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Special thanks to

Masahito, Masaki, Yuji, Kazuya, Rie, and others...
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Part I (Wed 07/12: about 1 ∼ 11
4 hour):

Based on arXiv 1602.05951 and 1612.09298.
(w/ Putrov, Wen, Yau)

Part II (Wed 07/19: about 1 ∼ 11
4 hour):

Based on arXiv 1705.06728.
(w/ Wen, Witten)

p.s. My Office is at 4F B04 IPMU.
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Part I
Braiding Statistics/Link Invariants of
Quantum Matter in 2+1 and 3+1D

Based on arXiv 1602.05951 and 1612.09298.
(w/ Putrov, Wen, Yau)
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Key Messages :

1. In 2+1D, particle(worldline)-particle braiding. In 3+1D, more
than particle-string and two string(worldsheet) braidings,
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Why do we need a multi-string braiding process?

• i. Two string braiding
cannot capture much (no
more than particle-loop
braiding). No link in 3+1D.

• ii. Dimensional reduction 3+1D → 2+1D picture:
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e.g. (de-)Categorification.
Reduce SL(3,Z) Rep to SL(2,Z) Rep.
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Part 1 talk, 1st Key Message

1. Multi-string braiding statistics characterize 3+1D
topological orders/TQFTs.

1

23

Levin’s (1403.7437), Ran’s (1404.1062), JW-Wen (1404.7854).
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Recall in 3D space:

1

23

.

In spacetime:

Z
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= Z(S4; Tri[µ1, µ2, µ3])

= Z(S4; Link[Spun[Hopf[µ3, µ2]], µ1])

Juven Wang Statistics/Link Invariants of Quantum Matter & New Topological Boundary Conditions 9



Recall in 3D space:

1

23

. In spacetime:

Z


1

2
3


= Z


1

2

3



= Z(S4; Tri[µ1, µ2, µ3])

= Z(S4; Link[Spun[Hopf[µ3, µ2]], µ1])

Juven Wang Statistics/Link Invariants of Quantum Matter & New Topological Boundary Conditions 9



Recall in 3D space:

1

23

. In spacetime:

Z


1

2
3


= Z


1

2

3


= Z(S4; Tri[µ1, µ2, µ3])

= Z(S4; Link[Spun[Hopf[µ3, µ2]], µ1])

Juven Wang Statistics/Link Invariants of Quantum Matter & New Topological Boundary Conditions 9



Juven Wang Statistics/Link Invariants of Quantum Matter & New Topological Boundary Conditions 10



Nicer to have field theory capture this 3-string braiding.

So we can compute the Berry phase and path integral.
And derive math link invariants.

• Let us recall a Z2 gauge theory in 2+1D
(or ZN gauge in any (d − 1) + 1D), described by an action∫

Md

N
2π

B ∧ dA

• Then we consider a 3+1D TQFTs:∫
M4

3∑
I=1

NI

2π
B I ∧ dAI +

N1N2 p
(2π)2N12

A1 ∧ A2 ∧ dA3

• We discuss the field theory first, then the lattice model.
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First field theory - compute the Berry phase, path
integral, and derive link invariants.

• ZN gauge in any dD, an action S [A,B ] =
∫
Md

N
2πB ∧ dA

〈Φ〉 =
1

Z

∫
DA DB exp[iS [A,B ]] exp[ie

∫
γ1

A] exp[iq

∫
Sd−2

B ]

� Integrate out B , the EOM imposes: dA = −2π
N q δ⊥(Sd−2).
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Field theory - compute the Berry phase, path integral,
and derive link invariants.

• ZN gauge in any dD, an action S [A,B ] =
∫
Md

N
2πB ∧ dA

〈Φ〉 =
1

Z

∫
DA DB exp[iS [A,B ]] exp[ie

∫
γ1

A] exp[iq

∫
Sd−2

B ]

� Integrate out B , the EOM imposes: A = −2π
N qδ⊥(Vd−1).

