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Clusters of galaxies

• Largest bound virialised systems ~1014-1015Msun

• Velocity dispersion σv~1000 km/s (~0.003c)

• so grav. potential is φ ~ σv2 ~ 10-5 c2 
• Centres - often defined by the brightest galaxy (BCG)

• Usually very close to peak of light, X-rays, DM



Clusters in the Millenium Simulation (Y. Cai)
Gravitational redshift & uRSD 5

Figure 1. Top row: particle distributions within 10 Mpc/h radius from the main halo centre projected along one major axises of the simulation box. n in
the label of the colour bars is the number of dark matter particles in each pixel. Middle row: the same zones but showing the potential values of all particles.
Sub-haloes and neighbouring structures induce local potential minima. Bottom row: the gravitational redshift profiles with respect to the cluster centres. The
dashed lines shows the spherical averaged profile, Φiso, which is the same as equal-directional weighting from the halo centres. Sub-haloes and neighbours
cause the mass weighted profiles Φobs to be biased low compared to the spherical averaging. This is similar to observations where the observed profiles are
weighted by galaxies.
c⃝ 0000 RAS, MNRAS 000, 000–000



Wojtak, Hansen & Hjorth (Nature 2011)

• Wojtek, Hansen & Hjorth stacked 7,800 
galaxy clusters from SDSS DR7 in 
redshift space

• centres defined by the brightest 
cluster galaxies (BCGs)

• approx 10 redshifts per cluster

• They found a net offset (blue-shift) 
corresponding to v = -10 km/s

• c.f. ~600km/s l.o.s velocity dispersion

• Interpreted as gravitational redshift effect

• right order of magnitude, sign

• “Confirms GR, rules out TeVeS”

• Had been suggested before (Cappi 1995; 
Broadhurst+Scannapiaco, ....)
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Figure 1 Velocity distributions of galaxies combined from 7, 800 SDSS galaxy clusters. The line-
of-sight velocity (vlos) distributions are plotted in four bins of the projected cluster-centric distances
R. They are sorted from the top to bottom according to the order of radial bins indicated in the
upper left corner and offset vertically by an arbitrary amount for presentation purposes. Red lines
present the histograms of the observed galaxy velocities in the cluster rest frame and black solid
lines show the best fitting models. The model assumes a linear contribution from the galaxies
which do not belong to the cluster and a quasi-Gaussian contribution from the cluster members
(see SI for more details). The cluster rest frames and centres are defined by the redshifts and the
positions of the brightest cluster galaxies. The error bars represent Poisson noise.
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Figure 2 Constraints on gravitational redshift in galaxy clusters. The effect manifests itself as a
blueshift ∆ of the velocity distributions of cluster galaxies in the rest frame of their BCGs. Velocity
shifts were estimated as the mean velocity of a quasi-Gaussian component of the observed velocity
distributions (see Fig. 1). The error bars represent the range of ∆ parameter containing 68 per cent
of the marginal probability and the dispersion of the projected radii in a given bin. The blueshift
(black points) varies with the projected radius R and its value at large radii indicates the mean
gravitational potential depth in galaxy clusters. The red profile represents theoretical predictions of
general relativity calculated on the basis of the mean cluster gravitational potential inferred from
fitting the velocity dispersion profile under the assumption of the most reliable anisotropic model
of galaxy orbits (see SI for more details). Its width shows the range of ∆ containing 68 per cent
of the marginal probability. The blue solid and dashed lines show the profiles corresponding to two
modifications of standard gravity: f(R) theory4 and the tensor-vector-scalar (TeVeS) model5, 6.
Both profiles were calculated on the basis of the corresponding modified gravitational potentials
(see SI for more details). The prediction for f(R) represents the case which maximises the deviation
from the gravitational acceleration in standard gravity on the scales of galaxy clusters. Assuming
isotropic orbits in fitting the velocity dispersion profile lowers the mean gravitational depth of the
clusters by 20 per cent. The resulting profiles of gravitational redshift for general relativity and
f(R) theory are still consistent with the data and the discrepancy between prediction of TeVeS
and the measurements remains nearly the same. The arrows show characteristic scales related to
the mean radius rv of the virialized parts of the clusters.
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SDSS Redshift Survey
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Supplementary Figure 1 Velocity diagram combined from kinematic data of 7800 galaxy clusters
detected in the SDSS11 Data Release 7. Velocities vlos of galaxies with respect to the brightest
cluster galaxies are plotted as a function of the projected cluster-centric distance R. Blue lines are
the iso-density contours equally spaced in the logarithm of galaxy density in the vlos − R plane.
The arrows show characteristic scales related to the mean virial radius estimated in dynamical
analysis of the velocity dispersion profile. Data points represent 20 per cent of the total sample.
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The physics of cluster gravitational redshifts

• Einstein gravity

• gravitational "time dilation"

• Weak field limit

• δν/ν = -Φ/c2

• Measured by Pound & Rebka (Harvard '59)

Is that it?

cluster



Equivalence principle & the Pound + Rebka experiment

• Einstein’s Equivalence Principle: Observers on earth (being 
accelerated by the stress in the ground under them imparting 
momentum to them) will see light being red-shifted (and all other 
local physics being modified) exactly as would a pair of astronauts in 
empty space being accelerated by a rocket motor. 

• Pound and Rebka (1959, 1960):  He was right.

• But if you replace non-inertial apparatus by freely falling kit with same 
instantaneous velocities then B&H say Doppler formula will apply.  
They are right too - almost exactly....



VOLUME ), NUMBER 9 PHYSICAL REVIEW LETTERS NovEMBER 1, 1959

the results of reference 1 required by these con-
siderations is easily made. The matrix element
appropriate to a collision in which the (K, p) sys-
tem in a state g„ f is changed to a state g„ f
which can be the products of the K - p interaction,
is

where the U are the plane wave functions repre-
senting the relative (K, p) atom and proton co-
ordinates and H, the Hamiltonian, will be equal to
(e'/iR-r I) -(e'/IR -rhl), where R is the vec-
tor coordinate of the colliding proton and rp and
rI, are the coordinates of the proton and K meson
in the atom. For IR l) I r I a multipole expan-
sion of H can be made. Setting R =a, as in refer-
ence 1, the matrix element can be rewritten as

(V (a ) IV (a ))(g IH'lg ),
Pg p

where, with appropriate averaging of geometric
factors, the second term is precisely that evalu-
ated by Day. et al. In the first factor V represents
the radial part of the wave functions U, and the
square of this term has a value of 1/5 for S to P
transitions which are the most favorable. Changes
of more than one unit of angular momentum are
much more strongly forbidden. These corrections

modify the conclusions of reference 1 concern-
ing the n =6 state in the following way. The de-
population of the P level in any collision is es-
sentially unaffected but the reshuffling of other
states is much reduced and their direct depopula-
tion is largely forbidden. This greatly reduces
the transfer into the P level and the average
atomic lifetime is considerably increased, en-
hancing the importance of radiative transitions.
Calculations of the same kind as reported in
reference 1 lead then to the result that about 20 /p

of atoms in a n =6 state reach the 2P state in-
stead of the 1.4 %%d stated in reference 1.

The uncertainties involved in the estimates
made in this note, and also in reference 1, are
quite large, and the conclusions reached in these
calculations are not presented with the intention
of establishing that P-wave capture is large, or
that the Stark effect is unimportant. But we be-
lieve that these results do indicate the necessity
of a more detailed examination of the problem.

Day, Snows, and Sucher, Phys. Rev. Letters 3, 61
(1959).

2L. B. Okun' and I. A. Pomeranchuk, J. Exptl.
Theoret. Phys. U. S.S.R. 34, 997 (1958) [translation:
Soviet Phys. JETP 34, 688 (1958)j.

GRAVITATIONAL RED-SHIFT IN NUCLEAR RESONANCE

R. V. Pound and G. A. Rebka, Jr.
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts

(Received October 15, 1959)

It is widely considered desirable to check ex-
perimentally the view that the frequencies of
electromagnetic spectral lines are sensitive to
the gravitational potential at the position of the
emitting system. The several theories of rela-
tivity predict the frequency to be proportional to
the gravitational potential. Experiments are
proposed to observe the timekeeping of a "clock"
based on an atomic or molecular transition, when
held aloft in a rocket-launched satellite, relative
to a similar one kept on the ground. The fre-
quency v& and thus the timekeeping at height h is
related to that at the earth's surface p, according
to

b.v = v„-v0 = vugh/c'(1+h/R)

= v h x (1.09 x 10 i8),

where R is the radius of the earth and h is the
altitude measured in cm. Very high accuracy is
required of the clocks even with the altitudes
available with artificial satellites. Although
several ways of obtaining the necessary frequen-
cy stability look promising, it would be simpler
if a way could be found to do the experiment be-
tween fixed terrestrial points. In particular, if
an accuracy could be obtained allowing the meas-
urement of the shift between points differing as
little as one to ten kilometers in altitude, the
experiment could be performed between a moun-
tain and a valley, in a mineshaft, or in a bore-
hole.

Recently Mossbauer has discovered' a new
aspect of the emission and scattering of y rays
by nuclei in solids. A certain fraction f of y
rays of the nuclei of a solid are emitted without



Is there any more to the physics of cluster grav-z?
• Is the Pound & Rebka (P&R) experiment relevant here?

• equipment fixed to the tower in Harvard phys. dept

• Einstein rocket thought experiment:

• observers on surface of earth (e.g. P&R) being accelerated by the 
earth see the same physics as accelerated observers in a rocket

• but there is no gravity in the rocket

• P&R measured effect of non-gravitational acceleration  
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How do we understand the grav-z in clusters?

• Cluster gravitational redshift is difference between redshift for 
centre galaxy and general cluster population

• Equivalently, what is redshift of centre as seen by others?

• But these are objects in free-fall

• P&R analogy is questionable at best

• GR: gravity is "transformed away" for freely-falling observer

• How should we understand redshifts in astronomy?

• Digression:

• redshifts in cosmology

• redshifts in general



Redshift in homogeneous FLRW cosmology...

• Wavelength scales as a(t) - but why?

• Analogy with expanding reflecting cavity

• a) lots of little redshifts as photons bounce off walls

• b) symmetry - standing waves - fixed # of nodes

• either way: accumulated effect: λ ~ a(t)





Misner, Thorne and 
Wheeler

redshift as an 
effect on standing 

waves....

But is this a standing 
wave? 



Expanding space and redshifts in textbooks.....
• E.R. Harrison (2000)

• Wolfgang Rindler (1970)
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FIG. 2: The scale factor of a hypothetical “loitering” universe as a function of time (measured in units of the present time). At
the time indicated by the dot, a galaxy emits radiation, which is observed at the present time. At the times of both emission
and observation, the expansion is very slow, yet the galaxy’s observed redshift is large.

Let us begin by reviewing a standard derivation8,13 of the cosmological redshift. Consider a photon that travels
from a galaxy to a distant observer, both of whom are at rest in comoving coordinates. Imagine a family of comoving
observers along the photon’s path, each of whom measures the photon’s frequency as it goes by. We assume that
each observer is close enough to his neighbor so that we can accommodate them both in one inertial reference frame
and use special relativity to calculate the change in frequency from one observer to the next. If adjacent observers
are separated by the small distance δr, then their relative speed in this frame is δv = Hδr, where H is the Hubble
parameter. This speed is much less than c, so the frequency shift is given by the nonrelativistic Doppler formula

δν/ν = −δv/c = −Hδr/c = −Hδt. (4)

We know that H = ȧ/a where a is the scale factor. We conclude that the frequency change is given by δν/ν = −δa/a;
that is, the frequency decreases in inverse proportion to the scale factor. The overall redshift is therefore given by

1 + z ≡
ν(te)

ν(to)
=

a(to)

a(te)
, (5)

where te and to refer to the times of emission and observation, respectively.
In this derivation we interpret the redshift as the accumulated effect of many small Doppler shifts along the photon’s

path. We now address the question of whether it makes sense to interpret the redshift as one big Doppler shift, rather
than the sum of many small ones.

