribution)

* When the initial perturbation is described by Gaussian
distribution, the distribution on rhs is given by

—z?/2
€ 5
p(x)dr = dz where x = 0D

V2m

* For non zero £, approximate the distribution by
Edgeworth expansion:

e~V (R1)/2 ong (Ry)S3(R;)

p(5l‘Rl)d5l — \/% 1+ Hg(V(Rl)) 4+ ... dV(Rl)
WhCI’C V(Rl) a 5Z/O'NG(RZ) Hg(V) — V(nu2 = 3)
S3 = (07)/0rmne onG = (67)

and terms higher than S3(R;) are neglected




Nonlinear PDF 1n real space

* With the initial distribution, the nonlinear pdf can be
computed:

dl
P*p(plV) = pxc (5u(p) Vi) vy
% Hence its functional form is:
: B 1 o | 5l2(/0) 053(,0) 5l(ﬂ)
PV = e | =g | |1+ 75 (50 )
X [1 — 51;5) + %051(,0)]
= p°pc(p|V) [1 + Jsé(p) Hs (501((5)))]

modifications due to primordial non-Gaussianity




Modification factor in real space PDF

T ()

* 0S3 = 0 when f,; = 0 — returns to Gaussian results
% 0; = 0 when p = 1 — little or no correction near p ~ 1

* For typical value of V(= 6/5), one find the following:
Hs x  p3/2for p>>1
x —p8/% for p < 1

Contrary to the change in the initial distribution the modification
in the nonlinear PDF is asymmetric

the effect is expected to be stronger in the underdense region




Comparisons to N-body measurements
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Signature on redshift space distortion

* Our model successfully describes the signature of
primordial non-Gaussianity in the real space PDF.

% Note that, however, observations are made in redshift
space coordinate.

* Non zero fy in the primordial perturbation also affects
both the matter and velocity distributions. Hence
modification in redshift space distortion is expected.




Redshift space distortion

Real space: Redshift space:

— (D

Squashing effect

Linear regime

H —
Collapsed
Turnaround
e@ = =
vV
Collapsing Finger-of-god

Hamilton 1997




Redshift space distortion when f,,; =0

* The redshift space density power spectrum is related
to the real space density power spectrum:

Py(k) = (1+ fu?)*P(k)
where 11 = cosine of the angle to the line of sight

and f ~ QY0

* The average over i gives the well-known Kaiser

formula:
2 1
14 2 L2
(+3f+5f>




Redshift space distortion for non zero fu

* In this talk I will use the ellipsoidal collapse model to
compute the redshift space distortion for the case
when fy is non zero.

* Ellipsoidal collapse model is an approximation which
describes the gravitational evolution tri-axially.

* It reduces to perturbation theory at early time Bond &
Myers 1996), but allows one to study more nonlinear
structure (Sheth et al. 2001; Desjacques 2008).

*  Ohta et al. (2004) and TYL & Sheth (2008) showed that when fnl is
zero, the ellipsoidal collapse predicts the Kaiser
formula.




Ingredients for ellipsoidal collapse

* Ellipsoidal collapse model requires the knowledge of the
distribution of the eigenvalues of the shear field;

* When f,,; = 0 it is given by the Doroshkevich celebrated
formula.

¥ The extension to the local £, model is given by TYL, Sheth &

Desjacques (2009).

* Denote )\; as the eigenvalues of the initial shear field
which is proportional to ®;;, where

(I)f,;j - Cbz'j =k 2fnl(¢z¢j s ¢¢ZJ)




* The correlations of ®;; are important: we want to find
a set of independent elements of the shear field
components.

* It turns out that the three off-diagonal components are
not correlated.

* The three diagonal components are correlated. Define

1

1
r = qu Y = 5(@11 — Pyy) 2= 5((1311 + Poo — 2P33)

(/
¥ The new set {aja Y, 2, P12, Pas, (1331} forms an
independent set.

% Five of the six components (except x) have zero
skewness up to second order of f;i — those are drawn
from Gaussian distributions.




Lam, Sheth & Desjacques 2009
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Ellipsoidal collapse model

¥ TYL & Sheth (2008) derived an improved approximation of
the ellipsoidal collapse model: can be viewed as
combining the Zeldovich approximation and the
spherical collapse model.