� But
∫
γ1 A =

∫
Md

A ∧ δ⊥(γ1). Together we derive

〈Φ〉 = exp[−2πi
N qe

∫
Md

δ⊥(γ1) ∧ δ⊥(Vd−1)]

= exp[−2πi
N qe #(γ1 ∩ Vd−1)]

= exp[−2πi
N qe Lk(γ1,Sd−2)].
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• Next, a 3+1D TQFTs (Gauge group G = ZN1
× ZN2

× ZN3
):

S [A,B ] =
∫
M4

∑3
I=1

NI
2πB

I ∧ dAI + N1N2 p
(2π)2N12

A1 ∧ A2 ∧ dA3

� Gauge transform (Only ε12 = −ε21 = 1):

AI → AI + dg I , B I → B I + dηI + N1N2p
2πN12NI

εIJdg J ∧ A3.
� Surface operators:

W123 = exp(i
∑3

I ,J qI
{∫

ΣI
B I + N1N2p ε

IJ

2πN12NI

∫
VI A

J ∧ dA3
}

)

= exp(i
∑3

I ,J qI
∫
M4

{
δ⊥(ΣI ) ∧ B I + N1N2p εIJ

2πN12NI
δ⊥(VI ) ∧ AJ ∧ dA3

}
)

� Integrate out B , the EOM imposes: dAI = −2πqI
NI

δ⊥(ΣI ).
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B I + N1N2p ε

IJ

2πN12NI

∫
VI A
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}

)

= exp(i
∑3

I ,J qI
∫
M4

{
δ⊥(ΣI ) ∧ B I + N1N2p εIJ

2πN12NI
δ⊥(VI ) ∧ AJ ∧ dA3

}
)

� Integrate out B , the EOM imposes: AI = −2πqI
NI

δ⊥(VI ).

〈W123〉 = exp[2πi p q1q2q3

N123
#(V1∩V2∩Σ3)]

= exp[2πi p q1q2q3

N123
Tlk(Σ1,Σ3,Σ2)]. 1

2

3
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Recall in 3D space:

1

23

. In spacetime:

Z


1

2
3


/Z[S4] = Z


1

2

3


/Z[S4]

= exp[
2πi p q1q2q3

N123
#(V1 ∩ V2 ∩ Σ3)]

= exp[
2πi p q1q2q3

N123
Tlk(Σ1,Σ3,Σ2)] = exp[

2πi p q1q2q3

N123
]
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So far we discussed Abelian statistics.
There are also non-Abelian statistics, in 2+1D/3+1D.

HOMEWORK exercise:

braiding statistics and link

invariants in 2+1D/3+1D.
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Abelian braiding statistics:

2+1D NI

2π
B I ∧ dAI + p

(4π)
A1 ∧ dA2

→ 3+1D NI

2π
B I ∧ dAI + NI ′NJ′ p

(2π)2NI ′J′
AI ′ ∧ AJ′ ∧ dAK ′
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non-Abelian braiding statistics:

°
1

°
2

°
3

2+1D NI

2π
B I ∧ dAI + N1N2N3 p

(2π)2N123
A1 ∧ A2 ∧ A3

Related work: C.Wang-Levin 1412.1781 and He et al 1608.05393
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non-Abelian braiding statistics:

§
2

§
3

§
4

§
1

2+1D NI

2π
B I ∧ dAI + N1N2N3 p

(2π)2N123
A1 ∧ A2 ∧ A3

→ 3+1D NI

2π
B I ∧ dAI + N1N2N3N4 p

(2π)3N1234
A1 ∧ A2 ∧ A3 ∧ A4
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Path integral link ↔ Field theory action

Z

 1
2

↔ NI

2πB
I ∧ dAI + p

(4π)A
1 ∧ dA2

Z

 1

2 3

↔ NI

2πB
I ∧ dAI + N1N2N3 p

(2π)2N123
A1 ∧ A2 ∧ A3

Z

 1
2

3

↔ NI

2πB
I ∧ dAI + NI ′NJ′ p

(2π)2NI ′J′
AI ′ ∧ AJ ′ ∧ dAK ′

Z

 1

2

3 4

↔ NI

2πB
I ∧ dAI + N1N2N3N4 p

(2π)3N1234
A1∧A2∧A3∧A4

e.g. Continuum field formulation of Dijkgraaf-Witten group cohomology.
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What have we learned?

Some TQFT gauge theories (topological orders).

We derive their Quantum Statistics (Braiding).

Next, we derive some constraints between
Quantum Statistics (Braiding and Fusion)

and
Spacetime Topology
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Part 1 talk, 2nd Key Questions :

2. What are the constraints of quantum statistics (the

emergent particles for many-body systems)?

