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Quantum Chromodynamics

• Quantum Chromodynamics has been established as the correct theory of

the strong interactions ( in the past 35 years). Despite this, it is a theory

beyond analytical and in many cases also numerical control

• It is described by a deceptively simple action:

S =
1

4g2
Tr[FµνFµν] + q̄L(i∂/ + A/)qL + q̄R(i∂/ + A/)qR

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν] ∈ SU(3)color

• Even in the absence of quarks the theory has defied analytical treatment

so far.

2



• RG analysis indicates that the ef-

fective coupling constant becomes

large in the IR while it becomes

weak in the UV

1
g2
eff(E)

= 1
g2
eff(Λ)

+ b0 log E2

Λ2 + · · ·

A Holographic Approach to QCD, Elias Kiritsis
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Confinement

• The theory exhibits confinement of color and a mass gap (this is one of

the seven millenium problems of the Clay Mathematics Institute. To-date no proof of

confinement exists).

• The force is “short range”, and color flux is confined into thin flux tubes.

Vqq̄(r) = σ r +
1

r
+ · · · , σ → string tension

• Quarks are permanently confined into colorless hadrons:

♠ Mesons of the q̄q type (pions, Kaons etc.)

♠ Baryons of qqq type (protons, neutrons etc) and their antiparticles.

A Holographic Approach to QCD, Elias Kiritsis
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De-confinement

• It has been speculated since a long time that at high-temperature con-

finement will be lost and the quarks and gluons will be liberated.
Collins+Perry 1975

• The resulting state of matter was thought to be a (weakly coupled)

plasma similar to that of EM plasmas. It was named Quark-Gluon-Plasma

(QGP).
Shuryak, 1978

• A phase transition was expected to separate the confined from the de-

confined phase in the pure gauge theory.

• It took twenty years of lattice simulations and many false paths to even-

tually reach a conclusion in the pure gauge theory: the transition is first

order.
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F. Karsch, 2002

• It looks highly plausible that it is a crossover when quarks are added.

• QCD seems to have a complex phase diagram, most regions of which are
unexplored and speculative.

A Holographic Approach to QCD, Elias Kiritsis
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The experimental hunt for QGP

• The energy density corresponding to the deconfinement transition is

Ec ∼ 1GeV/fm3 (1 fm=10−15 m, radius of a proton ' 0.8 fm)

• The idea is to collide heavy-ion nuclei with the hope that they will create

enough density and thermalize to probe the deconfined phase.

• The first attempt: 1 Gev/nucleon at LBL’s Bevalac. No signals.

• Second attempt : AGS (Brookhaven) Si and Au nuclei on a fixed target.

(5 GeV/nucleon in the collision rest frame) that was not enough!

• Third attempt : SPS (CERN). S and Pb nuclei were accelerated and

collided on fixed target with 17 Gev/nucleon in the collision rest frame.

That was still not enough!

• The CERN experiments after 15 years of running (in 2000) saw some

hints of collective behavior beyond the known hadronic interactions.

A Holographic Approach to QCD, Elias Kiritsis
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Relativistic Heavy Ion Collider (RHIC)

• The major breakthrough came

at RHIC: two beams of Au

or Cu nuclei colliding at 200

GeV/nucleon at the center-

of-mass frame.

• Four experimental collabo-

rations: BRAHMS, PHENIX,

PHOBOS, STAR.

• For every almost central Au+Au

collision we get about 7000

particles (fragments, most of

them mesons).

A Holographic Approach to QCD, Elias

Kiritsis
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RHIC head-on collision
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A Holographic Approach to QCD, Elias Kiritsis
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RHIC collision:another view

A Holographic Approach to QCD, Elias Kiritsis
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Phases of a collision

The “initial” energy density is given by the Bjorken formula

A Holographic Approach to QCD, Elias Kiritsis
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What we cannot calculate from first principles in QCD

• Observable rates for accelerator experiments. In particular, structure

functions have to be measured. Hadronization is done by the Lund

Monte Carlo model or the fragmentation model.

• Spectra for higher glueballs, mesons and baryons. Decay widths for all

of the above.

• There are at least two weak matrix elements that cannot be computed

so far reliably enough by lattice computations: The ∆I = 1
2 matrix

elements of type 〈K|O∆I=1/2,3/2|ππ〉 , and the BK ∼ 〈K|O∆S=2|K̄〉.

• Data associated to the chiral symmetry breaking (like the quark con-

densate), or its restauration at higher temperatures.

• In general matrix elements with at least two particle final states.

10



• Real time finite temperature correlation functions (associated to QGP

dynamics)

Also strong interactions between energetic quarks and the dense plasma.

• Nuclear interactions at low energy, and at finite chemical potential.

• Finite temperature physics at finite baryon density.

♠ Several complementary semi-phenomenological techniques have been de-

veloped to deal with the above (chiral perturbation theory, perturbation

theory resummation schemes, SD equations, bag models, etc.) with varied

success.

A Holographic Approach to QCD, Elias Kiritsis
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Gauge theories with many colors

• Gauge theories with N-colors (SU(N) gauge group) have a single contin-

uous parameter: the gauge coupling constant gY M .

• When N is large ( N → ∞) there is another way of reorganizing the

theory:
’t Hooft, 1974

N →∞ , keep λ ≡ g2
Y MN fixed

• The expansion in powers of 1/N is similar to the topological expansion

of a string theory with gstring ∼ 1
N

Z(λ, N) =
∞∑

g=0

Zg(λ) N2−2g = N2
∞∑

g=0

Zg(λ)
1

N2g

• When N →∞ and λ → 0 we can use perturbation theory to calculate.

• When N →∞ and λ is large, we are at strong coupling.

A Holographic Approach to QCD, Elias Kiritsis
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The gauge-theory/gravity duality

• The gauge-theory/gravity duality is a duality that relates a string theory

with a (conformal) gauge theory.

• The prime example is the AdS/CFT correspondence
Maldacena 1997

• It states that N=4 four-dimensional SU(N) gauge theory (gauge fields,

4 fermions, 6 scalars) is equivalent to ten-dimensional IIB string theory on

AdS5 × S5

ds2 =
`2AdS

r2

[
dr2 + dxµdxµ

]
+ `2AdS (dΩ5)

2

This space (AdS5) has a single boundary, at r = 0.

• The string theory has as parameters,gstring, `string, `AdS. They are related

to the gauge theory parameters as
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g2
Y M = 4π gstring , λ = g2

Y M N =
`4AdS

`4string

• As N →∞, gstring ∼ λ
N → 0.

• As N → ∞, λ À 1 implies that `string ¿ `AdS and

the geometry is very weakly curved. String theory

can be approximated by gravity in that regime and

is weakly coupled.