1—6/3)3 »
Pr = ((1 — 5ll/{5c;5c E(l — >\g)

where 6. ~ 1.66 and 0; = > . \;

% When all A; are equal, the above expression returns to
the spherical collapse approximation.

¥ The correction factor compared to the Zeldovich

approximation is the ratio of a Zeldovich sphere to
the “exact” spherical solution.




Change in the distribution profile for f,; = 100
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Kaiser factor from ellipsoidal collapse model

* Kaiser factor can be derived by expanding the ellipsoidal
collapse in series form:

1+6s=1+6" +63 4+ + ...

where 69 = ¢ 4+ AW
53 = B3 L AB) 4 5AD 4 sAR)

*¥ The variance can be computed by taking the average
over the distribution of A;

* Non zero f; only changes the values of the averages.




Signature of 1, on redshift space distortion

* The Kaiser factor can be derived by looking at the
variance of the dark matter fluctuation.

* The zeroth order gives the ordinary Kaiser factor and it
is independent of fy:

Fsv
(82) ~ (G2 = ﬁl 2 in)er
Pss \

P’U’U

* Signature of primordial non-Gaussianity is in the first
order correction:

2 44 4 1%
= [3V2 ) g)fl - 4—5f12 o §ff) = §2f1f2 = szz]




Short Summary

Primordial non-Gaussianity changes the distribution of the initial
perturbations, hence left signatures on LSS.

Our analytical model describes the signature in the real space PDF
accurately and was verified by comparing to N-body simulations.

The modification in the nonlinear PDF is asymmetric: the effect of
fn1 is stronger in underdense regions.

The redshift space distortion is expected to have primordial non-
Gaussianity signature —- the ellipsoidal collapse model is applied in
this study:.

I extended the Doroshkevich formula on the distribution of the
eigenvalues of the shear field to the local f, model -- other results
with Gaussian initial conditions can be extended easily.

The redshift space PDF is accurately described by this analytical
model - primordial non-Gaussianity left a signal in the redshift
space distortion.




Signature of primordial non-Gaussianity on

LSS -- halo (& void) abundances

* Virialized dark matter halos are rare objects — hence its
distribution can probe the extremum of the matter
distribution.

* Halo mass function is an important cosmological
quantity —- can also constrain fy;.

% Press & Schechter (1974) formalism: halos form from sufficiently
overdense regions in the initial field —— count the
number of regions exceeding a critical value o..

% Lee & Shandarin (1998): halos form tri-axially —— criteria for
halo formation is A; > A.




Excursion set approach and cloud-in-cloud eftect
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Sheth-Tormen mass function

()_,5 OF dlnv oo 0

e 2 9y dinm o(m)

* i denotes the first crossing probability.
Olnv

* It can be obtained by either Monte-Carlo simulation or
fitting formula.

% Sheth & Tormen (2002) gave the following fitting
formula:

7(S)dS = [T(S)| exp [—

B(S)2] ds/S
25 Do

where T(S) =) (

)

—S)" "B

S . 3
n! o0S™ ) S —==0=5 and B(S) 1S the barrler




Halo mass function for f,,; = 0
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Extension of excursion set approach to t, model

* Lo Verde et al. Goo8) and Matarrese et al. 2oo0) used the Press Schechter
formalism to estimate the halo mass function when f,; is non
Zero.

* They found that, even though the halo mass function from the
PS formalism does not match the N-body simulations when the
primordial perturbation is Gaussian, the ratio n(m,f,)/n(m,f,=0)
matches the measurements very well.

* Aim of our study: provide a consistent approach to study the
change in the halo mass function when £ is non zero.

* It turns out that our approach reveals some information either
missed and neglected by previous studies. It also clarifies the
approximation formula given in Sheth & Tormen (2002).




Excursion set approach 1n f, model

¥ As shown earlier, the distributions of shape parameters
are unchanged for a given linear overdensity.

¥ Hence the same barrier found in Sheth & Tormen (2002) can
be used.

¥ However the first crossing probability across the same
barrier B(S) is changed.

