Exploring Hadron Physics in Black Hole Formation: a New Promising Target of Neutrino Astronomy

Ken'ichiro Nakazato

(Department of Astronomy, Kyoto University)

in collaboration with K. Sumiyoshi (Numazu CT), H. Suzuki (Tokyo U of Sci.) and S. Yamada (Waseda U)

Seminar @ IPMU, January 14, 2010

<u>Outline</u>

1. Introduction

Equation of state (EOS) of hot and dense matter and stellar core collapse

2. Core collapse simulation Impact of EOS and neutrino signal

3. Neutrino detection Statistical analyses

4. Conclusion

1. Introduction

Fates of massive stars

Stars with > 10M_{solar} make a gravitational collapse and, possibly, a supernova explosion.

Stars with > 25M_{solar} are thought to form a black hole (BH).

Observations show

2 branches.

Hypernovae(Rapid rotation)

Faint or FailedSupernovae(Weak rotation)

Failed supernova neutrinos

- Failed supernova progenitor makes bounce once and recollapse to the black hole.
- In this process, temperature and density of central region gets a few times 10 MeV and a few times ρ_0 (saturation density of nuclear matter), and a lot of neutrinos are emitted.

Motivation

- Can we probe into physics of hot and dense matter (including hyperons and quarks) by the black hole formation?
- → observable: Neutrinos!

Aims of this study

- Thus, property of hot and dense matter is also a target of neutrino astronomy.
 - Equation of State (EOS) of nuclear matter
 - Hyperon (Ishizuka+ 2008, Sumiyoshi+ 2009)
 - QCD transition (Nakazato+ 2008a, in prep.)
- Evaluate the v event number from failed supernovae with 40M_{solar} non-rotating progenitor.
- Investigate the EOS dependences of v signal.

Brief sketch of our study

Numerical simulations of black hole formation

Spectra of emitted neutrinos

Event numbers on the detector
 (SuperKamiokande) → Discussion

Brief sketch of our study

(SuperKamiokande) → Discussion

Numerical simulations of black hole formation

2. Core collapse simulation

Hydrodynamics & Neutrinos

Yamada, Astrophys. J. 475 (1997), 720 Yamada et al., Astron. Astrophys. 344 (1999), 533 Sumiyoshi et al., Astrophys. J. 629 (2005), 922

Spherical, Fully GR Hydrodynamics

metric: Misner-Sharp (1964) mesh: 255 non uniform zones

Neutrino Transport (Boltzmann eq.)

Species : v_e , \overline{v}_e , v_μ (= v_τ) , \overline{v}_μ (= \overline{v}_τ)

Energy mesh: 14 zones (0.9 – 350 MeV)

Reactions : $e^- + p \leftrightarrow n + v_e$, $e^+ + n \leftrightarrow p + v_e$, $v + N \leftrightarrow v + N$, $v + e \leftrightarrow v + e$, $v_e + A \leftrightarrow A' + e^-$, $v + A \leftrightarrow v + A$, $e^- + e^+ \leftrightarrow v + \overline{v}$, $\gamma^* \leftrightarrow v + \overline{v}$, $N + N' \leftrightarrow N + N' + v + \overline{v}$

List of equations of state

- Current status
 - Lattimer-Swesty (LS) EOS,
 - Liquid drop model with Skyrme interactions (1991)
 - 3 choices of incompressibility: K = 180, 220, 375 MeV
 - Shen EOS
 - Relativistic Mean Field theory (Shen et al. 1998)
 - Hyperon + pion EOS
 - Shen-EOS with hyperons (Ishizuka et al. 2008)
 - Quark + pion EOS
 - Shen-EOS with MIT Bag model (Nakazato et al. 2008a)
- Future work
 - Quark + hyperon + pion EOS

List of equations of state

- Current status
 - Lattimer-Swesty (LS) EOS,
 - Liquid drop model with Skyrme interactions (1991)
 - 3 choices of incompressibility: K = 180, 220, 375 MeV
 - Shen EOS
 - Relativistic Mean Field theory (Shen et al. 1998)
 - Hyperon + pion EOS
 - Quark + pion EOS✓ numerical simulations.
- Shen-EOS with hyperor Already utilized in our
 - Shen-EOS with MIT Bag model (Nakazato et al. 2008a)
- Future work
 - Quark + hyperon + pion EOS

Results for "nucleonic" EOS's

- Shen EOS is hardest (K = 281 MeV).
- Harder EOS has longer v emission.
- Softer EOS has high v luminosity.