• As N → ∞, λ ¿ 1 the gauge theory is weakly

coupled, but the string theory is strongly curved.
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• There is one-to-one correspondence between on-shell string states Φ(r, xµ) and gauge-
invariant (single-trace) operators O(xµ) in the sYM theory

• In the string theory we can compute the ”S-matrix” , S(φ(xµ)) by studying the response
of the system to boundary conditions Φ(r = 0, xµ) = φ(xµ)

• The correspondence states that this is equivalent to the generating function of c-
correlators of O

〈e
∫

d4x φ(x) O(x)〉 = e−S(φ(x))

A Holographic Approach to QCD, Elias Kiritsis
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The gauge-theory at finite temperature

• The finite temperature ground state of the gauge theory corresponds to

a different solution in the dual string theory: the AdS-Black-hole solution
E. Witten, 1998

ds2 =
`2AdS

r2

[
dr2

f(r)
+ f(r)dt2 + dxidxi

]
+ `2AdS (dΩ5)

2 , f(r) = 1− (πT )4r4

• The horizon is at r = 1
πT

• The dynamics of low-energy gravitational fluctuations is governed by the

relativistic Navier-Stokes equation.

A Holographic Approach to QCD, Elias Kiritsis
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A quick preview for the rest

• Although the AdS/CFT correspondence works well for N=4 sYM, for several issues it
may not be close to to QCD.

• A direct fully-controlable holographic description of QCD is so far lacking (but several
similar models exist, like D4-SS model)

• Bottom-up approaches have also been developed which use phenomenologically moti-
vated holographic models

• Our approach is a hybrid between string theory description and gravity approximation,
and results in a phenomenological model.

S = M3N2
c

∫
d5x

√
g

[
R− 4

3

(∂λ)2

λ2
+ V (λ)

]
+ M3

∫
d5x

√
g Z(λ) (∂a)2

• This model is capturing both asymptotic freedom and confinement in the IR.

• The adjustable parameters are included in the dilaton potential.

• With two adjustable parameters all known lattice data at zero and finite temperature
can be accommodated (pure gauge theory)

• Many further predictions on spectra and transport coefficients.

A Holographic Approach to QCD, Elias Kiritsis
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End of Part I

Break

A Holographic Approach to QCD, Elias Kiritsis
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What are we after?

• Interactions of hadrons at medium or low energy (little or no help from

lattice, partial help from chiral perturbation theory)

• Transport coefficients of the deconfined phase (not computable directly

from lattice, crucial for understanding current (RHIC) and future (LHC)

heavy-ion data)

• The phase structure and properties of dense matter (not computable

from lattice, important for understanding properties of nuclei, and dense

nuclear matter, like neutron stars)

• Exploring the strong dynamics of other QCD-like theories, eg.

♠ N=1 super- QCD. (a very interesting toy model and may be relevant for

nature)

♠ Technicolor theories

A Holographic Approach to QCD, Elias Kiritsis
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A string theory for QCD:basic expectations

• Pure SU(Nc) d=4 YM at large Nc is expected to be dual to a string

theory in 5 dimensions only. Essentially a single adjoint field → a single

extra dimension.

• The theory becomes asymptotically free and conformal at high energy →
we expect the classical saddle point solution to asymptote to AdS5.

♠ Operators with lowest dimension (or better: lowest bulk masses) are

expected to be the only important non-trivial bulk fields in the large-Nc

saddle-point

• Scalar YM operators with ∆UV > 4 → m2 > 0 fields near the AdS5

boundary → vanish fast in the UV regime and do not affect correlators of

low-dimension operators.
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.

• Their dimension may grow large in the IR so they are also irrelevant

there. The large ’t Hooft coupling is expected to suppress the effects of

such operators.

• This is suggested by the success of low-energy SVZ sum rules as compared

to data.

♠ Therefore we will consider

Tµν ↔ gµν, tr[F2] ↔ φ, tr[F ∧ F ] ↔ a

A Holographic Approach to QCD, Elias Kiritsis
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bosonic string or superstring?

• The string theory must have no on-shell fermionic states at all because

there are no gauge invariant fermionic operators in pure YM. (even with

quarks modulo baryons).

• There is a direct argument that the axion, dual to the instanton density

F ∧ F must be a RR field (as in N = 4).

• Therefore the string theory must be a 5d-superstring theory resembling

the II-0 class.

♠ Another RR field we expect to have is the RR 4-form, as it is necessary

to “seed” the D3 branes responsible for the gauge group.

• It is non-propagating in 5D

• We will see later however that it is responsible for the non-trivial IR

structure of the gauge theory vacuum.

A Holographic Approach to QCD, Elias Kiritsis
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The minimal effective string theory spectrum

• NS-NS → gµν ↔ Tµν , Bµν ↔ Tr[F ]3 , φ ↔ Tr[F2]

• RR → Spinor5×Spinor5=F0 + F1 + F2 + (F3 + F4 + F5)

♠ F0 ↔ F5 → C4, background flux → no propagating degrees of freedom.

♠ F1 ↔ F4 → C3 ↔ C0: C0 is the axion, C3 its 5d dual that couples to
domain walls separating oblique confinement vacua.

♠ F2 ↔ F3 → C1 ↔ C2: They are associated with baryon number (as we
will see later when we add flavor). C2 mixes with B2 because of the C4
flux, and is massive.

• In an ISO(3,1) invariant vacuum solution, only gµν, φ, C0 = a can be
non-trivial.

ds2 = e2A(r)(dr2 + dx2
4) , a(r), φ(r)

A Holographic Approach to QCD, Elias Kiritsis
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The effective action, I

• as Nc →∞, only string tree-level is dominant.

• Relevant field for the vacuum solution: gµν, a, φ, F5.

• The vev of F5 ∼ Nc ε5. It appears always in the combination e2φF2
5 ∼ λ2,

with λ ∼ Nc eφ All higher derivative corrections (e2φF2
5 )n are O(1).

A non-trivial potential for the dilaton will be generated already at string

tree-level.

• This is not the case for all other RR fields: in particular for the axion as

a ∼ O(1)

(∂a)2 ∼ O(1) , e2φ(∂a)4 =
λ2

N2
c
(∂a)4 ∼ O

(
N−2

c

)

Therefore to leading order O(N2
c ) we can neglect the axion.

A Holographic Approach to QCD, Elias Kiritsis
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The UV regime

• In the far UV, the space should asymptote to AdS5.

• The ’t Hooft coupling should behave as (r → 0)

λ ∼ 1

log(rΛ)
+ · · · → 0 , r ∼ 1

E

The effective action to leading order in Nc is

Seff ∼
∫

d5x
√

g e−2φ Z( `2sR , `2s(∂φ)2 , e2φ`2sF2
5 )

Solving the equation of motion of F5 amounts to replacing

e2φ `2s F2
5 ∼ e2φN2

c ≡ λ2

Seff ∼ N2
c

∫
d5x

√
g

1

λ2
H( `2sR , `2s(∂λ)2 , λ2 )

21



• As r → 0

Curvature → finite , ¤φ ∼ (∂φ)2 ∼ (∂λ)2

λ2
∼ λ2 ∼ 1

log2(rΛ)
→ 0

• For λ → 0 the potential in the Einstein frame starts as V (λ) ∼ λ
4
3 and

cannot support the asymptotic AdS5 solution.

• Therefore asymptotic AdS5 must arise from curvature corrections:

Seff '
∫

d5x
1

λ2
H

(
`2s R,0,0

)

• Setting λ = 0 at leading order we can generically get an AdS5 solution

coming from balancing the higher curvature corrections.