Verlinde’s formula (S1 and S1 linking in S3)

Z

 1

Z

 1
2

3

 = Z

 1
2

Z

 1

3



S line
σ̄10

∑
σ4

S line
σ̄1σ4
N σ4
σ2σ3

= S line
σ̄1σ2
S line
σ̄1σ3

Verlinde, Witten, Moore-Seiberg (1989).
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Quantum statistics and spacetime surgery
Motivation: Beyond dimensional reduction and gauge theory.

Key ideas: Spacetime process, quantum amplitudes by partition
function Z = Z(M; worldline W ,worldsheet V , links), and
spacetime surgery.

y

x

1

2

t

σ

σ
y

x

(b)

σ

(a)

(a) Solid torus: D2
tx × S1

y , represents a quantum state: |0D2
tx×S1

y
〉.

(b) Other ground-states by a worldline operator: W y
σ |0D2

tx×S1
y
〉.

Gα
σ = 〈α|W y

σ |0D2
xt×S1

y
〉, Fασ1σ2

= 〈α|W y
σ1
W y
σ2
|0D2

xt×S1
y
〉.
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2+1D statistics and surgery: Sxy
Glue two solid 2-tori along T 2 by Ŝxy(x , y)→ (−y , x) to
3-sphere:

S3 = D2
xt × S1

y ∪T 2,S D
2
xt × S1

y .

here Z(S3) =
∑

αβ(Gα
0 )∗SαβG β

0 , T 2 = S1
x × S1

y

Z

 1
2

 =
∑
αβ

(Gα
σ1

)∗SαβG β
σ2
≡ S line

σ̄1σ2
.
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2+1D statistics and surgery: T xy

Glue two solid 2-tori by T̂ xy(x , y)→ (x + y , y).

S2 × S1 = D2
xt × S1

y ∪T 2,T D2
xt × S1

y

here T 2 = S1
x × S1

y .〈
y

x
y

x

〉
⇒

Z

  =
∑
αβ

(Gα
σ1

)∗TαβG β
σ2

= δσ1σ2
e iθσ2 = Tσ1σ2

Two wordlines are not linked. One of them is twisted by 2π spin.
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One more data: Fusion tensor N a
bc

Z

 4
2

3

 = 〈0D2
xt×S1

y
|(W y

σ4
)†W y

σ2
W y

σ3
|0D2

xt×S1
y
〉

(1)

=
∑
β′

(G−1)σ4

β′F
β′

σ2σ3
≡ N σ4

σ2σ3
.

Z

 1
2

3

 = 〈0D2
xt×S1

y
|(W y

σ1
)†|α〉〈α|Ŝ|β〉〈β|W y

σ2
W y
σ3
|0D2

xt×S1
y
〉

= S line
σ̄1σ4
Ñ σ4
σ2σ3
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Compare to Witten’s approach (1989):

Z

 1
2

3

 = Sσ̄1σ4
Z

 4
2

3

 = Sσ̄1σ4
N σ4
σ2σ3

.

Our approach:

Z

 1
2

3

 = 〈0D2
xt×S1

y
|(W y

σ1
)†|α〉〈α|Ŝ|β〉〈β|W y

σ2
W y

σ3
|0D2

xt×S1
y
〉

=
∑
αβ

(Gα
σ1

)∗SαβG β
σ4

∑
β′

(G−1)σ4

β′F
β′

σ2σ3
= S line

σ̄1σ4
Ñ σ4
σ2σ3
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2+1D statistics and surgery: constraints
on fusion N k

ij and braiding statistics Sab
S1 and S1 linking in S3. Def: N σ4

σ2σ3
≡

∑
β(G−1)σ4

β F
β
σ2σ3

.

Z

 1

Z

 1
2

3

 = Z

 1
2

Z

 1

3


∑
αβ

(Gα
σ1

)∗SαβGβ
0

∑
αβ

(Gα
σ1

)∗SαβF βσ2σ3
=

∑
αβ

(Gα
σ1

)∗SαβGβ
σ2

∑
αβ

(Gα
σ1

)∗SαβGβ
σ3

S line
σ̄10

∑
σ4

S line
σ̄1σ4
N σ4
σ2σ3

= S line
σ̄1σ2
S line
σ̄1σ3

.
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3+1D statistics and spacetime surgery I
Glue two 4-manifolds along S2 × S1 to 4-sphere S4:

S4 = (D3 × S1) ∪S2×S1 (S2 × D2).

One S2 and two S1 Linkings in S4.