Figure 2 shows a common argument against such an interpretation. Imagine a universe whose expansion rate varies
with time as shown in Fig. 2. A galaxy emits radiation at the time te indicated by the dot, and the radiation reaches
an observer at the present time t0. The observed redshift is z = a(t0)/a(te)−1 = 1.5, which by the special-relativistic
Doppler formula would correspond to a speed of 0.72c. At the times of emission and absorption of the radiation, the
expansion rate is very slow, and the speed ȧr of the galaxy is therefore much less than this value. We can construct
models in which both ȧ(te) and ȧ(t0) are arbitrarily small without changing the ratio a(t0)/a(te) and hence without
changing the redshift.

Upon closer examination this argument is unconvincing, because the calculated velocities are not the correct veloc-
ities. We should not calculate velocities at a fixed instant of cosmic time (either t = te or t = t0). Instead we should
calculate the velocity of the galaxy at the time of light emission relative to the observer at the present time. After all,
if a distant galaxy’s redshift is measured today, we wouldn’t expect the result to depend on what the galaxy is doing
today, nor on what the observer was doing long before the age of the dinosaurs.

In fact, when astrophysicists talk about what a distant object is doing “now,” they often do not mean at the present
value of the cosmic time, but rather at the time the object crossed our past light cone. For instance, when astronomers
measure the orbital speeds of planets orbiting other stars, the measured velocities are always of this sort. There is an
excellent reason for this convention: we never have information about what a distant object is doing (or if the object
even exists) at the present cosmic time. Any statement in which “now” is used to refer to the present cosmic time at
the location of a distant object is not about anything observable, because it refers to events far outside our light cone.

In summary, if we wish to discuss the redshift of a distant galaxy as a Doppler shift, we need to be willing to talk
about vrel, the velocity of the galaxy then relative to us now. Talking about vrel is precisely the sort of thing that





The rubber balloon analogy



redshift caused by expansion of space?

• Textbooks are correct

•  λ does increase with a(t)

• But is it reasonable to say expansion causes the shift?

• And is it obvious?

• what is the mechanism by which space stretches light?

• is space expanding in this room?

• is space expanding in a cluster of galaxies?



But see also Weinberg, 1st 3 Minutes, 
p31: “One can think of the wave crests 
being pulled farther and farther apart by 
the expansion of the universe.”
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Expanding Space: the Root of all Evil?∗
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Abstract: While it remains the staple of virtually all cosmological teaching, the concept of expanding
space in explaining the increasing separation of galaxies has recently come under fire as a dangerous
idea whose application leads to the development of confusion and the establishment of misconceptions.
In this paper, we develop a notion of expanding space that is completely valid as a framework for the
description of the evolution of the universe and whose application allows an intuitive understanding
of the influence of universal expansion. We also demonstrate how arguments against the concept in
general have failed thus far, as they imbue expanding space with physical properties not consistent
with the expectations of general relativity.

Keywords: cosmology: theory

1 Introduction

When the mathematical picture of cosmology is first
introduced to students in senior undergraduate or ju-
nior postgraduate courses, a key concept to be grasped
is the relation between the observation of the redshift
of galaxies and the general relativistic picture of the ex-
pansion of the Universe. When presenting these new
ideas, lecturers and textbooks often resort to analo-
gies of stretching rubber sheets or cooking raisin bread
to allow students to visualise how galaxies are moved
apart, and waves of light are stretched by the “expan-
sion of space”. These kinds of analogies are appar-
ently thought to be useful in giving students a men-
tal picture of cosmology, before they have the ability
to directly comprehend the implications of the formal
general relativistic description. However, the academic
argument surrounding the expansion of space is not as
clear as standard explanations suggest; an interested
student and reader of New Scientist may have seen
Martin Rees & Steven Weinberg (1993) state

...how is it possible for space, which is ut-
terly empty, to expand? How can noth-
ing expand? The answer is: space does
not expand. Cosmologists sometimes talk
about expanding space, but they should
know better.

while being told by Harrison (2000) that

expansion redshifts are produced by the
expansion of space between bodies that
are stationary in space

What is a lay-person or proto-cosmologist to make of
this apparently contradictory situation?

Whether or not attempting to describe the obser-
vations of the cosmos in terms of expanding space is a
useful goal, regardless of the devices used to do so,

is far from uncontroversial. Recent attacks on the
physical concept of expanding space have centred on
the motion of test particles in the expanding universe;
Whiting (2004), Peacock (2006) and others claim that
expanding space fails to adequately explain the motion
of test particles and hence that it should be abandoned.
But what, exactly, is at fault? Crucially, these claims
rely on falsifying predictions made from using expand-
ing space as a tool to guide intuition, to bypass the full
mathematical calculation. However, the very meaning
of the phrase expanding space is not rigorously defined,
despite its widespread use in teaching and textbooks.
Hence, it is prudent to be wary of predictions based
on such a poorly defined intuitive frameworks.

In recent work, Barnes et al. (2006) solved the test
particle motion problem for universes with arbitrary
asymptotic equation of state w and found agreement
between the general relativistic solution and the ex-
pected behaviour of particles in expanding space. We
suggest that the apparent conflict between this work
and others, for instance Chodorowski (2006b), lies pre-
dominantly in differing meanings of the very concept of
expanding space. This is unsurprising, given that it is
a phrase and concept often stated but seldom defined
with any rigour.

In this paper, we examine the picture of expand-
ing space within the framework of fully general rela-
tivistic cosmologies and develop it into a precise def-
inition for understanding the dynamical properties of
Friedman-Robertson-Walker (FRW) spacetimes. This
framework is pedagogically superior to ostensibly sim-
pler misleading formulations of expanding space — or
more general schemes to picture the expansion of the
Universe — such as kinematic models and approxi-
mations to special relativity or Newtonian mechanics,
since it is both clearer and easier to understand as well
as being a more accurate approximation. In particu-
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In this paper, we develop a notion of expanding space that is completely valid as a framework for the
description of the evolution of the universe and whose application allows an intuitive understanding
of the influence of universal expansion. We also demonstrate how arguments against the concept in
general have failed thus far, as they imbue expanding space with physical properties not consistent
with the expectations of general relativity.

Keywords: cosmology: theory

1 Introduction

When the mathematical picture of cosmology is first
introduced to students in senior undergraduate or ju-
nior postgraduate courses, a key concept to be grasped
is the relation between the observation of the redshift
of galaxies and the general relativistic picture of the ex-
pansion of the Universe. When presenting these new
ideas, lecturers and textbooks often resort to analo-
gies of stretching rubber sheets or cooking raisin bread
to allow students to visualise how galaxies are moved
apart, and waves of light are stretched by the “expan-
sion of space”. These kinds of analogies are appar-
ently thought to be useful in giving students a men-
tal picture of cosmology, before they have the ability
to directly comprehend the implications of the formal
general relativistic description. However, the academic
argument surrounding the expansion of space is not as
clear as standard explanations suggest; an interested
student and reader of New Scientist may have seen
Martin Rees & Steven Weinberg (1993) state

...how is it possible for space, which is ut-
terly empty, to expand? How can noth-
ing expand? The answer is: space does
not expand. Cosmologists sometimes talk
about expanding space, but they should
know better.

while being told by Harrison (2000) that

expansion redshifts are produced by the
expansion of space between bodies that
are stationary in space

What is a lay-person or proto-cosmologist to make of
this apparently contradictory situation?

Whether or not attempting to describe the obser-
vations of the cosmos in terms of expanding space is a
useful goal, regardless of the devices used to do so,

is far from uncontroversial. Recent attacks on the
physical concept of expanding space have centred on
the motion of test particles in the expanding universe;
Whiting (2004), Peacock (2006) and others claim that
expanding space fails to adequately explain the motion
of test particles and hence that it should be abandoned.
But what, exactly, is at fault? Crucially, these claims
rely on falsifying predictions made from using expand-
ing space as a tool to guide intuition, to bypass the full
mathematical calculation. However, the very meaning
of the phrase expanding space is not rigorously defined,
despite its widespread use in teaching and textbooks.
Hence, it is prudent to be wary of predictions based
on such a poorly defined intuitive frameworks.

In recent work, Barnes et al. (2006) solved the test
particle motion problem for universes with arbitrary
asymptotic equation of state w and found agreement
between the general relativistic solution and the ex-
pected behaviour of particles in expanding space. We
suggest that the apparent conflict between this work
and others, for instance Chodorowski (2006b), lies pre-
dominantly in differing meanings of the very concept of
expanding space. This is unsurprising, given that it is
a phrase and concept often stated but seldom defined
with any rigour.

In this paper, we examine the picture of expand-
ing space within the framework of fully general rela-
tivistic cosmologies and develop it into a precise def-
inition for understanding the dynamical properties of
Friedman-Robertson-Walker (FRW) spacetimes. This
framework is pedagogically superior to ostensibly sim-
pler misleading formulations of expanding space — or
more general schemes to picture the expansion of the
Universe — such as kinematic models and approxi-
mations to special relativity or Newtonian mechanics,
since it is both clearer and easier to understand as well
as being a more accurate approximation. In particu-
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Peebles (’71) explanation of cosmological redshift
• The redshift λrec/λem is the product of 

a lot of small shifts between a set of 
FOs along the look-back path

• In the vicinity of a neighouring pair of 
FOs

• space-time is locally flat, so

• incremental redshifts are Doppler 
shifts

• Yields differential equation

• dλ/λ = da/a with solution λ ∝ a(t)

• So fractional change in proper 
separation is the same as the 
fractional change in λ

• i.e. δlog(λ/D) = 0



Redshift and expansion in cosmology

• So in cosmology wavelength λ is tied to expansion a(t)

• may or may not be caused by it

• If observer/source are moving apart then λ increases

• Exactly as for Doppler shift in empty space

• So any gravitational component to redshift is somehow hidden

• Mathematically: Δln(λ/D) = 0

• Is this a general principle?



What about our lumpy universe?

• Bondi (1947): Spherical models:

• for low-Z, redshift is product of 
Doppler and gravitational 
redshift

• But Synge (1960) argued that all 
redshifts are Doppler shifts

• “In attributing a cause to this 
spectral shift, one would say .... 
that the spectral shift was 
caused by the relative velocity 
of the source and the 
observer''.



Synge, 1960; General Relativity

• Observed (or emitted) energy  
is dot product of observer 4-
velocity and the photon 4-
momentum.

• → wavelength shift is given by 
Doppler’s formula with 
“relative velocity” being the 
l.o.s. component of the 
difference of the receiver 4-
velocity and a parallel 
transported version of the 
emitter 4-velocity

• “Not a gravitational redshift as 
the Riemann tensor does not 
appear in formula”



Bunn & Hogg, 2009
• Like Peebles they break photon path into a set of 

intervals

• set of intervening observers along line of sight

• local flatness →product of Doppler shifts

• But intervening observers need not be freely falling

• Claim: Any incremental shift can be considered to be 
either Doppler or gravitational

• "gravitational redshifts are just Doppler shifts viewed 
from an unnatural coordinate system"

• "an enlightened cosmologist would never try to draw 
any distinction"

• All redshifts can (and should!) be considered to be 
Doppler, or ‘kinematic’ in nature.  (much like Synge)

• Again suggests Δln(λ/D) = 0 is universal?



ideas about redshifts in astronomy - summary

• The redshift of light in cosmology

• redshift is caused by the expansion of space?

• standing waves in a cavity

• Maxwell's equations in expanding space: 

• "Hubble damping" + the adiabatic invariant

• Thermodynamics & photons as particles

• Peebles' picture - lots of little Doppler shifts

• The redshift of light in general

• Synge ('60): redshifts "caused by the relative velocity..."