INTERESTING QUESTION: Is there a good toy example of string vacuum (CFT)

which is not Ricci flat, and is supported only by a metric?
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• There is a ”good” (but hard to derive the coefficients) perturbative
expansion around this asymptotic AdS5 solution by perturbing inwards :

eA =
`

r
[1 + δA(r)] , λ =

1

b0 log(rΛ)
+ · · ·

• This turns out to be a regular expansion of the solution in powers of

Pn(log log(rΛ))

(log(rΛ))−n

• Effectively this can be rearranged as a “perturbative” expansion in λ(r).
In the case of running coupling, the radial coordinate can be substituted by
λ(r).

• Using λ as a radial coordinate the solution for the metric can be written

E ≡ eA =
`

r(λ)

[
1 + c1λ + c2λ2 + · · ·

]
= ` (e−

b0
λ )

[
1 + c′1λ + c′2λ2 + · · ·

]
, λ → 0

21-



.

Conclusion 1: The asymptotic AdS5 is stringy, but the rest of the ge-

ometry is ”perturbative around the asymptotics”. We cannot however do

computations even if we know the structure.

Conclusion 2: It has been a mystery how can one get free field theory at the

boundary. This is automatic here since all non-trivial connected correlators

are proportional to positive powers of λ that vanishes in the UV.

A Holographic Approach to QCD, Elias Kiritsis
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The IR regime

• Here the situation is more obscure. The constraints/input will be: con-
finement, discreteness of the spectrum and mass gap.

• We do expect that λ →∞ (or becomes large) at the IR bottom.

• Intuition from N=4 and other 10d strongly coupled theories suggests that
in this regime there should be an (approximate) two-derivative description
of the physics.

• The simplest solution with this property is the linear dilaton solution with

λ ∼ eQr , V (λ) ∼ δc = 10−D → constant , R = 0

• This property persists with potentials V (λ) ∼ (logλ)P . Moreover all such
cases have confinement, a mass gap and a discrete spectrum (except the
P=0 case).

• At the IR bottom (in the string frame) the scale factor vanishes, and 5D
space becomes (asymptotically) flat.

A Holographic Approach to QCD, Elias Kiritsis
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Improved Holographic QCD: a model

The simplification in this model relies on writing down a two-derivative
action

SEinstein = M3N2
c

∫
d5x

√
g

[
R− 4

3

(∂λ)2

λ2
+ V (λ)

]

with a monotonic potential (no extrema).

lim
λ→0

V (λ) =
12

`2


1 +

∞∑

n=1

cnλn


 , lim

λ→∞
V (λ) = λ

4
3
√

logλ + subleading

• The small λ asymptotics “simulate” the UV expansion around AdS5:

1

λ
= −b0 log(rΛ)− b1

b0
log [−b0 log(rΛ)]+ · · · , eA =

`

r

[
1 +

2

9 log(rΛ)
+ · · ·

]

• There is a 1-1 correspondence between the YM β-function, β(λ) and W :

(
3

4

)3
V (λ) = W2 −

(
3

4

)2 (
∂W

∂ logλ

)2
, β(λ) = −9

4
λ2 d logW (λ)

dλ

once a choice of energy is made (here logE = AE).

A Holographic Approach to QCD, Elias Kiritsis
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Not everything is perfect: There are some shortcomings localized at the

UV

• The conformal anomaly (proportional to the curvature) is incorrect.

• Shear viscosity ratio is constant and equal to that of N=4 sYM.

(This is not expected to be a serious error in the experimentally interesting

Tc ≤ T ≤ 4Tc range.)

Both of the above need Riemann curvature corrections.

• We shall see that other observables can come out very well both at T=0

and finite T

A Holographic Approach to QCD, Elias Kiritsis
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An assessment of IR asymptotics

• We define the superpotential W as

V (λ) =
4

3
λ2

(
dW

dλ

)2
+

64

27
W2

• We parameterize the UV (λ → 0) and IR asymptotics (λ →∞) as

V (λ) =
12

`2
[1 +O(λ)] , V (λ) ∼ V∞λQ(logλ)P

• All confining solutions have an IR singularity.

There are three types of solution for W :

• The ”Good type” (single solution)

W (λ) ∼ (logλ)
P
2 λ

Q
2

It leads to a ”good” IR singularity, confinement, a mass gap, discrete

spectrum of glueballs and screening of magnetic charges if

8

3
> Q >

4

3
or Q =

4

3
and P > 0

.
25



• The asymptotic spectrum of glueballs is linear if Q = 4
3 and P = 1

2.

• The Bad type. This is a one parameter family of solutions with

W (λ) ∼ λ
4
3

It has a bad IR singularity.

♠ The Ugly type. This is a one parameter family of solutions. In such
solutions there are two branches but they never reach the IR λ → ∞.
Instead λ goes back to zero

0 10 20 30 40
Λ

10

20

30

40

WHΛL

A Holographic Approach to QCD, Elias Kiritsis
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Selecting the IR asymptotics

The Q = 4/3, 0 ≤ P < 1 solutions have a singularity at r = ∞. They
are compatible with

• Confinement (it happens non-trivially: a minimum in the string frame scale factor )

• Mass gap+discrete spectrum (except P=0)

• good singularity

• R → 0 justifying the original assumption. More precisely: the string frame metric

becomes flat at the IR .

♠ It is interesting that the lower endpoint: P=0 corresponds to linear
dilaton and flat space (string frame). It is confining with a mass gap but
continuous spectrum.

• For linear asymptotic trajectories for fluctuations (glueballs) we must
choose P = 1/2

V (λ) =∼ λ
4
3
√

logλ + subleading as λ →∞

A Holographic Approach to QCD, Elias Kiritsis
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Adding flavor

• To add Nf quarks qI
L and antiquarks qĪ

R we must add (in 5d) space-filling

Nf D4 and Nf D̄4 branes.

(tadpole cancellation=gauge anomaly cancellation)

• The qI
L are the “zero modes” of the D3 − D4 strings while qĪ

R are the

“zero modes” of the D3 − D̄4

• The low-lying fields on the D4 branes (D4−D4 strings) are U(Nf)L gauge

fields AL
µ. The low-lying fields on the D̄4 branes (D̄4 − D̄4 strings) are

U(Nf)R gauge fields AR
µ . They are dual to the J

µ
L and JR

µ

δSA ∼ q̄I
L γµ (AL

µ)
IJ

qJ
L + q̄Ī

R γµ (AR
µ )

ĪJ̄
qJ̄
R = Tr[Jµ

L AL
µ + J

µ
R AR

µ ]

• There are also the low lying fields of the (D4 − D̄4 strings), essentially

the string-theory “tachyon” TIJ̄ transforming as (Nf , N̄f) under the chiral

symmetry U(Nf)L × U(Nf)R. It is dual to the quark mass terms

δST ∼ q̄I
L TIJ̄ qJ̄

R + complex congugate

27



• The interactions on the flavor branes are weak, so that A
L,R
µ , T are as

sources for the quarks.