Z


1

Z


1

2

3

 = Z


1

2

Z


1

3

 .

L
Lk(S2,S1)
µ10

∑
σ4

LLk(S2,S1)
µ1σ4

(F S1

)σ4
σ2σ1

= LLk(S2,S1)
µ1σ2

LLk(S2,S1)
µ1σ3

.

We derive generalized Verlinde’s formulas (2015).
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3+1D statistics and spacetime surgery II
Glue two 4-manifolds along S2 × S1 to 4-sphere S4:

S4 = (D3 × S1) ∪S2×S1 (S2 × D2).

One S1 and two S2 Linkings in S4.

Z


1

Z


1

2

3

 = Z


1

2

Z


1

3

 .

L
Lk(S2,S1)
0σ1

∑
σ4

LLk(S2,S1)
µ4σ1

(F S2

)µ4
µ2µ3

= LLk(S2,S1)
µ2σ1

LLk(S2,S1)
µ3σ1

.

We derive generalized Verlinde’s formulas (2015).
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3+1D statistics and surgery:

Z

 1

Z


1 2

3
4
5

 = Z


1 2

3

Z


1

4
5

 .

⇒ LTri
0,0,µ1

·
∑

Γ,Γ′,Γ1,Γ′1

(FT 2

)Γ
Γ′2,Γ

′
4
(Sxyz)−1

Γ′,Γ(FT 2

)Γ1

µ1Γ′S
xyz
Γ′1,Γ1

LTri
0,0,Γ′1

=
∑

Γ′′2 ,η2,η′2

(Sxyz)−1
Γ′′2 ,Γ

′
2
(FT 2

)η2

µ1Γ′′2
Sxyzη′2,η2

LTri
0,0,η′2

·
∑

Γ′′4 ,η4,η′4

(Sxyz)−1
Γ′′4 ,Γ

′
4
(FT 2

)η4

µ1Γ′′4
Sxyzη′4,η4

LTri
0,0,η′4

We derive some generalized Verlinde’s formulas (2015).
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Require back-and-forth twice surgery between

S4 surgery←→ S3 × S1#S2 × S2.

Z

 1 2

3

 ≡ LTri
µ3,µ2,µ1

= Z[S4; Link[Spun[Hopf[µ3, µ2]], µ1]]

=
∑

µ′
3,Γ2,Γ′

2,Γ
′′
2 ,η2,η′2

Sxyzµ′
3,µ3

(FT 2

)Γ2

µ2µ′
3
(Sxyz)−1

Γ′
2,Γ2

(Sxyz)−1
Γ′′

2 ,Γ
′
2
(FT 2

)η2

µ1Γ′′
2
Sxyzη′2,η2

LTri
0,0,η′2
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What have we learned?

Some TQFT gauge theories (topological orders).

There are some connections between our previous
TQFT gauge theories (topological orders: TOs)

↑
(gauging)
↓

Symmetric protected topological states (SPTs)
(e.g. Topological Insulator/Superconductors)

(global symmetry)
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So far we discussed low energy field theory from
fundamental bosons. Dijkgraaf-Witten theory outputs
bosonic TQFTs.

Next we apply the idea that

fermionic SPTs (global sym.)
gauging−→ spin TQFTs

(fermionic gauge theory).

We consider fermionic Topological Superconductor
(fTSC), that has onsite Z2-Ising symmetry and Z f

2

fermionic parity symmetry (Z f
2 × Z2-fTSC as fSPTs).

Juven Wang Statistics/Link Invariants of Quantum Matter & New Topological Boundary Conditions 35



So far we discussed low energy field theory from
fundamental bosons. Dijkgraaf-Witten theory outputs
bosonic TQFTs.

Next we apply the idea that

fermionic SPTs (global sym.)
gauging−→ spin TQFTs

(fermionic gauge theory).

We consider fermionic Topological Superconductor
(fTSC), that has onsite Z2-Ising symmetry and Z f

2

fermionic parity symmetry (Z f
2 × Z2-fTSC as fSPTs).

Juven Wang Statistics/Link Invariants of Quantum Matter & New Topological Boundary Conditions 35



Fermionic Topological Superconductor (ν ∈ Z8-fTSC)

Z f
2 × Z2-fTSC as fSPTs with Z2-Ising symmetry and Z f

2

fermionic parity symmetry.

ν = 1:

p+ip

p -ip

with Majorana-Weyl helical edge modes, combined
non-chiral.