• Bunn & Hogg ('09): "gravitational redshifts are just Doppler 
shifts viewed from an unnatural coordinate system"

• 1st order "relativistic" redshift space distortion (Yoo+09)

• Δz = Δr + .... is also purely a "Doppler" effect



 "what causes the redshift?" and why do we care?

• All the foregoing support the "kinematic picture" for 
astronomical redshifts.

• redshifts come entirely from motions

• in nice accord with Equivalence Principle

• But clusters are not expanding!

• and observers, sources are freely falling

• so why would we see any gravitational redshift?

• At the very least one might have doubts about the Einstein/
Newton/Pound+Rebka picture

• What additional physics might there be?



Back to the Wojtak et al. measurement

• Gravitational redshift for light 
climbing out of potential wells 
of clusters of galaxies

• Long predicted by theorists 

• perhaps a bit oversimplified

• Now finally measured 

• at ~2.5 sigma level

• Claimed to conflict with TeVeS 
modified gravity

• descendent of Milgrom 
theory

• But OK with GR or e.g. f(R) 
modifications
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Figure 2 Constraints on gravitational redshift in galaxy clusters. The effect manifests itself as a
blueshift ∆ of the velocity distributions of cluster galaxies in the rest frame of their BCGs. Velocity
shifts were estimated as the mean velocity of a quasi-Gaussian component of the observed velocity
distributions (see Fig. 1). The error bars represent the range of ∆ parameter containing 68 per cent
of the marginal probability and the dispersion of the projected radii in a given bin. The blueshift
(black points) varies with the projected radius R and its value at large radii indicates the mean
gravitational potential depth in galaxy clusters. The red profile represents theoretical predictions of
general relativity calculated on the basis of the mean cluster gravitational potential inferred from
fitting the velocity dispersion profile under the assumption of the most reliable anisotropic model
of galaxy orbits (see SI for more details). Its width shows the range of ∆ containing 68 per cent
of the marginal probability. The blue solid and dashed lines show the profiles corresponding to two
modifications of standard gravity: f(R) theory4 and the tensor-vector-scalar (TeVeS) model5, 6.
Both profiles were calculated on the basis of the corresponding modified gravitational potentials
(see SI for more details). The prediction for f(R) represents the case which maximises the deviation
from the gravitational acceleration in standard gravity on the scales of galaxy clusters. Assuming
isotropic orbits in fitting the velocity dispersion profile lowers the mean gravitational depth of the
clusters by 20 per cent. The resulting profiles of gravitational redshift for general relativity and
f(R) theory are still consistent with the data and the discrepancy between prediction of TeVeS
and the measurements remains nearly the same. The arrows show characteristic scales related to
the mean radius rv of the virialized parts of the clusters.
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Figure 1 Velocity distributions of galaxies combined from 7, 800 SDSS galaxy clusters. The line-
of-sight velocity (vlos) distributions are plotted in four bins of the projected cluster-centric distances
R. They are sorted from the top to bottom according to the order of radial bins indicated in the
upper left corner and offset vertically by an arbitrary amount for presentation purposes. Red lines
present the histograms of the observed galaxy velocities in the cluster rest frame and black solid
lines show the best fitting models. The model assumes a linear contribution from the galaxies
which do not belong to the cluster and a quasi-Gaussian contribution from the cluster members
(see SI for more details). The cluster rest frames and centres are defined by the redshifts and the
positions of the brightest cluster galaxies. The error bars represent Poisson noise.
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Figure 1 Velocity distributions of galaxies combined from 7, 800 SDSS galaxy clusters. The line-
of-sight velocity (vlos) distributions are plotted in four bins of the projected cluster-centric distances
R. They are sorted from the top to bottom according to the order of radial bins indicated in the
upper left corner and offset vertically by an arbitrary amount for presentation purposes. Red lines
present the histograms of the observed galaxy velocities in the cluster rest frame and black solid
lines show the best fitting models. The model assumes a linear contribution from the galaxies
which do not belong to the cluster and a quasi-Gaussian contribution from the cluster members
(see SI for more details). The cluster rest frames and centres are defined by the redshifts and the
positions of the brightest cluster galaxies. The error bars represent Poisson noise.
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Figure 6. GMBCG (top), WHL12 (middle) and redMaPPer (bottom) phase-space diagrams before (left) and after (right) removing statistically the foreground
and background contribution of galaxies. Black contours represent iso-density regions. The asymmetry between the positive and negative vlos region can
be particularly clearly seen in the redMaPPer case. This difference disappears after the statistical interloper removal. We also plot as red dashed lines the
boundaries at 1, 2.5 and 4.5 Mpc that will determine the radial bins we will use in Section 3. In these diagrams, the position of the BCG is fixed at r⊥ = 0 Mpc
and vlos = 0 km s−1 by definition, and the density is determined by the number of galaxies with spectroscopic redshift measurements around them.

Also, this will help us identify which of the BCGs have the best
spectroscopic measurements, so, taking a conservative approach,
we will only work with those BCGs identified in our ‘high quality’
SDSS galaxy sample, discarding this way BCG redshift measure-
ments obtained from ‘bad’ plates. This leaves us with a total sample
of 19 867 BCGs in the GMBCG catalogue, 52 255 in the WHL12
case, and 10 197 in the redMaPPer one. We compute the pro-
jected transverse distance r⊥ and the line-of-sight velocity vlos =
c (zgal − zBCG)/(1 + zBCG) of all SDSS galaxies with respect to the
BCGs, and keep those that lie within a separation of r⊥ < 7 Mpc
and |vlos| < 6000 km s−1 from these. It should be noted that, as
we are working mainly in a low redshift region, the impact of the
cosmological parameters used is not significant. Stacking all the ob-
tained pairs into one single phase-space diagram, we get the density
distributions shown on the left-hand side of Fig. 6.

To remove the contribution of foreground and background galax-
ies not gravitationally bound to clusters, we adopt an indirect ap-

proximation, where galaxies not belonging to clusters are not iden-
tified individually in each cluster, as in the direct method, but taken
into account statistically once all the cluster information has been
stacked into one single distribution of galaxies. See Wojtak et al.
(2007) for a detailed study of different direct and indirect foreground
and background galaxies removal techniques.

In our case, we apply the following procedure: first,
we bin the whole phase-space distribution in bins of size
0.04 Mpc × 50 km s−1. After that, we take all those bins lying in two
stripes 4500 km s−1 < |vlos| < 6000 km s−1, where we assume that
all the galaxies there belong either to the pure foreground or to the
pure background sample. Then, we fit a quadratic polynomial de-
pendent of both vlos and r⊥ to the points in both stripes, and use the
interpolated background model to correct the ‘inner’ phase-space
region bins. We use a function that depends not only on r⊥, but also
on vlos; this is because at high redshifts, and due to observational
selection, we may have more spectroscopic measurements of those
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FIG. 1. (a): Dependence of the number of galaxies, ngal, of the number of associated clusters, nclst, and of the ratio, ngal/nclst,
on the separation between BCGs and associated galaxies, rgc. Bins of rgc are defined by a sliding window with a width of
0.5r200, where each data-point is placed in the center-position of the corresponding bin.
(b): Dependence of the signal of the GRS, ∆vgc, on rgc, where the width of the sliding window is denoted by wsw. The shaded
areas around the two nominal results (circles and squares) correspond to the variations in the signal due to the systematic tests
described in the text, combined with the uncertainty on the model-fit. On average, ∆vgc = −11+7

−5 km/s for 1 < rgc/r200 < 2.5.
The third dataset (triangles) includes configurations in which SDSS and BOSS redshifts are mixed together. The bold lines
represent the GR predictions of Kaiser [11], with and without his added kinematic effects, as indicated; finally, the crosses
represent the measurement of WHH. The top axis specifies the median value and the width of the distribution of rgc (in Mpc)
for four bins of width 0.5r200 , centered at (0.5, 1, 1.5 and 2) r200.

range of acceptance in rgc, our final relative uncertainty
on ∆vgc is higher.
Calculating the GR predication for ∆vgc is beyond the

scope of this study. However, the range of cluster masses
used in our analysis is comparable to that of the WHH
sample. We therefore refer to the corresponding esti-
mate of Kaiser of −9 (GR only) or −12 km/s (including
kinematic effects) [11]. Our results are in good agree-
ment with this prediction for rgc > r200, while at smaller
values of rgc, the profile of ∆vgc is steeper in the data.
Additionally, we observe that it is not possible to distin-
guish between the GR predictions with and without the
kinematic corrections.

SUMMARY

The gravitational redshift effect allows one to directly
probe the gravitational potential in clusters of galaxies.
As such, it provides a fundamental test of GR.

Following up on the analysis of Wojtak, Hansen &
Hjorth, we present a new measurement with a larger

dataset. We use spectroscopic redshifts taken with the
SDSS and BOSS, and match them to the BCGs of clus-
ters from the catalog of Wen, Han & Liu. The analysis
is based on extracting the GRS signal from the distri-
bution of the velocities of galaxies in the rest frame of
corresponding BCGs. We focus on optimizing the selec-
tion procedure of clusters and of galaxies, and take into
account multiple possible sources of systematic biases not
considered by WHH.

We find an average redshift of −11 km/s with a stan-
dard deviation of +7 and −5 km/s for 1 < rgc/r200 < 2.5.
The result is consistent with the measurement of WHH.
However, our overall systematic uncertainty is relatively
larger than that of WHH, mainly due to overlapping clus-
ter configurations; the significance of detecting the GRS
signal in the current analysis is therefore reduced in com-
parison. Our measurement is in good agreement with the
GR predictions. Considering the current uncertainties,
we can not distinguish between the baseline GR effect
and the recently proposed kinematic modifications.

With the advent of future spectroscopic surveys, such
as Euclid and DESI [19], we will have access to larger,



The calculational framework



Zhao, Peacock & Li, 2012
• δz is not just a gravitational redshift

• Sources are moving, so we also see

• transverse Doppler effect:

• 1st order Doppler effect averages 
to zero, but.... 

• to 2nd order <δz> = <v2/c2>/2

• can be understood as time 
dilation - moving clocks run slow

• Generally of same order of magnitude 
as gravitational redshift from virial 
theorem, Jeans eq...

• (And this doesn’t really test GR

• see also Bekenstein & Sanders, 2012 

• more later.....)

• Is that the full story?



No - there is another effect of same order

• Light cone effect

• we will tend to see more objects moving away from us than 
towards us in any observation made using light as a 
messenger

• this gives an extra red-shift effect

• again of the same order of magnitude as the gravitational 
redshift



Light-cone effect

• Light cone effect

• we will see more particles moving away from us in a 
photograph of a swarm of particles

• past light cone of event of our observation overtakes 
more galaxies moving away than coming towards us

• just as a runner on a trail sees more hikers going the 
other way...

• So not Lorentz-Fitzgerald contraction effect

• phase space density contains a factor (1-v/c)

• <δz> = <(vlos/c)2>

• same sign as TD effect

• 2/3 magnitude (for isotropic orbits)



Quasar absorption lines



Light-cone effect - more particles moving away!



Another way to look at LC effect

• Particle oscillating in a pig-trough

• r(t) = a cos(ωt + φ)

• v(t)/c = -(aω/c) sin(ωt + φ)

• v(t) averages to zero

• average could be over phase or 
time

• but vobs = v + (r/c) dv/dt + ...

• where r/c is the look-back time

• and the extra term does not 
average to zero

• ~ same as Einstein prediction for 
Pound & Rebka

• δz ≈ <r dv/dt> / c2.