• Integrating out the quarks, generates an effective action Sflavor(A
L,R
µ , T ),

so that A
L,R
µ , T can be thought as effective qq̄ composites, that is : mesons

• On the string theory side: integrating out D3 −D4 and D3 − D̄4 strings

gives rise to the DBI action for the D4 − D̄4 branes in the D3 background:

Sflavor(A
L,R
µ , T ) ←→ SDBI(A

L,R
µ , T ) holographically

• In the ”vacuum” only T can have a non-trivial profile: T IJ̄(r). Near the

AdS5 boundary (r → 0)

T IJ̄(r) = MIJ̄ r + · · ·+ 〈q̄I
L qJ̄

R〉r3 + · · ·

Casero+Kiritsis+Paredes
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• A typical solution is T vanishing in the UV and T → ∞ in the IR. At the point r = r∗
where T = ∞, the D4 and D̄4 branes “fuse”. The true vacuum is a brane that enters folds
on itself and goes back to the boundary. A non-zero T breaks chiral symmetry.

• A GOR relation is satisfied (for an asymptotic AdS5 space)

m2
π = −2

mq

f2
π
〈q̄q〉 , mq → 0

• We can derive formulae for the anomalous divergences of flavor currents, when they
are coupled to an external source.

• When mq = 0, the meson spectrum contains N2
f massless pseudoscalars, the U(Nf)A

Goldstone bosons.

• The WZ part of the flavor brane action gives the Adler-Bell-Jackiw U(1)A axial anomaly

and an associated Stuckelberg mechanism gives an O
(

Nf

Nc

)
mass to the would-be Goldstone

boson η′, in accordance with the Veneziano-Witten formula.

• Fluctuations around the T solution for T, AL,R
µ give the spectra (and interactions) of

various meson trajectories.

• Studying the spectrum of highly excited mesons, we find the expected property of linear

confinement: m2
n ∼ n.

• The detailed spectrum of mesons remains to be worked out

A Holographic Approach to QCD, Elias Kiritsis
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The axion background

• The axion action is down by 1/N2
c

Saxion = −M3
p

2

∫
d5x

√
g Z(λ) (∂a)2

lim
λ→0

Z(λ) = Z0

[
1 + c1λ + c2λ2 + · · ·

]
, lim

λ→∞
Z(λ) = caλ4 + · · ·

• The equation of motion is

ä +

(
3Ȧ +

Ż(λ)

Z(λ)

)
ȧ = 0 → ȧ =

C e−3A

Z(λ)

• The full solution is

a(r) = θUV + 2πk + C
∫ r

0
dr

e−3A

Z(λ)
, C = 〈Tr[F ∧ F ]〉

• a(r) is a running effective θ-angle. Its running is non-perturbative,

a(r) ∼ r4 ∼ e
− 4

b0λ

• The vacuum energy is

E(θUV ) = − M3

2N2
c

∫
d5x

√
g Z(λ) (∂a)2 = − M3

2N2
c

Ca(r)
∣∣∣∣
r=r0

r=0

28



• Consistency requires to impose that a(r0) = 0. This determines C and

E(θUV ) =
M3

2
Mink

(θUV + 2πk)2
∫ r0
0

dr
e3AZ(λ)

,
a(r)

θUV + 2πk
=

∫ r0
r

dr
e3AZ(λ)∫ r0

0
dr

e3AZ(λ)

• The topological susceptibility is given by

E(θ) =
1

2
χ θ2 +O(θ4) , χ =

M3
p∫ r0

0
dr

e3AZ(λ)

0 100 200 300 400 500 600
E HMeVL0.0

0.2

0.4

0.6

0.8

1.0

Θ

ΘUV

We take: Z(λ) = Z0(1 + caλ4)

A Holographic Approach to QCD, Elias Kiritsis
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Finite temperature

The theory at finite temperature can be described by:

(1) The “thermal vacuum solution”. This is the zero-temperature solution

we described so far with time periodically identified with period β.

(2) “black-hole” solutions

ds2 = b(r)2
[

dr2

f(r)
− f(r)dt2 + dxidxi

]
, λ = λ(r)

♠ We need VERY UNUSUAL boundary conditions: The dilaton (scalar) is

diverging at the boundary so that λ ∼ eφ → 1
log r → 0

♠ The boundary AdS is NOT at a minimum of the potential.

• Such type of solutions have not been analyzed so far in the literature.

A Holographic Approach to QCD, Elias Kiritsis
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General phase structure

• For a general potential (with no minimum) the following can be shown :

i. There exists a phase transition at finite T = Tc, if and only if the zero-T

theory confines.

ii.This transition is of the first order for all of the confining geometries,

with a single exception described in iii:

iii. In the limit confining geometry b0(r) → e−Cr, λ0 → e
3
2Cr, (as r → ∞),

the phase transition is of the second order and happens at T = 3C/4π.

This is the linear dilaton vacuum solution in the IR.

iv. All of the non-confining geometries at zero T are always in the black

hole phase at finite T. They exhibit a second order phase transition at

T = 0+.

A Holographic Approach to QCD, Elias Kiritsis
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Finite-T Confining Theories

• There is a minimal temperature Tmin for the existence of Black-hole

solutions

• When T < Tmin only the “thermal vacuum solution” exists: it describes

the confined phase at small temperatures.

• For T > Tmin there are two black-hole solutions with the same temper-

ature but different horizon positions. One is a “large” BH the other is

“small”.

• When T > Tmin three competing solutions exist. The large BH has the

lowest free energy for T > Tc > Tmin. It describes the deconfined “Gluon-

Glass” phase.

A Holographic Approach to QCD, Elias Kiritsis
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Temperature versus horizon position

Big black holes Small black Holes

0 rmin
rh

Tmin

T
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We plot the relation T (rh) for various potentials parameterized by a. a = 1

is the critical value below which there is only one branch of black-hole

solutions.
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The free energy

• The free energy is calculated from the action as a boundary term for
both the black-holes and the thermal vacuum solution. They are all UV
divergent but their differences are finite.

F
M3

p V3
= 12G(T )− T S(T )

• G is the temperature-depended gluon condensate 〈Tr[F2]〉T −〈Tr[F2]〉T=0
defined as

lim
r→0

λT (r)− λT=0(r) = G(T ) r4 + · · ·

• It is G the breaks conformal invariance essentially and leads to a non-trivial
deconfining transition (as S > 0 always)

• The axion solution must be constant above the phase transition (black-
hole). Therefore 〈F ∧ F 〉 vanishes.

A Holographic Approach to QCD, Elias Kiritsis
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The transition in the free energy
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Parameters

• We have 3 initial conditions in the system of graviton-dilaton equations:

♠ One is fixed by picking the branch that corresponds asymptotically to

λ ∼ 1
log(rΛ)

♠ The other fixes Λ → ΛQCD.

♠ The third is a gauge artifact as it corresponds to a choice of the origin

of the radial coordinate.

• We parameterize the potential as

V (λ) =
12

`2

{
1 + V0λ + V1λ4/3

[
log

(
1 + V2λ4/3 + V3λ2

)]1/2
}

,

• We fix the one and two loop β-function coefficients:

V0 =
8

9
b0 , V2 = b40

(
23 + 36b1/b20

81V 2
1

)2

,
b1

b20
=

51

121
.

and remain with two leftover arbitrary (phenomenological) coefficients.
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• We also have the Planck scale Mp

Asking for correct T →∞ thermodynamics (free gas) fixes

(Mp`)
3 =

1

45π2
, Mphysical = MpN

2
3
c =

(
8

45π2`3

)1
3 ' 4.6 GeV

• The fundamental string scale. It can be fixed by comparing with lattice

string tension

σ =
b2(r∗)λ4/3(r∗)

2π`2s
,

`/`s ∼ O(1).