Left-right central charges (cL, cR) = (1
2 ,−

1
2).

� DIII class (T 2 = −1, Pin+) with onsite Z2 symmetry, or DIII class
with Reflection symmetry.

Juven Wang Statistics/Link Invariants of Quantum Matter & New Topological Boundary Conditions 36



Fermionic Topological Superconductor (ν ∈ Z8-fTSC)

Dynamical Z2 fermionic spin TQFT, obtained by gauging
Z f

2 × Z2-fTSC as fSPTs of Z2-Ising symmetry.

ν = 1:
p -ip

ϕ=0

ϕ=π

ϕ=3π/4

ϕ=π/2

ϕ=π/4

ϕ=0

ϕ=π

ϕ=3π/4

ϕ=π/2

ϕ=π/4

Ising TQFT

� Z2-gauge field is the difference of spin structures (form affine
space over H1(M3,Z2)).

� Path integral Z : sum over Z2-gauge fields (diff of spin structures).

Related physics:
(i) Dynamical (condensing) 1/2-quantum vortex of chiral p wave SC.

(ii) Moore-Read (Pfaffian) quantum Hall state
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Fermionic Topological Superconductor (ν ∈ Z8-fTSC)

Z f
2 × Z2-fTSC as fSPTs with Z2-Ising symmetry and Z f

2

fermionic parity symmetry.

ν ∈ Z8:

p+ip

p -ip

.

..

...

p+ip
p -ip

with Majorana-Weyl edge modes, combined non-chiral.

Left-right central charges (cL, cR) = (ν
2
,−ν

2
) mod 4.

� fTSC partition function written as ABK (Arf-Brown-Kervaire) and
Rokhlin invariants.
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Fermionic Topological Superconductor (ν ∈ Z8-fTSC)

Dynamical Z2 fermionic spin TQFT, obtained by gauging
Z f

2 × Z2-fTSC as fSPTs of Z2-Ising symmetry.

ν ∈ Z8:

p -ip

ϕ=0

ϕ=π

ϕ=3π/4

ϕ=π/2

ϕ=π/4

ϕ=0

ϕ=π

ϕ=3π/4

ϕ=π/2

ϕ=π/4

Ising TQFT

p -ip

ϕ=0

ϕ=π

ϕ=3π/4

ϕ=π/2

ϕ=π/4

ϕ=0

ϕ=π

ϕ=3π/4

ϕ=π/2

ϕ=π/4

Ising TQFT

.

..

...

� Path integral Z : sum over Z2-gauge fields (diff of spin structures).

� What are the spin TQFTs?
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Part 1 talk :

We can obtain lattice realizations (UV-complete fully

regularized, anomaly-free) with low energy IR field

theories. Application to characterize and classify phases

of cond-mat. Yes.
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Path integral link ↔ Field theory action

Z

 1
2

↔ NI

2π
B I ∧ dAI + p

(4π)
A1 ∧ dA2

Z


1

2 3

↔ NI

2π
B I ∧ dAI + N1N2N3 p

(2π)2N123
A1 ∧ A2 ∧ A3

Z

 1
2

3

↔ NI

2π
B I ∧ dAI + NI ′NJ′ p

(2π)2NI ′J′
AI ′ ∧ AJ′ ∧ dAK ′

Z

 1

2

3 4

↔ NI

2π
B I ∧ dAI + N1N2N3N4 p

(2π)3N1234
A1 ∧ A2 ∧ A3 ∧ A4

e.g. Dijkgraaf-Witten path integral Z &
Twisted generalization of quantum double models Ĥ (Kitaev, ...)
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2. We obtain lattice realizations (UV-complete fully

regularized, anomaly-free) with low energy IR field

theories? Application to characterize and classify phases

of cond-mat.? Yes.
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Part I - Conclusion

1. String and particle quantum statistics of fusion and braiding in
2+1D and 3+1D. Modular SL(3,Z) representation of Sxyz and T xy

is derived. New link invariants and more for 3+1D topological order.

2. Quantum and spacetime topology interplay. New formulas
analogous to Verlinde’s.

Further questions:

3. From the bulk-boundary correspondence to CFTs.

4. Can we embed our TQFTs (discrete gauge groups) into some
continuous gauge groups? For 2+1D, yes. For 3+1D, unknown.

5. Study 4d (3+1D) topological phases and 3d boundary physics.
Condensed matter application.
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