¥ Use the Edgeworth expansion and the bi-variate
Edgeworth expansion to approximate the distributions

p(67 S) and p(517 8|527 S)




First crossing probability across B(S)

p(d,s) = /OSde(S,B(S))p(&S\B(S),S, first) for 6 > Bl

and

/ dd p(9; s)
b(s)

E /de(S,B)/ 46 p(5, 5| B, S. first)
0 b

£ 5 s)

derivative wrt to s fields an integral equation of the
first crossing distribution f(S,B)




Casel -, =0

* The above argument leads to the following solution of
the first crossing probability across a moving barrier:

ob e—b2/28
sfo(s,b) = [b—saS] S
s - 9th —(b=B)*/2(s—5) |
= B —
> 50 / 18 (8, B) s (S5 =

The approximation formula given in Sheth & Tormen (2002)
corresponds to ignoring the S/s terms and keeping only the
first few terms in the series.




Case 2~ [ # 0
* For non zero f,, the conditional probability is more
complicated as p(d1, 5|92, S) # p(d1 — d2]s — 5)

* Use bivariate Edgeworth expansion to approximate this
conditional probability

* This ignores the correlation between steps and the fact
that the walk did not cross 5 before S




The resulting integral equation is

2
£(s,b) s 8 (b=B\ f(5B)— fo(S, B[l + (055/6)Hs(b/ /)]
> {”2/0 d%PO(M) £(s,b)

iy 97% ["qg/15B) 9

6 Jo ¥ iGs0) 05 [5<s,s>p0 (%)”

Keeping terms to the first order of 0.53

f(s,b) = fO(s,b) (1 + W) ~ fo(s,b) |1+ %53 Hs (%) — %53 Q(s)]

where G(s) is a complicated function depending on the
barrier and the first crossing distribution for f,,; # 0

f(l)

and it is non zero for constant barrier




* Previous studies either explicitly neglected (Matarrese et al. 2000)
or missed (LoVerde et al. 2008 this term.
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Short Summary (on halo mass function)

extension of the excursion set approach to the local fy
model yields an extra term that is either missed or
neglected in earlier studies;

this term turns out to be small: it explains why earlier
studies match N-body measurements without this
term;

however, our approach is the only consistent approach
that can match the ratio change when comparing the
halo mass function n(m, f.)/n(m, f,=0)

as well as the halo mass function when f,=0;

it also explains an approximation formula given in Sheth
& Tormen (2002)




Void abundances 1n local {,; model

* Primordial non-Gaussianity modifies the tails of the
PDF of the dark matter field;

* the signature in the underdense region is stronger;

% hence, in addition to halo mass function, void
abundances can also probe primordial non-Gaussianity;

* the excursion set formalism can be used to study the

void abundances —- includes both the cloud-in-cloud
AND the void-in-cloud effect




Void-1n-Cloud effect

* Unlike halos, which can reside in underdense region,
voids cannot sit inside a halo——void-in-cloud effect;

* In the excursion set language, it is a two-barrier
problem (9. for halo formation, ¢, for void);

* want to count: all first crossings across the void barrier,
without crossing the halo barrier at smaller s (more
massive scale);




Excursion set approach: 2 barrier problem

F(5,05.0.) = (5.6,) — / A4S, F(Sy, 60, 8,) (5,051, 8)

0

Probability of crossing §,,at s, but did not cross 0..

Swapping 0, and J,. *

Recurrence relation between F and f

f(saévaéc) — f(Saév)
o0 So S,_1 n—1

= Z(—l)”/ dSl.../ dSn TT £(Sms 0mlSmsts Oms1) f (Snsdn)
=1 0 0 m=0

where Sy = s, §,, = 0, (n even) or ¢, (n odd)




Void Abundances when f,; = 0
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Conclusions

¥ Primordial non-Gaussianity is of much recent attractions
due to its ability to distinguish inflation models;

¥ LSS can be used a probe to primordial non-Gaussianity:
this is complementary to the CMB constraints;

¥ In this talk we look at 4 different probes: PDF of dark
matter field, redshift space distortion, halo mass function
& void abundances;

* Future work: combining these methods with other LSS
probes to tighten constraints;

* Extension to other primordial non-Gaussianity models