Yet another view of the light-cone effect

• Consider a particle oscillating in a square well potential and 
emitting pulses at a steady rate (2N per period)

• Observer sees intervals between pulses red- or blue-shifted

• N short intervals followed by N long intervals

• In observation taken at a random time there is a greater chance 
to catch the particle when it is moving away

• In an observation of an ensemble of particles more particles 
will be seen going away from the observer 



Why is the transverse Doppler effect a redshift?

• Transverse Doppler redshift effect:

• first order Doppler shift ~v/c is large but averages to zero

• residual is a quadratic ~(v/c)2 effect which caused randomly 
moving objects appear redshifted on average

• can also be understood as a time dilation effect

• But moving objects have more energy per unit mass (in the 
observer frame)

• So if they convert their rest mass to photons we should see a 
blue-shift on average



a thought experiment

• bake cake, light candles, spin the 
cake up on a turntable and measure 
the energy of the photons in the lab 
frame

• <1st order Doppler> = 0

• 2nd order transverse Doppler effect 
gives a redshift

• but the candles are moving....

• so they have more energy (in our 
frame) per unit rest mass...

• so should there not be, on average, 
a transverse Doppler blueshift? 

How do we
resolve this?



Transverse Doppler Effect: Redshift or Blueshift?
• Averaging over objects vs averaging over photons

• averaging over objects we will see a redshift

• but objects emitting isotropically in their rest frame do not 
emit isotropically in the lab frame - more photons come 
out in the forward direction - and these have a blue shift 
on average in the lab frame

• this flips the sign of the effect

• e.g. unresolved objects show blue shift (e.g. stars in the BCG 
or low resolution 21cm radio for integrated cluster z)

• here we have a hybrid situation:

• redshifts measured for objects

• but objects are selected according to flux density



Surface brightness modulation

• Line of sight velocity changes surface 
brightness

• relativistic beaming (aberration) plus 
change of frequency

• but doesn’t change the surface area

• so velocities modulate luminosity

• depends on SED: δL/L = (3 + α)v/c

• α ~= 2, so big amplification

• spectroscopic sample is flux limited at 
r=17.8

• Δn/n = - d ln n(>Llim(Z))/d ln L * ΔL/L

• opposite sign to LC, TD effects, but 
larger because the sample here is limited 
to bright end of the luminosity function

Gravitational Redshifts in Clusters 3

Figure 1. Spectral index vs. redshift for representative galaxy
types observed in Sloan r-band

luminosity function does not, and the parameters are not
very different from the field galaxy luminosity function, so
we will use the latter, as determined by Montero-Dorta &
Prada (2009), as a proxy. Their estimate of the LF obtained
from the r-band magnitudes K-corrected to Z = 0.1 has
M∗ − 5 log10 h = −20.7 and faint end slope of α = −1.26.
The resulting d ln n(> L)/d ln L, computed using the flux
limit r = 17.77 appropriate for the SDSS spectroscopic sam-
ple used by WHH, is shown as the dot-dash curve in figure
2.

Finally, we would like to compute the average of (3 +
α)d ln n(> L)/d ln L over the galaxies used. The 7,800 clus-
ters used by WHH were selected by applying a richness
limit to the parent GMBCG catalog (Hao, J., et al. 2010)
that contains 55,000 clusters extending to Z = 0.55. These
clusters were derived from the SDSS photometric catalog
that is much deeper than the spectroscopic catalog. Con-
sequently, at the low redshifts where the spectroscopically
selected galaxies live, this parent catalog is essentially vol-
ume limited for the clusters used, so the redshift distribu-
tion for the cluster members used is essentially the same
as that for the redshift distribution for the entire spec-
troscopic sample, save for the fact that the GMBCG cat-
alog has a lower redshift limit Zlim = 0.1, which is very
close to the redshift where dN/dZ = Z2n(Z) peaks. This is
the bell shaped curve in figure 2. Combining these we find
⟨d ln n/d ln L⟩ =

R

dZ Z2n(Z)d ln n/d ln L/
R

dZ Z2n(Z) ≃
2.0 with integration range 0.1 < Z < 0.4, and the average
⟨(3 + α(Z))d ln n(> L)/d ln L⟩ ≃ 10. This may be a slight
overestimate, as the cluster catalogue is not precisely vol-
ume limited and the actual dN/dZ may lie a little below the
solid curve in figure 2 at the highest redshifts.

With this value, the surface brightness modulation ef-
fect is roughly a factor 10 larger in amplitude than the light-
cone effect, but has opposite sign. For isotropic orbits the
combination of these gives a blue-shift 6 times as large as
the TD effect so the overall effect is therefore similar in am-
plitude to the TD effect but with opposite sign, so it causes
the total observed effect to be larger than the gravitational
effect alone rather than smaller.

Figure 2. The dot-dash curve is the logarithmic derivative of
the comoving density of objects above the luminosity limit as a
function of redshift. The bell-shaped curve is dN/dZ = Z

2
n(Z)

and the solid curve is that truncated at the minimum redshift
imposed by the parent cluster catalogue. The mean of the log-
derivative, averaged over the redshift distribution turns out to be
≃ 2.0.

4 EFFECT OF SECULAR INFALL

The discussion so far has focused mostly on the stable, viri-
alised regions. Clusters, however, are evolving structures and
the mass within a fixed physical radius M(< r) will in gen-
eral be changing. In the outer parts of clusters there will
be infall and the mass will be increasing with time. In the
centres of clusters there may be softening of the cores in
which would reduce the mass and would have an associated
outflow.

The combination of infall and the associated Ṁ will re-
sult in a positive offset of the mean line of sight velocity
since the density will be slightly higher in front of the clus-
ter where we see the galaxies later and these galaxies will
be moving against us. There is also a potentially larger ef-
fect from the fact that along any line of sight we observe
galaxies that lie in a cone that will be wider at the back
of the cluster, and at the same order, we need to allow for
the bias caused by the fact that the more distant galaxies
will be fainter. These geometric and flux limit effects, whose
effects on the foreground and background galaxies was dis-
cussed by Kim and Croft (2004), will cause a back/front
anisotropy in the number of galaxies within the clusters
∆N/N ∼ 2H∆r(1− δ(Z))/cz while the change in the phys-
ical density with time caused by the infall will cause an
asymmetry ∆N/N ∼ (r/c)(Ṁ/M) ∼ Hr/c, where we have
assumed that the mass within radius r for the ensemble av-
erage cluster is changing on a cosmological timescale. Evi-
dently, for low redshift clusters, the geometric and flux limit
effects will tend to be the largers.

To order of magnitude, the mean offset induced is
⟨βz⟩ ∼ H2r2/c2z. The gravitational potential, for compar-
ison, is Φ/c2 ∼ (δρ/ρ)H2r2/c2 where δρ/ρ ≃ 200 at the
virial radius. Thus, within the virialized region, this geo-
metric term is small compared to the gravitational redshift,
but further out at the turnaround radius where δρ/ρ ∼ 5,
this is a substantial correction.

c⃝ 0000 RAS, MNRAS 000, 000–000

dN/dZ



More implications of the transverse Doppler red/
blue-shift dichotomy

• Contribution to cluster grav-Z from motions of stars in the 
BCG

• velocity dispersions are smaller than in cluster, but not 
negligible

• stars are unresolved so we get a transverse Doppler blue-
shift

• 21cm radio observations of galaxies

• sees mostly galaxies falling into cluster for first time as gas is 
stripped within virial region

• should have a large potential difference relative to BCG

• but the prediction for δZ is highly dependent on whether 
one makes unresolved single dish (e.g. Aricebo) 
measurements or resolved (e.g. Westerbork, ASKAP)



Corrected grav-z measurement

• Fairly easy to correct for TD
+LC+SB effects

• TD depends on vel. disp. 
anisotropy

• LC+SB directly measured

• net effect is a blue-shift

• ~-9km/s in centre, falling 
to ~-6km/s at larger r

• minor effects from infall/
outflow velocity

• Substantial change in 
measured grav-z term

• but still consistent with 
dynamical mass estimate
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Supplementary Figure 2 Velocity dispersion profile of the composite cluster (left panel) and
constraints on the concentration parameter cv and the logarithmic slope of the mass distribution
α (right panel) from fitting the velocity dispersion profile with an isotropic (blue) or anisotropic
(red) model of galaxy orbits. The solid lines in the left panel show the best-fitting profiles of the
velocity dispersion profile. The contours in the right panel are the boundaries of the 1σ and 2σ
confidence regions of the likelihood function. The error bars in the left panel represent the range
containing 68 per cent of the marginal probability.
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Figure 1 Velocity distributions of galaxies combined from 7, 800 SDSS galaxy clusters. The line-
of-sight velocity (vlos) distributions are plotted in four bins of the projected cluster-centric distances
R. They are sorted from the top to bottom according to the order of radial bins indicated in the
upper left corner and offset vertically by an arbitrary amount for presentation purposes. Red lines
present the histograms of the observed galaxy velocities in the cluster rest frame and black solid
lines show the best fitting models. The model assumes a linear contribution from the galaxies
which do not belong to the cluster and a quasi-Gaussian contribution from the cluster members
(see SI for more details). The cluster rest frames and centres are defined by the redshifts and the
positions of the brightest cluster galaxies. The error bars represent Poisson noise.
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Figure 3. Data points from figure 2 of WHH and prediction based
on mass-traces-light cluster halo profile and measured velocity
dispersions as described in the main text. The dashed line is the
gravitational redshift prediction, which is similar to the WHH
model prediction. The dot-dash line is the transverse Doppler
effect. The dotted line is the LC effect. The triple dot-dash line
is the surface brightness effect. The solid curve is the combined
effect.

would appear to be discrepant, but only at about the 1.5-
sigma level.

The NFW model predicts δz ≃ −10 km s−1/c for the
outer measurements r ≃ 3.3, 5.3Mpc, and the measurements
straddle this value. While this model may provide a reason-
able description for isolated clusters in the virialised domain,
it is not at all clear that it is appropriate to describe the com-
posite cluster being studied here. Tavio et al. (2008) have
claimed that beyond the virial radius the density in numer-
ical LCDM simulations actually falls off like ρ ∼ 1/r rather
than the ρ ∼ 1/r3 asymptote for the NFW profile, and the
extended peculiar in-fall velocities found by Cecccarelli et

al. (2011) also argue for shallow cluster profiles, but it is not
clear that these results are widely accepted.

An alternative, and possibly more reliable, approach is
to assume that galaxies trace the mass reasonably well, in
which case the density profile of the stacked cluster has the
same shape as the cluster-galaxy cross correlation function
(e.g. Lilje & Efstathiou, 1988; Croft et al , 1997). This has a
power-law dependence ρ ∼ r−γ with γ ≃ 2.2, i.e. intermedi-
ate between the NFW and Tavio et al. model predictions.

For space density ρ(r) = ρ0(r/r0)
−γ , where r0 is an ar-

bitrary fiducial radius, the potential is Φ(r) = Φ0(r/r0)
2−γ

and the 1-D velocity disperson, for isotropic orbits, is
σ2(r) = σ2

0(r/r0)
2−γ with Φ0 = 2((1 − γ)/(2 − γ))σ2

0 .
The projected velocity dispersion measured is related to

the 3-D velocity dispersion by σ2(r⊥)/σ2(r) =
R

dy y2−γ(1+

y2)−γ/2 but the projected potential is related to the 3-
D potential in the same way, so the projected quantities
are related by Φ(r⊥) = 2((1 − γ)/(2 − γ))σ2(r⊥). This
is the potential relative to infinity. The difference in pro-
jected potential between two projected radii r1 and r2 is
Φ(r2) − Φ(r1) ≃ 12σ2(r1)(1 − (r1/r2)

0.2) for γ = 2.2. The
resulting GR effect is shown as the dashed line in figure 3
and is actually quite similar to the shape of the profile for
the WHH NFW composite model.