• ` is not a parameter but a unit of length.
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Fit and comparison

HQCD lattice Nc = 3 lattice Nc →∞ Parameter

[p/(N2
c T 4)]T=2Tc 1.2 1.2 - V 1 = 14

Lh/(N2
c T 4

c ) 0.31 0.28 (Karsch) 0.31 (Teper+Lucini) V 3 = 170

[p/(N2
c T 4)]T→+∞ π2/45 π2/45 π2/45 Mp` = [45π2]−1/3

m0++/
√

σ 3.37 3.56 (Chen ) 3.37 (Teper+Lucini) `s/` = 0.92

m0−+/m0++ 1.49 1.49 (Chen ) - ca = 0.26

χ (191MeV )4 (191MeV )4 (DelDebbio) - Z0 = 133

Tc/m0++ 0.167 - 0.177(7)

m0∗++/m0++ 1.61 1.56(11) 1.90(17)

m2++/m0++ 1.36 1.40(4) 1.46(11)

m0∗−+/m0++ 2.10 2.12(10) -
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Thermodynamic variables
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Equation of state
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The specific heat
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The speed of sound
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The bulk viscosity (preliminary)
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The drag force (preliminary)
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Open problems

THEORETICAL:

• Investigate further the structure of the string dual of QCD. Try to control
the UV physics (to which RR flux plays little role).

MORE PRACTICAL:

• Re-Calculate quantities relevant for heavy ion collisions: jet quenching
parameter, drag force etc.

• Calculate the finite-temperature Polyakov loops and Debye screening
lengths in various symmetry channels.

• Investigate quantitatively the meson sector

• Calculate the phase diagram in the presence of baryon number.
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QCD phase diagram
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The Bjorken Relation

• Consider that after the collision of the nuclear pancakes a lot of particles are produced
at t = τ . These are confined in a slice of longitudinal width dz and transverse area A.

• The longitudinal velocities have a spread dvL = dz
τ
.

• Near the middle region vL → 0

dy

dvL
=

d

dvL

[
1

2
log

1 + vL

1− vL

]
=

1

1− v2
L

' 1

• We may now write

dN = dvL
dN

dvL
' dz

τ

dN

dy
→ dN

dz
' 1

τ

dN

dy

• If 〈ET 〉 ' 〈mT 〉 is the average energy per particle then the energy density in this area at
t = τ is given by the Bjorken formula:

〈ε(τ)〉 ' dN〈mT 〉
dz A

=
1

τ

dN

dy

〈mT 〉
A

=
1

τ A

dEtotal
T

dy

• It is valid if (1) τ can be defined meaningfully (2) The crossing time ¿ τ .

RETURN
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A weakly coupled plasma?

• The pure gauge theory (first-order) critical temperature is Tc ' 240 MeV.

• It is interesting that the lightest bound state (glueball) in the pure gauge theory has a
mass 1700 MeV so that Tc

M0++
' 0.14

• The crossover with almost physical quarks is at Tc ' 175 MeV ' 1012 0K. → 10−6 sec

A Holographic Approach to QCD, Elias Kiritsis

49



The mid-rapidity range

• The crossing time for Au nuclei (with radius 8 fm) is ∼ 0.1fm/c ' 3× 10−25 seconds.

• The particles with small vL (at the center) are produced after 1 fm/c ' 3 × 10−24

seconds.

• The ”new matter” (free of fragments) is produced near zero rapidity y ' 0. This is
what we are looking for.

• This can be tested by looking at how much ”baryon” number is at mid-rapidity
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• Each beam nucleon looses 73 ± 6 GeV on the average that goes into

creating new particles. Therefore there is 26 TeV worth of energy available

for particle production.
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The low dimension spectrum

• What are all gauge invariant YM operators of dimension 4 or less?

• They are given by Tr[FµνFρσ].
Decomposing into U(4) reps:

( ⊗ )symmetric = ⊕ (1)

We must remove traces to construct the irreducible representations of O(4):

= ⊕ ⊕ • , = •

The two singlets are the scalar (dilaton) and pseudoscalar (axion)

φ ↔ Tr[F 2] , a ↔ Tr[F ∧ F ]

The traceless symmetric tensor

→ Tµν = Tr

[
F 2

µν −
1

4
gµνF

2

]

is the conserved stress tensor dual to a massless graviton in 5d reflecting the translational
symmetry of YM.

→ T 4
µν;ρσ = Tr[FµνFρσ − 1

2
(gµρF

2
νσ − gνρF

2
µσ − gµσF 2

νρ + gνσF 2
µρ) +

1

6
(gµρgνσ − gνρgµσ)F

2]
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It has 10 independent d.o.f, it is not conserved and it should correspond to a similar

massive tensor in 5d. We do not expect it to play an non-trivial role in the large-Nc, YM

vacuum also for reasons of Lorentz invariance.

• Therefore the nontrivial fields are expected to be:
gµν, φ, a

A Holographic Approach to QCD, Elias Kiritsis
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AdS/QCD

♠ A basic phenomenological approach: use a slice of AdS5, with a UV cutoff, and an IR
cutoff. Polchinski+Strassler

♠ It successfully exhibits confinement (trivially via IR cutoff), and power-like behavior in
hard scattering amplitudes

♠ It may be equipped with a bifundamental scalar, T , and U(Nf)L × U(Nf)R, gauge fields
to describe mesons. Erlich+Katz+Son+Stepanov, DaRold+Pomarol

Chiral symmetry is broken by hand, via IR boundary conditions. The low-lying meson

spectrum looks ”reasonable”.
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♠ Shortcomings:

• The glueball spectrum does not fit very well the lattice calculations. It

has the wrong asymptotic behavior m2
n ∼ n2 at large n.

• Magnetic quarks are confined instead of screened.

• Chiral symmetry breaking is input by hand.

• The meson spectrum has also the wrong UV asymptotics m2
n ∼ n2.

• at finite temperature there is a deconfining transition but the equation

of state is trivial (conformal) (e-2p) and the speed of sound is c2s = 1
3.
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The “soft wall”

♠ The asymptotic spectrum can be fixed by introducing a non-dynamical

dilaton profile Φ ∼ r2 (soft wall)
Karch+Katz+Son+Stephanov

• It is not a solution of equations of motion: the metric is still AdS: Neither
gµν nor Φ solves the equations of motion.

A Holographic Approach to QCD, Elias Kiritsis
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Bosonic string or superstring?

• Consider the axion a dual to Tr[F ∧ F ]. We can show that it must come

from a RR sector.

In large-Nc YM, the proper scaling of couplings is obtained from

LY M = Nc Tr

[
1

λ
F2 +

θ

Nc
F ∧ F

]
, ζ ≡ θ

Nc
∼ O(1)

It can be shown
Witten

EY M(θ) ' C0 N2
c + C1θ2 + C2

θ4

N2
c

+ · · ·

In the string theory action

S ∼
∫

e−2φ [R + · · · ] + (∂a)2 + e2φ(∂a)4 + · · · , eφ ∼ g2
Y M , λ ∼ Nce

φ

∼
∫

N2
c

λ2 [R + · · · ] + (∂a)2 +
λ2

N2
c
(∂a)4 + · · · , a = θ[1 + · · · ]

A Holographic Approach to QCD, Elias Kiritsis
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The relevant “defects”

• Bµν → Fundamental string (F1). This is the QCD (glue) string: funda-

mental tension `2s ∼ O(1)

• Its dual B̃µ → NS0: Tension is O(N2
c ). It is an effective magnetic baryon

vertex binding Nc magnetic quarks.