The FWHM of the bell-shaped velocity distributions in

WHH figure 1 appear to decrease by about 15% between
the inner-bin and the outer points. This is reasonably con-
sistent with the expected σ2 ∝ r−0.2 trend predicted if
galaxies trace mass, but this is perhaps fortuitous since the
outer points are well outside the virial radius. Regardless
of whether the galaxies at large radius are equilibrated or
not, we can use the change in the observed velocity disper-
sion with radius to obtain the differential TD+LC+SB effect
which is shown, added to the GR effect, as the solid line in
figure 3. The kinematic effects flatten out the predicted pro-
file, so the prediction is quite different from the gravitational
redshift alone.

The situation is clearly rather complicated, especially
when using BGCs as the origin of coordinates since the ef-
fects depend on things like the relative velocities of the top
ranked pair of cluster galaxies, and on the BCG halo prop-
erties, that are quite poorly known. However, those factors
only influence the prediction for the innermost data point.
The empirically based theoretical prediction for the profile
of the redshift offset for the hot population as a function
of impact parameter at r⊥ > 0.6Mpc is the most robust;
if galaxies are reasonable tracers of the mass then profile
should be very flat, quite unlike the GR effect from a NFW
profile. The predicted GR and total effects are shown in fig-
ure 3. However, this analysis ignores the effect of secular
infall and out-flow which we consider next.

6 EFFECT OF INFALL AND OUTFLOW

The discussion so far has focused mostly on the stable,
virialised regions. Clusters, however, are evolving structures
and the mass within any fixed physical radius M(r) will in
general be changing. Outside of the virial radius (generally
considered, inspired by the spherical collapse model, to be
the radius within which the mean enclosed mass density is
3π/Gt2) we expect to see net infall, and the enclosed mass at
those radii will be increasing with time, while at still larger
radii there will be outflow tending asymptotically toward the
Hubble flow. In the spherical collapse model the transition
from inflow to outflow takes place at the turnaround radius
where the mean enclosed mass density is ρt = 3π/32Gt2.
This is for a matter dominated Universe; allowing for a cos-
mological constant makes only a small change (Lokas & Hoff-
man, 2001).

For the empirically motivated ρ = ρ0(r/r0)
−γ

model the mean enclosed mass is ρ(r) = 3(γ −
1)(2πG)−1σ2

0rγ−2
0 r−γ and the nominal virial radius is rvir =

((γ − 1)σ2
0rγ−2

0 t2/2π2)1/γ ≃ 1.8Mpc using γ = 2.2, r0 =
1Mpc, σ0 = 545 km/s and t ≃ 1/H = 1/(70 kms−1/Mpc)
and turnaround is at rt ≃ 8.7Mpc.

In the centres of clusters there may be softening of the
cores which would reduce the enclosed mass and would have
an associated outflow.

In any single cluster, the density may be changing
rapidly — on the local dynamical timescale — especially
during mergers and as clumps rain in, but for a compos-
ite cluster such as considered here these rapid changes will
average out and the mass can only change on a cosmologi-
cal timescale: Ṁ ∼ HM . For power law profile with γ ≃ 2
M ≃ 4πρr3 and Ṁ ≃ 4πρr2v, where v is the mean infall ve-
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Modelling gravitational-z in simulations (Cai+'06)

• NK'13 modelling assumed virialised (non-expanding) clusters

• this breaks down at large r

• need to allow for infall

• asymmetry gives other biases

• Cai+2016 have used Millennium simulation to quantify this

• formalism for extracting observables from "snapshots":

• includes light-cone effects

• valid to 2nd order in velocity (Hubble and/or peculiar)

Gravitational redshift & uRSD 3

obtain the conformal velocity ṙ ≡ dr/dη = av), where conformal
time us defined, up to a constant, by dη = dt/a(t). Let us also
assume that we are provided with the peculiar potential Φ and its
gradient g = ∇rΦ, again at some given conformal time η = η0.

We will use units such that c = 1 temporally, and put back
c for the final expression of our derivation. If we set a = 1 at the
output time then v and ṙ are identical at that time and separations
in r are proper separation in physical units.

Extending off the time-slice η = η0, a galaxy will have trajec-
tory

r(η) = r+ (η − η0)ṙ+ . . . (4)

where r, ṙ without an argument indicates the value at η0 and . . . in-
dicates terms that are of second or higher order in conformal look-
back time ∆η ≡ η − η0.

We will place the observer event at some large distance along
the (minus) x axis, and at the time such that the observer receives
photons that left the origin (which we will ultimately take to be the
centre of the cluster) at time η0. The equation of the surface in r-
space that contains the points within the observer’s past light cone
with conformal time η is

η = η0 − x̂ · r(η) + . . . (5)

where x̂ is the unit vector parallel to the x-axis and where we are
ignoring the fact that the coordinate speed of light is not exactly
unity because of the metric perturbations (this introduces errors of
order v × Φ which we may safely neglect). This formula gives
the conformal emission time of a photon from a particle at relative
position r that is received at the same time as a photon which leaves
the origin at time η0.

For simplicity here we are making the ‘plane-parallel’ approx-
imation, which is valid for sufficiently distant clusters.

Substituting (4) in (5) yields the conformal look-back time in
terms of r and ṙ:

∆η = −x̂ · r/(1 + x̂ · ṙ) = −x̂ · r+ (x̂ · r)(x̂ · ṙ) + . . . (6)

or, with x = x̂ · r and ẋ = x̂ · ṙ = vx

∆η = −x+ xẋ+ . . . (7)

We may use this to calculate the (inverse) redshift associated
with the expansion of the universe during this look-back interval:

(1 + z)−1 =
a(η)
a(η0)

= 1 +
ȧ
a
∆η +

1
2
ä
a
(∆η)2 + . . . (8)

or

1 + z = 1−
ȧ
a
∆η +

[

(

ȧ
a

)2

−

1
2
ä
a

]

(∆η)2 + . . . (9)

or with ∆η given by (7)

1 + z = 1 +
ȧ
a
x−

ȧ
a
xẋ+

[

(

ȧ
a

)2

−

1
2
ä
a

]

x2 + . . . (10)

Equation (10) is not the redshift of the galaxy with time-slice
position r and velocity ṙ (at the time η when it intercepts the ob-
server’s past light cone), rather it is the redshift of a stationary (in
conformal coordinates) galaxy co-located with that galaxy at that
time relative to the redshift of a stationary galaxy at the origin
r = 0. To obtain the the redshift of the actual particle of interest we
need to multiply (10) by the appropriate Lorentz boost factor and
we need to include the peculiar gravitational redshift.

The Doppler shift (the redshift of the emitting galaxy as seen
by a co-located stationary observer) is (REF)

(1 + z)Doppler =
1 + ẋ

√

1− v2
= 1 + ẋ+ v2/2 + . . . , (11)

but here ẋ is the peculiar velocity at the time of emission, which
differs (at 2nd order) from the velocity at the output time. The equa-
tion of motion for the peculiar velocity is

v̇ = g−Hv (12)

where g is the peculiar acceleration and the second term is the
‘Hubble drag’ term that arises because peculiar velocities are de-
fined to be with respect to the expanding (constant r) observers.
Thus the line of sight velocity appearing in (11) is

ẋ(η) = ẋ(η0)− (gx −Hẋ)x (13)

where we have used ∆t = ∆η = −x.
Multiplying (10) and (11) and keeping up to 2nd order terms

and adding the peculiar gravitational redshift gives, for the redshift
of the galaxy with respect to that for a stationary emitter at the
origin,

cz =Hx+ vx + v2/2c− Φ/c

− xgx +Hxvx/c+
[

H2
− ä/(2a2)

]

x2/c,
(14)

where we have put back the speed of light. The above equation fully
accounts for the observed redshift relative to a stationary emitter
in the past light cone to the second order (if the potentials are not
evolving). We call the total distortion to the Hubble term induced by
all the other terms the ultimate redshift-space distortions (uRSD).

COMPLICATION: What is relevant is the redshift with re-
spect to the cluster centre – which may be a centroid of the cluster
galaxies, with cluster membership suitably defined, or it may be
with respect to the brightest cluster galaxy. The relevant relative
redshift is 1 + δz = λobs/λ

′
obs = (1 + z)/(1 + z′) where λ′

obs is
the observed wavelength for light received from the centre and z′ is
the corresponding redshift. Because z′ appears in the denominator,
we cannot simply take δz = z − z′. Rather . . .

• The first two terms on the RHS is the Doppler shift from the
total (i.e. Hubble + peculiar) velocity.
• We then have the transverse Doppler effect and the peculiar

gravitational redshift.
• Next we have minus the product of the line-of-sight dis-

placement and the line-of-sight acceleration; these tend to be anti-
correlated for over-dense systems and is the (positive redshift) ef-
fect shown in (Kaiser 2013), but we will see that at large distance
from the cluster centre, the situation is different.
• Next we have a second order term Hxvx that is the product

of the Hubble and peculiar velocities. In the virialised region these
will be uncorrelated, but in the outskirts of a cluster will be anti-
correlated so this should give a negative contribution to the mean
redshift. Again, the situation in velocity space and further from the
cluster centre may be different.
• We then have the quadratic (in x) term that comes from the the

combination of the background gravitational redshift and Doppler
effects (it is present even if v and Φ are zero). In a situation where
the density of galaxies is constant in real space, this will introduce,
at leading order, a linear ramp in the density. However, in anal-
ysises of gravitational redshift like Wojtak et al. (2011); Jimeno
et al. (2015) analysis this gets removed because they fit for the lo-
cal large-scale gradient using the density of galaxies well separated
from the cluster in velocity. Similar effects arise from the fact that
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Clusters in the Millenium Simulation (Y. Cai)
Gravitational redshift & uRSD 5

Figure 1. Top row: particle distributions within 10 Mpc/h radius from the main halo centre projected along one major axises of the simulation box. n in
the label of the colour bars is the number of dark matter particles in each pixel. Middle row: the same zones but showing the potential values of all particles.
Sub-haloes and neighbouring structures induce local potential minima. Bottom row: the gravitational redshift profiles with respect to the cluster centres. The
dashed lines shows the spherical averaged profile, Φiso, which is the same as equal-directional weighting from the halo centres. Sub-haloes and neighbours
cause the mass weighted profiles Φobs to be biased low compared to the spherical averaging. This is similar to observations where the observed profiles are
weighted by galaxies.
c⃝ 0000 RAS, MNRAS 000, 000–000



Modelling gravitational-z in simulations (Cai+'06)

Gravitational redshift & uRSD 3

obtain the conformal velocity ṙ ≡ dr/dη = av), where conformal
time us defined, up to a constant, by dη = dt/a(t). Let us also
assume that we are provided with the peculiar potential Φ and its
gradient g = ∇rΦ, again at some given conformal time η = η0.

We will use units such that c = 1 temporally, and put back
c for the final expression of our derivation. If we set a = 1 at the
output time then v and ṙ are identical at that time and separations
in r are proper separation in physical units.

Extending off the time-slice η = η0, a galaxy will have trajec-
tory

r(η) = r+ (η − η0)ṙ+ . . . (4)

where r, ṙ without an argument indicates the value at η0 and . . . in-
dicates terms that are of second or higher order in conformal look-
back time ∆η ≡ η − η0.

We will place the observer event at some large distance along
the (minus) x axis, and at the time such that the observer receives
photons that left the origin (which we will ultimately take to be the
centre of the cluster) at time η0. The equation of the surface in r-
space that contains the points within the observer’s past light cone
with conformal time η is

η = η0 − x̂ · r(η) + . . . (5)

where x̂ is the unit vector parallel to the x-axis and where we are
ignoring the fact that the coordinate speed of light is not exactly
unity because of the metric perturbations (this introduces errors of
order v × Φ which we may safely neglect). This formula gives
the conformal emission time of a photon from a particle at relative
position r that is received at the same time as a photon which leaves
the origin at time η0.

For simplicity here we are making the ‘plane-parallel’ approx-
imation, which is valid for sufficiently distant clusters.

Substituting (4) in (5) yields the conformal look-back time in
terms of r and ṙ:

∆η = −x̂ · r/(1 + x̂ · ṙ) = −x̂ · r+ (x̂ · r)(x̂ · ṙ) + . . . (6)

or, with x = x̂ · r and ẋ = x̂ · ṙ = vx

∆η = −x+ xẋ+ . . . (7)

We may use this to calculate the (inverse) redshift associated
with the expansion of the universe during this look-back interval:

(1 + z)−1 =
a(η)
a(η0)

= 1 +
ȧ
a
∆η +

1
2
ä
a
(∆η)2 + . . . (8)

or

1 + z = 1−
ȧ
a
∆η +

[

(

ȧ
a

)2

−

1
2
ä
a

]

(∆η)2 + . . . (9)

or with ∆η given by (7)

1 + z = 1 +
ȧ
a
x−

ȧ
a
xẋ+

[

(

ȧ
a

)2

−

1
2
ä
a

]

x2 + . . . (10)

Equation (10) is not the redshift of the galaxy with time-slice
position r and velocity ṙ (at the time η when it intercepts the ob-
server’s past light cone), rather it is the redshift of a stationary (in
conformal coordinates) galaxy co-located with that galaxy at that
time relative to the redshift of a stationary galaxy at the origin
r = 0. To obtain the the redshift of the actual particle of interest we
need to multiply (10) by the appropriate Lorentz boost factor and
we need to include the peculiar gravitational redshift.

The Doppler shift (the redshift of the emitting galaxy as seen
by a co-located stationary observer) is (REF)

(1 + z)Doppler =
1 + ẋ

√

1− v2
= 1 + ẋ+ v2/2 + . . . , (11)

but here ẋ is the peculiar velocity at the time of emission, which
differs (at 2nd order) from the velocity at the output time. The equa-
tion of motion for the peculiar velocity is

v̇ = g−Hv (12)

where g is the peculiar acceleration and the second term is the
‘Hubble drag’ term that arises because peculiar velocities are de-
fined to be with respect to the expanding (constant r) observers.
Thus the line of sight velocity appearing in (11) is

ẋ(η) = ẋ(η0)− (gx −Hẋ)x (13)

where we have used ∆t = ∆η = −x.
Multiplying (10) and (11) and keeping up to 2nd order terms

and adding the peculiar gravitational redshift gives, for the redshift
of the galaxy with respect to that for a stationary emitter at the
origin,

cz =Hx+ vx + v2/2c− Φ/c

− xgx +Hxvx/c+
[

H2
− ä/(2a2)

]

x2/c,
(14)

where we have put back the speed of light. The above equation fully
accounts for the observed redshift relative to a stationary emitter
in the past light cone to the second order (if the potentials are not
evolving). We call the total distortion to the Hubble term induced by
all the other terms the ultimate redshift-space distortions (uRSD).

COMPLICATION: What is relevant is the redshift with re-
spect to the cluster centre – which may be a centroid of the cluster
galaxies, with cluster membership suitably defined, or it may be
with respect to the brightest cluster galaxy. The relevant relative
redshift is 1 + δz = λobs/λ

′
obs = (1 + z)/(1 + z′) where λ′

obs is
the observed wavelength for light received from the centre and z′ is
the corresponding redshift. Because z′ appears in the denominator,
we cannot simply take δz = z − z′. Rather . . .

• The first two terms on the RHS is the Doppler shift from the
total (i.e. Hubble + peculiar) velocity.
• We then have the transverse Doppler effect and the peculiar

gravitational redshift.
• Next we have minus the product of the line-of-sight dis-

placement and the line-of-sight acceleration; these tend to be anti-
correlated for over-dense systems and is the (positive redshift) ef-
fect shown in (Kaiser 2013), but we will see that at large distance
from the cluster centre, the situation is different.
• Next we have a second order term Hxvx that is the product

of the Hubble and peculiar velocities. In the virialised region these
will be uncorrelated, but in the outskirts of a cluster will be anti-
correlated so this should give a negative contribution to the mean
redshift. Again, the situation in velocity space and further from the
cluster centre may be different.
• We then have the quadratic (in x) term that comes from the the

combination of the background gravitational redshift and Doppler
effects (it is present even if v and Φ are zero). In a situation where
the density of galaxies is constant in real space, this will introduce,
at leading order, a linear ramp in the density. However, in anal-
ysises of gravitational redshift like Wojtak et al. (2011); Jimeno
et al. (2015) analysis this gets removed because they fit for the lo-
cal large-scale gradient using the density of galaxies well separated
from the cluster in velocity. Similar effects arise from the fact that
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Formalism: mapping from x to v (2nd order)

Gravitational redshift & uRSD 5

Figure 1. Top row: particle distributions within 10 Mpc/h radius from the main halo centre projected along one major axises of the simulation box. n in
the label of the colour bars is the number of dark matter particles in each pixel. Middle row: the same zones but showing the potential values of all particles.
Sub-haloes and neighbouring structures induce local potential minima. Bottom row: the gravitational redshift profiles with respect to the cluster centres. The
dashed lines shows the spherical averaged profile, Φiso, which is the same as equal-directional weighting from the halo centres. Sub-haloes and neighbours
cause the mass weighted profiles Φobs to be biased low compared to the spherical averaging. This is similar to observations where the observed profiles are
weighted by galaxies.
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What was wrong with the "kinematic picture"?

• "A gravitational redshift is just a Doppler shift viewed from an 
unnatural coordinate system"?

• This confuses gravity and acceleration

• In GR the gravitational field is the Riemann (curvature) tensor

• just the tidal field in the Newtonian limit

• can be measured from relative motion of test particles

• So is there a truly gravitational component to the redshift?

• and why does e.g. cosmological z appear kinematical?



Why is the gravitational-z hidden in cosmology?
• Consider expanding sphere of dust 

and source A sending photon to 
receiver B

• Photon suffers gravitational red-shift 
climbing up the potential and then a 
Doppler red-shift on reception

• For source B sending to A the photon 
has a Doppler red-shift (as seen in our 
frame) then enjoys a gravitational 
blue-shift

• But the net effect is the same. 

• The opposite gravitational shifts are 
cancelled by the Doppler shift change

• But this is a special situation

A

B



The non-kinematic part of the redshift
• Consider pair of freely-falling observers 1,2 in arbitrary 

gravitational field who exchange a photon.

• Use rigid, non-rotating lattice picture to calculate changes in 
wavelength and proper separation (work in CoM frame)

• work to 2nd order in v/c and 1st order in φ/c2

• Δλ/λ = n . (v1 - v2)t1 / c + ∫dr . (g2 - g(r)) / c2     (1) 

• ΔD/D = n . (v1 - v2)t1 / c + Δr . (g2 - g1) / 2c2        (2)

• Both are 1st order Doppler (with initial Δv) plus ‘tidal’ term

• Spatially constant tidal field stretches λ just like D

• includes Minkowski spacetime and FRW

• but that's because of special symmetry of FRW

• does not apply for a galaxy cluster

• extra intrinsically gravitational term (gradient of tide)



8 Nick Kaiser

it is if the relative velocity is taken to be in the rest-frame,
or whether it also involves the gravity, as is the case if the
velocity difference is at different times. This is at odds with
Synge’s statement that the curvature does not appear in the
redshift.

What about the change in the separation during the
light-propagational time? Letting the centre of velocity
frame separations, in the absence of gravity, at reception
and emission be DR, DE = (D ± ∆D/2) we see from the
caption of Fig. 3 that ∆D/D is not precisely the same as
the flat-space ∆λ/λ = 2µβ. But the difference is of order
β3, so to our precision goal we can take them to be equal.
Switching on gravity, the fractional change of the separation
between the particles as measured by lattice based observers
– i.e. the change in the proper separation in the centre of
velocity frame – is

∆D/D = n · (v2 − v1)t1/c + ∆r · (g2 − g1)/2c2 (4)

which is also a simple Newtonian looking result. Unsurpris-
ingly, to first order in the relative velocity the fractional
changes in wavelength and separation are identical. Both
contain an additional gravitational term that is, to lowest
order, a tidal effect. In general, these gravitational effects
are not precisely equal – g2 − g1 is the integral of the tide
while the wavelength shift involves the integral of the grav-
ity – so the ‘cosmological relation’ that wavelengths vary
precisely in proportion to the source-observer proper sepa-
ration, does not hold in general.

But if the tide is spatially constant – i.e. the poten-
tial has no spatial derivatives higher than second – then
the gravity varies linearly with position then we can write
g(r) = g1 + (g2 − g1)|r− r1|/|r2 − r1| and the gravitational
terms are readily found to be identical. Thus the relation
seen in cosmology is of wider generality, and applies for an
arbitrary pair of particles moving in a field that has a spa-
tially constant tide. This includes, as a special case, a pair
of particles with relative motion along their separation in a
quadratic potential as in a FRW model containing matter
and/or dark energy. Note that there is no need for the parti-
cles to be co-moving with the matter density, though again
this result does apply in that situation.

This is one of the two main results of this paper: a con-
stant tide stretches wavelength of radiation just as it changes
the separation of test-particles. Arguably this ‘explains’ the
apparent stretching of wavelength of light by the expansion
of space in FRW models.

To highlight the differences between separation and
wavelength changes – what one might call the ‘non-
kinematic’ component of the redshift – and to see how this
depends on the tide (and its derivatives) we note the follow-
ing:

First, we can write

∆D/D = n · (v2 − v1)t1/c −
∆r
2c2

Z

drφ′′(r) (5)

where φ(r) = φ(rn) is the gravitational potential and prime
denotes the operator ∂r = n · ∇, i.e. the spatial derivative
along the photon path, so φ′(r) = n ·∇φ(r) = −n · g. Thus
the gravitational contribution to ∆D/D is the average of
the tide along the photon path times (∆r/c)2/2.

✲
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2)θ(|r|− d)/2
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Figure 4. The upper plot shows, schematically, the dimensionless
weight function W0(r) = θ+(r)θ−(r) − d(δ(r − d) + δ(r + d))/2
that, when multiplied by the gravity φ′(r) gives the difference
∆λ/λ − ∆D/D. The Dirac δ-functions are shown as the narrow
box-cars at r = ±d and together have (minus) the same weight as
the central box-car. As described in the text, this difference can
also be computed as a weighted average of the tide φ′′(r) using
the weighting function W1(r) shown in the centre plot, which is
(minus) the integral of W0(r), and also has zero net weight. The
third way to compute the difference is averaging the gradient of
the tide φ′′′(r) with the weight function shown in the bottom
plot.

Second, taking the difference of (3) and (4), we have

∆ log(λ/D) =
1
c2

„

d n · (g1 + g2) −

Z

dr · g

«

(6)

where d ≡ |r2 − r1|/2. Taking the origin of coordinates to
lie at (r1 + r2)/2 for simplicity, this is a weighted average of
the gravity −φ′:

∆ log(λ/D) =
1
c2

Z

dr W0(r)φ
′(r) (7)

with dimensionless weighting function W0(r) ≡
θ+(r)θ−(r)−d(δ(r−d)+δ(r+d))/2; where φ(r) ≡ φ(r = rn);
and where θ±(r) ≡ θ(±r − d) with θ(r) and δ(r) denoting
the Heaviside function and the Dirac delta function respec-
tively. The weight function W0(r) is shown schematically
as the upper plot in Fig. 4. The product of Heaviside
functions is zero for |r| > d so the range of integration is
now unrestricted. The integral of W0(r) over all r vanishes,
so we can immediately integrate by parts to eliminate the
gravity and write (7) as an integral of the tide:

∆ log(λ/D) =
1
c2

Z

dr W1(r)φ
′′(r) (8)

where W1(r) = −
R

dr W0(r) = −rθ+(r)θ−(r) which is
shown is the middle plot in Fig. (4). But the integral of
W1(r) also vanishes (so, as already mentioned for spatially
constant tide ∆λ/λ = ∆D/D) and we can integrate once
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it is if the relative velocity is taken to be in the rest-frame,
or whether it also involves the gravity, as is the case if the
velocity difference is at different times. This is at odds with
Synge’s statement that the curvature does not appear in the
redshift.