• C5 → D4: Space filling flavor branes. They must be introduced in pairs:

D4 + D̄4 for charge neutrality/tadpole cancelation → gauge anomaly

cancelation in QCD.

• C4 → D3 branes generating the gauge symmetry.

55



.

• C3 → D2 branes : domain walls separating different oblique confinement

vacua (where θk+1 = θk + 2π). Its tension is O(Nc)

• C2 → D1 branes: These are the magnetic strings:

(strings attached to magnetic quarks) with tension O(Nc)

• C1 → D0 branes. These are the baryon vertices: they bind Nc quarks,

and their tension is O(Nc).

Its instantonic source is the (solitonic) baryon in the string theory.

• C0 → D−1 branes: These are the Yang-Mills instantons.

A Holographic Approach to QCD, Elias Kiritsis
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Further α′ corrections

There are further dilaton terms generated by the 5-form in:

• The kinetic terms of the graviton and the dilaton ∼ λ2n.

• The kinetic terms on probe D3 branes that affect the identification of

the gauge-coupling constant, ∼ λ2n+1. There is also a multiplicative factor

relating gY M2 to eφ, (not known). Can be traded for b0.

• Corrections to the identification of the energy. At r = 0, E = 1/r. There

can be log corrections to our identification E = eA, and these are a power

series in ∼ λ2n.

• It is a remarkable fact that all such corrections affect the higher that the

first two terms in the β-function (or equivalently the potential), that are

known to be non-universal!

the metric is also insensitive to the change of b0 by changing Λ.

A Holographic Approach to QCD, Elias Kiritsis
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Organizing the vacuum solutions

A useful variable is the phase variable

X ≡ Φ′

3A′
=

β(λ)

3λ
, eΦ ≡ λ

and a superpotential

W2 −
(
3

4

)2 (
∂W

∂Φ

)2
=

(
3

4

)3
V (Φ).

with

A′ = −4

9
W , Φ′ = dW

dΦ

X = −3

4

d logW

d logλ
, β(λ) = −9

4
λ

d logW

d logλ

♠ The equations have three integration constants: (two for Φ and one for A) One

corresponds to the “gluon condensate” in the UV. It must be set to zero otherwise the IR

behavior is unacceptable. The other is Λ. The third one is a gauge artifact (corresponds

to overall translation in the radial coordinate).

A Holographic Approach to QCD, Elias Kiritsis
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The IR regime

For any asymptotically AdS5 solution (eA ∼ `
r):

• The scale factor eA(r) is monotonically decreasing
Girardelo+Petrini+Porrati+Zaffaroni

Freedman+Gubser+Pilch+Warner

• Moreover, there are only three possible, mutually exclusive IR asymp-

totics:

♠ there is another asymptotic AdS5 region, at r →∞, where expA(r) ∼ `′/r,

and `′ ≤ ` (equality holds if and only if the space is exactly AdS5 everywhere);

♠ there is a curvature singularity at some finite value of the radial coordi-

nate, r = r0;

♠ there is a curvature singularity at r →∞, where the scale factor vanishes

and the space-time shrinks to zero size.

A Holographic Approach to QCD, Elias Kiritsis
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Wilson-Loops and confinement

• Calculation of the static quark potential using the vev of the Wilson loop
calculated via an F-string worldsheet.

Rey+Yee, Maldacena

T E(L) = Sminimal(X)

We calculate

L = 2
∫ r0

0
dr

1√
e4AS(r)−4AS(r0) − 1

.

It diverges when eAs has a minimum (at r = r∗). Then

E(L) ∼ Tf e2AS(r∗) L

• Confinement → As(r∗) is finite. This is a more general condition that
considered before as AS is not monotonic in general.

• Effective string tension

Tstring = Tf e2AS(r∗)

A Holographic Approach to QCD, Elias Kiritsis
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General criterion for confinement

• the geometric version:
A geometry that shrinks to zero size in the IR is dual to a confining 4D
theory if and only if the Einstein metric in conformal coordinates vanishes
as (or faster than) e−Cr as r →∞, for some C > 0.

• It is understood here that a metric vanishing at finite r = r0 also satisfies
the above condition.

♠ the superpotential

A 5D background is dual to a confining theory if the superpotential grows
as (or faster than)

W ∼ (logλ)P/2λ2/3 as λ →∞ , P ≥ 0

♠ the β-function A 5D background is dual to a confining theory if and only
if

lim
λ→∞

(
β(λ)

3λ
+

1

2

)
logλ = K, −∞ ≤ K ≤ 0

(No explicit reference to any coordinate system) Linear trajectories correspond to K = − 3
16
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Classification of confining superpotentials

Classification of confining superpotentials W (λ) as λ →∞ in IR:

W (λ) ∼ (logλ)
P
2 λQ , λ ∼ E−

9
4Q

(
log

1

E

) P
2Q

, E → 0.

• Q > 2/3 or Q = 2/3 and P > 1 leads to confinement and a singularity at finite r = r0.

eA(r) ∼
{

(r0 − r)
4

9Q2−4 Q > 2
3

exp
[
− C

(r0−r)1/(P−1)

]
Q = 2

3

• Q = 2/3, and 0 ≤ P < 1 leads to confinement and a singularity at r = ∞ The scale factor
eA vanishes there as

eA(r) ∼ exp[−Cr1/(1−P )].

• Q = 2/3, P = 1 leads to confinement but the singularity may be at a finite or infinite
value of r depending on subleading asymptotics of the superpotential.

♠ If Q < 2
√

2/3, no ad hoc boundary conditions are needed to determine the glueball spec-
trum → One-to-one correspondence with the β-function This is unlike standard AdS/QCD
and other approaches.

• when Q > 2
√

2/3, the spectrum is not well defined without extra boundary conditions in
the IR because both solutions to the mass eigenvalue equation are IR normalizable.
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Confining β-functions

A 5D background is dual to a confining theory if and only if

lim
λ→∞

(
β(λ)

3λ
+

1

2

)
logλ = K, −∞ ≤ K ≤ 0

(No explicit reference to any coordinate system). Linear trajectories correspond to K =

− 3
16

• We can determine the geometry if we specify K:

• K = −∞: the scale factor goes to zero at some finite r0, not faster than a power-law.

• −∞ < K < −3/8: the scale factor goes to zero at some finite r0 faster than any power-
law.

• −3/8 < K < 0: the scale factor goes to zero as r →∞ faster than e−Cr1+ε

for some ε > 0.

• K = 0: the scale factor goes to zero as r →∞ as e−Cr (or faster), but slower than e−Cr1+ε

for any ε > 0.

The borderline case, K = −3/8, is certainly confining (by continuity), but whether or not

the singularity is at finite r depends on the subleading terms.
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Comments on confining backgrounds

• For all confining backgrounds with r0 = ∞, although the space-time is

singular in the Einstein frame, the string frame geometry is asymptotically

flat for large r. Therefore only λ grows indefinitely.