What about the change in the separation during the
light-propagational time? Letting the centre of velocity
frame separations, in the absence of gravity, at reception
and emission be DR, DE = (D ± ∆D/2) we see from the
caption of Fig. 3 that ∆D/D is not precisely the same as
the flat-space ∆λ/λ = 2µβ. But the difference is of order
β3, so to our precision goal we can take them to be equal.
Switching on gravity, the fractional change of the separation
between the particles as measured by lattice based observers
– i.e. the change in the proper separation in the centre of
velocity frame – is

∆D/D = n · (v2 − v1)t1/c + ∆r · (g2 − g1)/2c2 (4)

which is also a simple Newtonian looking result. Unsurpris-
ingly, to first order in the relative velocity the fractional
changes in wavelength and separation are identical. Both
contain an additional gravitational term that is, to lowest
order, a tidal effect. In general, these gravitational effects
are not precisely equal – g2 − g1 is the integral of the tide
while the wavelength shift involves the integral of the grav-
ity – so the ‘cosmological relation’ that wavelengths vary
precisely in proportion to the source-observer proper sepa-
ration, does not hold in general.

But if the tide is spatially constant – i.e. the poten-
tial has no spatial derivatives higher than second – then
the gravity varies linearly with position then we can write
g(r) = g1 + (g2 − g1)|r− r1|/|r2 − r1| and the gravitational
terms are readily found to be identical. Thus the relation
seen in cosmology is of wider generality, and applies for an
arbitrary pair of particles moving in a field that has a spa-
tially constant tide. This includes, as a special case, a pair
of particles with relative motion along their separation in a
quadratic potential as in a FRW model containing matter
and/or dark energy. Note that there is no need for the parti-
cles to be co-moving with the matter density, though again
this result does apply in that situation.

This is one of the two main results of this paper: a con-
stant tide stretches wavelength of radiation just as it changes
the separation of test-particles. Arguably this ‘explains’ the
apparent stretching of wavelength of light by the expansion
of space in FRW models.

To highlight the differences between separation and
wavelength changes – what one might call the ‘non-
kinematic’ component of the redshift – and to see how this
depends on the tide (and its derivatives) we note the follow-
ing:

First, we can write

∆D/D = n · (v2 − v1)t1/c −
∆r
2c2

Z

drφ′′(r) (5)

where φ(r) = φ(rn) is the gravitational potential and prime
denotes the operator ∂r = n · ∇, i.e. the spatial derivative
along the photon path, so φ′(r) = n ·∇φ(r) = −n · g. Thus
the gravitational contribution to ∆D/D is the average of
the tide along the photon path times (∆r/c)2/2.

✲
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Figure 4. The upper plot shows, schematically, the dimensionless
weight function W0(r) = θ+(r)θ−(r) − d(δ(r − d) + δ(r + d))/2
that, when multiplied by the gravity φ′(r) gives the difference
∆λ/λ − ∆D/D. The Dirac δ-functions are shown as the narrow
box-cars at r = ±d and together have (minus) the same weight as
the central box-car. As described in the text, this difference can
also be computed as a weighted average of the tide φ′′(r) using
the weighting function W1(r) shown in the centre plot, which is
(minus) the integral of W0(r), and also has zero net weight. The
third way to compute the difference is averaging the gradient of
the tide φ′′′(r) with the weight function shown in the bottom
plot.

Second, taking the difference of (3) and (4), we have

∆ log(λ/D) =
1
c2

„

d n · (g1 + g2) −

Z

dr · g

«

(6)

where d ≡ |r2 − r1|/2. Taking the origin of coordinates to
lie at (r1 + r2)/2 for simplicity, this is a weighted average of
the gravity −φ′:

∆ log(λ/D) =
1
c2

Z

dr W0(r)φ
′(r) (7)

with dimensionless weighting function W0(r) ≡
θ+(r)θ−(r)−d(δ(r−d)+δ(r+d))/2; where φ(r) ≡ φ(r = rn);
and where θ±(r) ≡ θ(±r − d) with θ(r) and δ(r) denoting
the Heaviside function and the Dirac delta function respec-
tively. The weight function W0(r) is shown schematically
as the upper plot in Fig. 4. The product of Heaviside
functions is zero for |r| > d so the range of integration is
now unrestricted. The integral of W0(r) over all r vanishes,
so we can immediately integrate by parts to eliminate the
gravity and write (7) as an integral of the tide:

∆ log(λ/D) =
1
c2

Z

dr W1(r)φ
′′(r) (8)

where W1(r) = −
R

dr W0(r) = −rθ+(r)θ−(r) which is
shown is the middle plot in Fig. (4). But the integral of
W1(r) also vanishes (so, as already mentioned for spatially
constant tide ∆λ/λ = ∆D/D) and we can integrate once
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it is if the relative velocity is taken to be in the rest-frame,
or whether it also involves the gravity, as is the case if the
velocity difference is at different times. This is at odds with
Synge’s statement that the curvature does not appear in the
redshift.

What about the change in the separation during the
light-propagational time? Letting the centre of velocity
frame separations, in the absence of gravity, at reception
and emission be DR, DE = (D ± ∆D/2) we see from the
caption of Fig. 3 that ∆D/D is not precisely the same as
the flat-space ∆λ/λ = 2µβ. But the difference is of order
β3, so to our precision goal we can take them to be equal.
Switching on gravity, the fractional change of the separation
between the particles as measured by lattice based observers
– i.e. the change in the proper separation in the centre of
velocity frame – is

∆D/D = n · (v2 − v1)t1/c + ∆r · (g2 − g1)/2c2 (4)

which is also a simple Newtonian looking result. Unsurpris-
ingly, to first order in the relative velocity the fractional
changes in wavelength and separation are identical. Both
contain an additional gravitational term that is, to lowest
order, a tidal effect. In general, these gravitational effects
are not precisely equal – g2 − g1 is the integral of the tide
while the wavelength shift involves the integral of the grav-
ity – so the ‘cosmological relation’ that wavelengths vary
precisely in proportion to the source-observer proper sepa-
ration, does not hold in general.

But if the tide is spatially constant – i.e. the poten-
tial has no spatial derivatives higher than second – then
the gravity varies linearly with position then we can write
g(r) = g1 + (g2 − g1)|r− r1|/|r2 − r1| and the gravitational
terms are readily found to be identical. Thus the relation
seen in cosmology is of wider generality, and applies for an
arbitrary pair of particles moving in a field that has a spa-
tially constant tide. This includes, as a special case, a pair
of particles with relative motion along their separation in a
quadratic potential as in a FRW model containing matter
and/or dark energy. Note that there is no need for the parti-
cles to be co-moving with the matter density, though again
this result does apply in that situation.

This is one of the two main results of this paper: a con-
stant tide stretches wavelength of radiation just as it changes
the separation of test-particles. Arguably this ‘explains’ the
apparent stretching of wavelength of light by the expansion
of space in FRW models.

To highlight the differences between separation and
wavelength changes – what one might call the ‘non-
kinematic’ component of the redshift – and to see how this
depends on the tide (and its derivatives) we note the follow-
ing:

First, we can write

∆D/D = n · (v2 − v1)t1/c −
∆r
2c2

Z

drφ′′(r) (5)

where φ(r) = φ(rn) is the gravitational potential and prime
denotes the operator ∂r = n · ∇, i.e. the spatial derivative
along the photon path, so φ′(r) = n ·∇φ(r) = −n · g. Thus
the gravitational contribution to ∆D/D is the average of
the tide along the photon path times (∆r/c)2/2.
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Figure 4. The upper plot shows, schematically, the dimensionless
weight function W0(r) = θ+(r)θ−(r) − d(δ(r − d) + δ(r + d))/2
that, when multiplied by the gravity φ′(r) gives the difference
∆λ/λ − ∆D/D. The Dirac δ-functions are shown as the narrow
box-cars at r = ±d and together have (minus) the same weight as
the central box-car. As described in the text, this difference can
also be computed as a weighted average of the tide φ′′(r) using
the weighting function W1(r) shown in the centre plot, which is
(minus) the integral of W0(r), and also has zero net weight. The
third way to compute the difference is averaging the gradient of
the tide φ′′′(r) with the weight function shown in the bottom
plot.

Second, taking the difference of (3) and (4), we have

∆ log(λ/D) =
1
c2

„

d n · (g1 + g2) −

Z

dr · g

«

(6)

where d ≡ |r2 − r1|/2. Taking the origin of coordinates to
lie at (r1 + r2)/2 for simplicity, this is a weighted average of
the gravity −φ′:

∆ log(λ/D) =
1
c2

Z

dr W0(r)φ
′(r) (7)

with dimensionless weighting function W0(r) ≡
θ+(r)θ−(r)−d(δ(r−d)+δ(r+d))/2; where φ(r) ≡ φ(r = rn);
and where θ±(r) ≡ θ(±r − d) with θ(r) and δ(r) denoting
the Heaviside function and the Dirac delta function respec-
tively. The weight function W0(r) is shown schematically
as the upper plot in Fig. 4. The product of Heaviside
functions is zero for |r| > d so the range of integration is
now unrestricted. The integral of W0(r) over all r vanishes,
so we can immediately integrate by parts to eliminate the
gravity and write (7) as an integral of the tide:

∆ log(λ/D) =
1
c2

Z

dr W1(r)φ
′′(r) (8)

where W1(r) = −
R

dr W0(r) = −rθ+(r)θ−(r) which is
shown is the middle plot in Fig. (4). But the integral of
W1(r) also vanishes (so, as already mentioned for spatially
constant tide ∆λ/λ = ∆D/D) and we can integrate once
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more by parts to express the difference of these as a weighted
average of φ′′′(r):

∆ log(λ/D) =
1
c2

Z

dr W2(r)φ
′′′(r) (9)

with weight function W2(r) = (r2−d2)θ+(r)θ−(r)/2 = (r2−
d2)θ(|r|− d)/2 now shown as the bottom plot in figure (4).
This is the second main result of this paper.

3 DISCUSSION

We have made various simplifying assumptions. The results
are only valid up to 2nd order in velocity and 1st order in
the potential, but this is adequate to encompass the phe-
nomena that have proved controversial. We have ignored
any time variation of the potential, and we have also ig-
nored any bending of light rays. These are higher order ef-
fects; the Rees-Sciama (1968) effect is of order (v/c)3 for
instance. We can also ignore spatial curvature. In a FRW
model, for example, the distance between two FOs as mea-
sured by observers on a ruler is not precisely the same as
the distance as determined by a chain of FOs lying along
a geodesic in the 3-space of constant proper time since the
big-bang, but the fractional difference is at most of order the
square of the separation in units of the curvature radius (or
of order (v/c)2) so any effect on ∆D/D is of higher order.
Similarly the asynchronicity between clocks carried by our
non-inertial grid-based observers is negligible at our stated
level of precision.

More fundamentally while matter tells space-time how
to curve, it is only the curvature of time that tells non-
relativistic matter how to move, and is is also only the time-
time part of the metric perturbation that is relevant for the
calculation of the redshift. So at the specified level of preci-
sion we can ignore the spatial part of the metric.

We have asked: what is the domain of validity of the re-
lationship between wavelengths and emitter/receiver proper
separation (1) that we see for FOs in homogeneous mod-
els? We have shown that a spatially constant tide stretches
wavelength in exactly the same way it affects the observers’
separation, but if the tide varies with position the relation-
ship between wavelength and separation is modified.