• String world-sheets do not probe the strong coupling region, at least

classically. The string stays away from the strong coupling region.

• Therefore: singular confining backgrounds have generically the property

that the singularity is repulsive, i.e. only highly excited states can probe it. This

will also be reflected in the analysis of the particle spectrum (to be presented later)

• The confining backgrounds must also screen magnetic color charges.

This can be checked by calculating ’t Hooft loops using D1 probes:

♠ All confining backgrounds with r0 = ∞ and most at finite r0 screen properly

♠ In particular “hard-wall” AdS/QCD confines also the magnetic quarks.
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Particle Spectra: generalities

• Linearized equation:

ξ̈ + 2Ḃξ̇ + ¤4ξ = 0 , ξ(r, x) = ξ(r)ξ(4)(x), ¤ξ(4)(x) = m2ξ(4)(x)

• Can be mapped to Schrodinger problem

− d2

dr2
ψ + V (r)ψ = m2ψ , V (r) =

d2B

dr2
+

(
dB

dr

)2
, ξ(r) = e−B(r)ψ(r)

• Mass gap and discrete spectrum visible from the asymptotics of the

potential.

• Large n asymptotics of masses obtained from WKB

nπ =
∫ r2

r1

√
m2 − V (r) dr

• Spectrum depends only on initial condition for λ (∼ ΛQCD) and an overall

energy scale (eA) that must be fixed.
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• scalar glueballs

B(r) =
3

2
A(r) +

1

2
log

β(λ)2

9λ2

• tensor glueballs

B(r) =
3

2
A(r)

• pseudo-scalar glueballs

B(r) =
3

2
A(r) +

1

2
logZ(λ)

• Universality of asymptotics

m2
n→∞(0++)

m2
n→∞(2++)

→ 1 ,
m2

n→∞(0+−)

m2
n→∞(0++)

=
1

4
(d− 2)2

predicts d = 4 via

m2

2πσa
= 2n + J + c,
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Quarks (Nf ¿ Nc) and mesons

• Flavor is introduced by Nf D4 + D̄4 branes pairs inside the bulk back-

ground. Their back-reaction on the bulk geometry is suppressed by Nf/Nc.

• The important world-volume fields are

Tij ↔ q̄i
a
1 + γ5

2
qj
a , Aij

µ
L,R ↔ q̄i

a
1± γ5

2
γµqj

a

Generating the U(Nf)L × U(Nf)R chiral symmetry.

• The UV mass matrix mij corresponds to the source term of the Tachyon

field. It breaks the chiral (gauge) symmetry. The normalizable mode cor-

responds to the vev 〈q̄i
a
1+γ5

2 q
j
a〉.

• We show that the expectation value of the tachyon is non-zero and T ∼ 1,

breaking chiral symmetry SU(Nf)L × SU(Nf)R → SU(Nf)V . The anomaly

plays an important role in this (holographic Coleman-Witten)
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• The fact that the tachyon diverges in the IR (fusing D with D̄) constraints the UV

asymptotics and determines the quark condensate 〈q̄q〉 in terms of mq. A GOR relation is

satisfied (for an asymptotic AdS5 space)

m2
π = −2

mq

f2
π
〈q̄q〉 , mq → 0

• We can derive formulae for the anomalous divergences of flavor currents, when they are
coupled to an external source.

• When mq = 0, the meson spectrum contains N2
f massless pseudoscalars, the U(Nf)A

Goldstone bosons.

• The WZ part of the flavor brane action gives the Adler-Bell-Jackiw U(1)A axial anomaly

and an associated Stuckelberg mechanism gives an O
(

Nf

Nc

)
mass to the would-be Goldstone

boson η′, in accordance with the Veneziano-Witten formula.

• Studying the spectrum of highly excited mesons, we find the expected property of linear

confinement: m2
n ∼ n.

• The detailed spectrum of mesons remains to be worked out
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Tachyon dynamics

• In the vacuum the gauge fields vanish and T ∼ 1. Only DBI survives

S[τ ] = TD4

∫
drd4x

e4As(r)

λ
V (τ)

√
e2As(r) + τ̇(r)2 , V (τ) = e−

µ2

2 τ2

• We obtain the nonlinear field equation:

τ̈ +

(
3ȦS −

λ̇

λ

)
τ̇ + e2ASµ2τ + e−2AS

[
4ȦS −

λ̇

λ

]
τ̇3 + µ2τ τ̇2 = 0.

• In the UV we expect

τ = mq r + σ r3 + · · · , µ2`2 = 3

• We expect that the tachyon must diverge before or at r = r0. We find
that indeed it does at the singularity. For the r0 = ∞ backgrounds

τ ∼ exp
[
2

a

R

`2
r

]
as r →∞

68



• Generically the solutions have spurious singularities: τ(r∗) stays finite but

its derivatives diverges as:

τ ∼ τ∗ + γ
√

r∗ − r.

The condition that they are absent determines σ as a function of mq.

• The easiest spectrum to analyze is that of vector mesons. We find

(r0 = ∞)

Λglueballs =
1

R
, Λmesons =

3

`

(
α`2

2R2

)(α−1)/2

∝ 1

R

(
`

R

)α−2
.

This suggests that α = 2. preferred also from the glue sector.
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Fluctuations around the AdS5 extremum

0.2 0.4 0.6 0.8 1
Λ

-0.4

-0.2

0.2

0.4

0.6

0.8

V

• In QCD we expect that

1

λ
=

1

Nceφ
∼ 1

log r
, ds2 ∼ 1

r2
(dr2 + dxµdxµ) as r → 0

• Any potential with V (λ) ∼ λa when λ ¿ 1 gives a power different that
of AdS5

• There is an AdS5 minimum at a finite value λ∗. This cannot be the UV
of QCD as dimensions do not match.
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Near an AdS extremum

V =
12

`2
− 16ξ

3`2
φ2 +O(φ3) ,

18

`
δA′ = δφ′2 − 4

`2
φ2 = O(δφ2) , δφ′′ − 4

`
δφ′ − 4ξ

`2
δφ = 0

where φ << 1. The general solution of the second equation is

δφ = C+e
(2+2

√
1+ξ)u

` + C−e
(2−2

√
1+ξ)u

`

For the potential in question

V (φ) =
e

4

3
φ

`2s

[
5− N2

c

2
e2φ −Nf eφ

]
, λ0 ≡ Nce

φ0 =
−7x +

√
49x2 + 400

10
, x ≡ Nf

Nc

ξ =
5

4

[
400 + 49x2 − 7x

√
49x2 + 400

100 + 7x2 − x
√

49x2 + 400

]
,

`2s
`2

= e
4

3
φ0

[
100 + 7x2 − x

√
49x2 + 400

400

]

The associated dimension is ∆ = 2 + 2
√

1 + ξ and satisfies

2 + 3
√

2 < ∆ < 2 + 2
√

6 or equivalently 6.24 < ∆ < 6.90

It corresponds to an irrelevant operator. It is most probably relevant for the Banks-Zaks
fixed points.

Bigazzi+Casero+Cotrone+Kiritsis+Paredes

RETURN
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Concrete potential

• The superpotential chosen is

W = (3 + 2b0λ)2/3
[
18 +

(
2b20 + 3b1

)
log(1 + λ2)

]4/3
,

with corresponding potential

β(λ) = − 3b0λ2

3 + 2b0λ
− 6(2b20 + 3b21)λ

3

(1 + λ2)
(
18 +

(
2b20 + 3b21

)
log(1 + λ2)

)

which is everywhere regular and has the correct UV and IR asymptotics.

• b0 is a free parameter and b1/b20 is taken from the QCD β-function
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Linearity of the glueball spectrum

10 20 30 40 50 60 70
n
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(a) (b)

(a) Linear pattern in the spectrum for the first 40 0++ glueball states. M2

is shown units of 0.015`−2.

(b) The first 8 0++ (squares) and the 2++ (triangles) glueballs. These

spectra are obtained in the background I with b0 = 4.2, λ0 = 0.05.
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Comparison with lattice data (Meyer)

n
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n
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M

(a) (b)

Comparison of glueball spectra from our model with b0 = 4.2, λ0 = 0.05

(boxes), with the lattice QCD data from Ref. I (crosses) and the AdS/QCD

computation (diamonds), for (a) 0++ glueballs; (b) 2++ glueballs. The

masses are in MeV, and the scale is normalized to match the lowest 0++

state from Ref. I.

`2eff = 6.88 `2
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r

0.00025

0.0005

0.00075

0.001

0.00125

0.0015

0.00175

0.002

exp@2 AsD

The string frame scale factor in background I with b0 = 4.2, λ0 = 0.05.

We can “measure”

`

`s
' 6.26 , `2sR ' −0.5 (2)

and predict

αs(1.2GeV ) = 0.34,

which is within the error of the quoted experimental value α(exp)
s (1.2GeV ) = 0.35± 0.01
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The fit to glueball lattice data

JPC Ref I (MeV) Our model (MeV) Mismatch Nc →∞ Mismatch

0++ 1475 (4%) 1475 0 1475 0

2++ 2150 (5%) 2055 4% 2153 (10%) 5%

0−+ 2250 (4%) 2243 0

0++∗ 2755 (4%) 2753 0 2814 (12%) 2%

2++∗ 2880 (5%) 2991 4%

0−+∗ 3370 (4%) 3288 2%

0++∗∗ 3370 (4%) 3561 5%

0++∗∗∗ 3990 (5%) 4253 6%

Comparison between the glueball spectra in Ref. I and in our model. The

states we use as input in our fit are marked in red. The parenthesis in the

lattice data indicate the percent accuracy.

A Holographic Approach to QCD, Elias Kiritsis

75



The glueball wavefunctions

r@m0D 20 r@LD 40 60

r
�����
l

Ψ@rD

Normalized wave-function profiles for the ground states of the 0++ (solid

line) ,0−+ (dashed line), and 2++ (dotted line) towers, as a function of

the radial conformal coordinate. The vertical lines represent the position

corresponding to E = m0++ and E = Λp.
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Comparison of scalar and tensor potential

5 10 15 20
r

0.5

1

1.5

2

V@rD

Effective Schrödinger potentials for scalar (solid line) and tensor (dashed

line) glueballs. The units are chosen such that ` = 0.5.
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The lattice glueball data

Available lattice data for the scalar and the tensor glueballs. Ref. I =H. B. Meyer, [arXiv:hep-lat/0508002].

and Ref. II = C. J. Morningstar and M. J. Peardon, [arXiv:hep-lat/9901004] + Y. Chen et al., [arXiv:hep-

lat/0510074]. The first error corresponds to the statistical error from the the continuum extrapolation. The

second error in Ref.I is due to the uncertainty in the string tension
√

σ. (Note that this does not affect

the mass ratios). The second error in the Ref. II is the estimated uncertainty from the anisotropy. In the

last column we present the available large Nc estimates according to B. Lucini and M. Teper, [arXiv:hep-

lat/0103027]. The parenthesis in this column shows the total possible error followed by the estimations in

the same reference.
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α-dependence of scalar spectrum
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The 0++ spectra for varying values of α that are shown at the right end

of the plot. The symbol * denotes the AdS/QCD result.
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Free energy versus horizon position

Α>1

Α£1

r_minr_c
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F

We plot the relation F(rh) for various potentials parameterized by a. a = 1

is the critical value below which there is no first order phase transition .
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The bulk viscosity: theory

• It is one of the important parameters for QGP hydrodynamics (along with the shear
viscosity).

• It is related to entropy production (measurable at RHIC and LHC)

• It is defined from the Kubo formula

ζ =
1

9
lim
ω→0

1

ω
Im GR(ω) , GR(ω) ≡

∫
d3x

∫
dt eiωtθ(t) 〈0|[Tii(~x, t), Tii(~0,0)]|0〉

Using a parametrization ds2 = e2A(fdt2 + d~x2 + dr2

f
) in a special gauge φ = r the relevant

metric perturbation decouples Gubser+Nellore+Pufu+Rocha

h′′11 = −
(
− 1

3A′ −A′ − f ′

f

)
h′11 +

(
−ω2

f2
+

f ′

6fA′ −
f ′

f
A′

)
h11

with

h11(0) = 1 , h11(rh) ' C eiωt
∣∣∣ log

λ

λh

∣∣∣
− iω

4πT

The correlator is given by the conserved number of h-quanta

Im GR(ω) = −4M3G(ω) , G(ω) =
e3Af

4A′2 |Im[h∗11h
′
11]|

finally giving

ζ

s
=

C2

4π

(
V ′(λh)

V (λh)

)2
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The drag force (theory)

• We must find a solution to the string equations with

x1 = vt + ξ(r) , x2,3 = 0 , σ1 = t , σ2 = r
Herzog+Karch+kovtun+Kozcac+Yaffe, Gubser

Casaldelrrey-Solana+Teaney, Liu+Rajagopal+Wiedeman

For a black-hole metric (in string frame)

ds2 = b(r)2
[

dr2

f(r)
− f(r)dt2 + d~x · d~x

]
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the solution profile is

ξ′(r) =
C

f(r)

√√√√ f(r)− v2

b4(r)f(r)− C2
, C = vb(rs)

2 , f(rs) = v2

• The induced metric on the world-sheet is a 2d black-hole with horizon at

the turning point r = rs.

• We can calculate the drag force:

Fdrag = πξ = −b2(rs)
√

f(rs)

2π`2s

• In N = 4 sYM it is given by

Fdrag = −π

2

√
λ T2 v√

1− v2
= −1

τ

p

M
, τ =

2M

π
√

λ T2
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Detailed plan of the presentation

• Title page 1 minutes

• Quantum Chromodynamics 2 minutes

• Confinement 4 minutes

• Deconfinement 6 minutes

• The experimental hunt for QGP 8 minutes

• RHIC 9 minutes

• RHIC head-on collision 10 minutes

• RHIC collision: another view 11 minutes

• Phases of a collision 13 minutes

• What we cannot calculate from first principles 16 minutes

• Gauge theories with many colors 18 minutes

• The gauge-theory/gravity duality 22 minutes

• The gauge-theory at finite temperature 23 minutes

• A quick preview for the rest 24 minutes
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