From this perspective, the perfect correlation seen be-
tween changes in wavelengths ∆λ/λ of light exchanged be-
tween FRW FOs and the change ∆D/D in the space (be-
tween said FOs) is not a causal relationship, rather both
the change in the wavelength and the change in the space
between the observers are ‘caused’, or determined, by a com-
bination of the observers’ initial velocities and the tidal field
in which they and the photons propagate. Echoing Whiting
(2004), the expansion rate defined by the matter content
of the universe is irrelevant (which is a jolly good thing if
the universe has a cosmological constant or a scalar field
to realise dark energy since neither defines either a frame of
motion or a state of expansion). Rather, on the parabolic po-
tential generated by gravitating matter and dark energy one
can have emitter/receiver pairs that recede from each other
or pairs that approach each other, and what determines both
the changes in the wavelengths and proper separations is a
combination of initial conditions and the curvature, or tidal
field.

The perfect correlation of ∆ log(λ) and ∆ log(D) in ho-
mogeneous models can be considered to be a reflection of
the symmetry of the gravitational fields that are allowed in
these models, in accord with the conjecture of Melia (2012).

In the Introduction we asked what redshift would be
seen by a pair of observers in a cluster who have the same
separation at emission as at reception. Our analysis shows
that they do not see the effect of any local tidal field. What
happens is that any gravitational stretching of the wave-
length that would be perceived in the frame of the rigid non-
inertial observers is counteracted by the red- or blue-shifts
in boosting from the observers’ frames to the rigid frame
and back again (if, for example they were moving apart at
the emission time they will be moving together again by the
time of reception).

In an inhomogeneous system such as the solar system,
or a galaxy, cluster or supercluster, the tidal field neces-
sarily varies with position. There is then a non-kinematic
component to the redshift that violates (1) and which is es-
sentially gravitational in nature. Combining this with the
kinematic redshift component, if any, one obtains complete
consistency with the conventional view of the gravitational
redshift in clusters of galaxies and other gravitating systems.
Note that our description of components of the redshift is
different from the terminology of Chodorowski (2011) who
was considering the gravtiational component of the redshift
in FRW models that arises if the ‘kinematic’ component is
taken to be the relative velocity at emission or reception
rather than the average velocity. Here we consider redshifts
between observers in FRW models to be purely kinematic
in the sense that (1) is obeyed.

For emitter/receiver pair separation that is small com-
pared to the size of the gravitating system the difference
between the fractional change in the wavelength and sep-
aration is on the order of the gravitational potential well
depth times the cube of the separation in units of the over-
all system size. This is seen most easily from (9), and the
fact that W2(r) ∼ d2, which together imply ∆ log(λ/D) ∼
(d/R)3φ/c2. So, just as the local gravity is invisible to freely-
falling observers, as far as the ratio of wavelength to separa-
tion is concerned, the local tide is also invisible. But if the
path length has a similar size to the entire system the error
is on the order of the gravitational potential.

To see better how this relates to Synge’s result that
the redshift is always given by the Doppler formula, con-
sider the case of an emitter at the centre of the poten-
tial for a small uniform spherical distribution of matter of
mass M and radius r and a receiver outside at distance
D ≫ r who happens to be at rest at the moment of re-
ception. In this situation, the redshift is just the static
gravitational redshift: ∆λ/λ =

R

dr g/c2 ∼ GM/c2r. But
the more distant the receiver, the smaller any fractional
change in the emitter/receiver proper separation during
the time of flight: ∆D ! (GM/D2)(∆t)2/2 which implies
∆D/D ! GM/c2D ≪ ∆λ/λ. Evidently the kinematic re-
lation does not apply here. But, following Peebles, we can
still break the net wavelength ratio down into the product
of ratios between a set of pairs of neighbouring particles.
We can take these to be particles on a set of radial orbits
such that each particle is at apogee at the time the photon
passes (see Fig. 5). Thus the nth particle has zero velocity
as the photon passes it, as does the (n+1)th particle. In the
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it is if the relative velocity is taken to be in the rest-frame,
or whether it also involves the gravity, as is the case if the
velocity difference is at different times. This is at odds with
Synge’s statement that the curvature does not appear in the
redshift.

What about the change in the separation during the
light-propagational time? Letting the centre of velocity
frame separations, in the absence of gravity, at reception
and emission be DR, DE = (D ± ∆D/2) we see from the
caption of Fig. 3 that ∆D/D is not precisely the same as
the flat-space ∆λ/λ = 2µβ. But the difference is of order
β3, so to our precision goal we can take them to be equal.
Switching on gravity, the fractional change of the separation
between the particles as measured by lattice based observers
– i.e. the change in the proper separation in the centre of
velocity frame – is

∆D/D = n · (v2 − v1)t1/c + ∆r · (g2 − g1)/2c2 (4)

which is also a simple Newtonian looking result. Unsurpris-
ingly, to first order in the relative velocity the fractional
changes in wavelength and separation are identical. Both
contain an additional gravitational term that is, to lowest
order, a tidal effect. In general, these gravitational effects
are not precisely equal – g2 − g1 is the integral of the tide
while the wavelength shift involves the integral of the grav-
ity – so the ‘cosmological relation’ that wavelengths vary
precisely in proportion to the source-observer proper sepa-
ration, does not hold in general.

But if the tide is spatially constant – i.e. the poten-
tial has no spatial derivatives higher than second – then
the gravity varies linearly with position then we can write
g(r) = g1 + (g2 − g1)|r− r1|/|r2 − r1| and the gravitational
terms are readily found to be identical. Thus the relation
seen in cosmology is of wider generality, and applies for an
arbitrary pair of particles moving in a field that has a spa-
tially constant tide. This includes, as a special case, a pair
of particles with relative motion along their separation in a
quadratic potential as in a FRW model containing matter
and/or dark energy. Note that there is no need for the parti-
cles to be co-moving with the matter density, though again
this result does apply in that situation.

This is one of the two main results of this paper: a con-
stant tide stretches wavelength of radiation just as it changes
the separation of test-particles. Arguably this ‘explains’ the
apparent stretching of wavelength of light by the expansion
of space in FRW models.

To highlight the differences between separation and
wavelength changes – what one might call the ‘non-
kinematic’ component of the redshift – and to see how this
depends on the tide (and its derivatives) we note the follow-
ing:

First, we can write

∆D/D = n · (v2 − v1)t1/c −
∆r
2c2

Z

drφ′′(r) (5)

where φ(r) = φ(rn) is the gravitational potential and prime
denotes the operator ∂r = n · ∇, i.e. the spatial derivative
along the photon path, so φ′(r) = n ·∇φ(r) = −n · g. Thus
the gravitational contribution to ∆D/D is the average of
the tide along the photon path times (∆r/c)2/2.

✲
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Figure 4. The upper plot shows, schematically, the dimensionless
weight function W0(r) = θ+(r)θ−(r) − d(δ(r − d) + δ(r + d))/2
that, when multiplied by the gravity φ′(r) gives the difference
∆λ/λ − ∆D/D. The Dirac δ-functions are shown as the narrow
box-cars at r = ±d and together have (minus) the same weight as
the central box-car. As described in the text, this difference can
also be computed as a weighted average of the tide φ′′(r) using
the weighting function W1(r) shown in the centre plot, which is
(minus) the integral of W0(r), and also has zero net weight. The
third way to compute the difference is averaging the gradient of
the tide φ′′′(r) with the weight function shown in the bottom
plot.

Second, taking the difference of (3) and (4), we have

∆ log(λ/D) =
1
c2

„

d n · (g1 + g2) −

Z

dr · g

«

(6)

where d ≡ |r2 − r1|/2. Taking the origin of coordinates to
lie at (r1 + r2)/2 for simplicity, this is a weighted average of
the gravity −φ′:

∆ log(λ/D) =
1
c2

Z

dr W0(r)φ
′(r) (7)

with dimensionless weighting function W0(r) ≡
θ+(r)θ−(r)−d(δ(r−d)+δ(r+d))/2; where φ(r) ≡ φ(r = rn);
and where θ±(r) ≡ θ(±r − d) with θ(r) and δ(r) denoting
the Heaviside function and the Dirac delta function respec-
tively. The weight function W0(r) is shown schematically
as the upper plot in Fig. 4. The product of Heaviside
functions is zero for |r| > d so the range of integration is
now unrestricted. The integral of W0(r) over all r vanishes,
so we can immediately integrate by parts to eliminate the
gravity and write (7) as an integral of the tide:

∆ log(λ/D) =
1
c2

Z

dr W1(r)φ
′′(r) (8)

where W1(r) = −
R

dr W0(r) = −rθ+(r)θ−(r) which is
shown is the middle plot in Fig. (4). But the integral of
W1(r) also vanishes (so, as already mentioned for spatially
constant tide ∆λ/λ = ∆D/D) and we can integrate once
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Subtracting (1) - (2) gives 

There is a non-kinematic component of the redshift: it is a 
measurement of the gradient of the tide

or



Why we observe a gravitational z in clusters

• The "kinematic picture" is wrong

• redshifts are not solely determined by change of separation 
of observer, source

• there is an additional, intrinsically gravitational, effect

• but the gravitational-z comes from gradients of the tide

• that's why it's not seen in FRW cosmology

• a consequence of symmetry

• Total z is kinematic plus an integral involving grad(tide)

• sums to give naive (P&R) gravitational redshift

• but we also need TD, LC and SB effects..



Future prospects...

• Can expect immediate improvements in measurement

• 3x increase in number of redshifts available (BOSS)

• and more to come: 

• optical: big-BOSS

• radio: FAST, ASKAP-Wallaby+WNSHS

• interesting to compare unresolved radio and optical

• Extension to larger scales.  Bright-faint cross correlation 
Gaztanaga++2015, Alam++2016..

• Lots of rich material in the front-back asymmetry of the galaxy 
correlation function.

• Lots of interesting scope for modelling:



Redshift space distortions (symmetric)



What else does it mean?

• Probe of curvature of space in GR?

• matter tells space how to curve

• space tells matter how to move....

• Like how lensing tests gravity?

• Not quite:

• motion of galaxies & grav-z are determined only by gtt

• It is really a test of the equivalence principle

• Provides a test of theories with long-range non-gravitational 
forces in the “dark sector”

• e.g. Gradwohl & Frieman 1992; Farrar & Peebles 2004; 
Farrar & Rosen 2007; Keselman, Nusser & Peebles 2010; and 
many, many more....  and (maybe) f(R) gravity.

• though such theories are already constrained by X-ray 
temp. vs galaxy motions in clusters....



Scalar fields, "Fifth forces" & Violation of the EP
• a common feature of modified gravity theories 

• string theory inspired: dilaton field - couples to matter 

• also interacting DE & DM models where m = m(φ) 

• f(R) gravity etc. etc. 

• extra long-range (1/r potential) force augmenting gravity 

• must be suppressed/small on solar system scale 

• or only coupling to DM 

• Violations of the Equivalence Principle (foundation of GR) 

• interesting - and testable - consequences 

• lensing - galaxy clustering - gravitational redshifts - BHs see 
different g - dynamics in clusters (gas vs *s vs DM)



Conclusions

• Gravitational redshifts in clusters of galaxies have been 
measured!

• Technically challenging but apparently real and prospects for 
better measurements and extension to larger scales is 
promising.

• Potentially useful test of alternatives to GR & 5th forces

• But also interesting as a "sand-box" that illustrates some 
subtleties of simple special relativity + Newtonian gravity

• Effect raises some questions of principle about how to think 
about redshifts in cosmology and astronomy in general.

• Redshifts are not purely kinematic - there is an truly 
gravitational component - but it is hidden in cosmology