Role of matter property

Determining hardness of Equation of State (EOS).

Soft EOS is easy to compress.

 Maximum mass of compact star is lower for soft EOS.

- Inside the failed supernovae...
 - For soft EOS, more compressed,
 T ↗, v energy and luminosity ↗.
 - For soft EOS, BH formation is fasten due to low maximum mass.

Hyperon EOS

Ishizuka et al., J. Phys. G 35, (2008), 085201

- Relativistic Mean Field Theory
 - extension of Shen EOS to the baryon octet
- Latest experimental results for potentials are taken into account.
 - U_{$^{\wedge}$} = -30 MeV
 - $U_{\Sigma} = 30 \text{ MeV} \text{ (repulsive)}$
 - $U_{\Xi} = -15 \text{ MeV}$
- Data with thermal pions is also prepared.

Collapse with hyperon EOS

Sumiyoshi et al., Astrophys. J. Lett. 690 (2009), 43

Hyperons appear for the late phase.

Collapse with hyperon EOS

Sumiyoshi et al., Astrophys. J. Lett. 690 (2009), 43

Hyperons appear for the late phase.

Collapse with hyperon EOS

Sumiyoshi et al., Astrophys. J. Lett. 690 (2009), 43

Hyperons appear for the late phase.

Hadron-quark mixed EOS

Nakazato et al., PRD 77 (2008a), 103006

- Shen EOS with pions for Hadronic phase
- MIT Bag model (Chodos et al. 1974) for Quark phase
 - Bag constant: B = 250 MeV/fm³
- Gibbs conditions are satisfied in Mixed phase.
 - $-\mu_n = \mu_u + 2\mu_d$, $\mu_p = 2\mu_u + \mu_d$
 - $-P_{H}=P_{O}$
- β equilibrium (v trapping) is assumed in Mixed and Quark phase.

$$- \mu_{d} = \mu_{s}$$
, $\mu_{p} + \mu_{e} = \mu_{n} + \mu_{v}$

Collapse with quark EOS

Nakazato, Ph. D thesis (2008) & Nakazato et al., in prep.

 Quark transition occurs at the very late phase and trigger the black hole formation.

Results for "exotic" EOS's

- Hyperons and quarks (with pions) shorten the duration of v emission.
- But, not affect the v luminosity very much.

Short summary

- For nucleonic model, soft EOS has short duration and high luminosity v emission.
- Hyperons and quarks shorten the duration but not affect v luminosity very much.

However, there is a question.

Short summary

 Can we distinguish hyperonic model from soft nucleonic models?

3. Neutrino detection

Oscillation of failed supernova v

Nakazato et al., PRD 78 (2008b), 083014

- Neutrino oscillation occurs before detection.
- But there are undetermined parameters, namely $\sin^2\theta_{13} < 0.02$ and mass hierarchy.
 - → Neutrino oscillation and its parameter dependence should be evaluated.

Neutrino event number

- Neutrino flux is scaled as

 1 / R²
- Event number is comparable to that of ordinary SN v (~ 10000 for events in our Galaxy).

Event number depends also on the mixing parameters.

EOS	Normal & $\sin^2\theta_{13}=10^{-8}$	Inverted & $\sin^2\theta_{13}=10^{-2}$
Hyperon	16,490	9,952
LS180	16,086	12,136
LS220	25,978	23,656

Event numbers for R = 10 kpc, but R may be undetermined from obs...

Statistical analyses

Nakazato et al., submitted.

- Normalize cumulative event numbers by total event number till 0.5s after bounce, $N_{0.5s}$, and assume $N_{0.5s} = 10000$ (event in our Galaxy).
- Perform Monte Carlo simulation for detection based on numerical data of Hyperon case, and compare it to numerical data of LS cases.
- Judge these cases are distinguished or not by Kolmogorov-Smirnov test.
- Merit of this method;
 - We do not have to take care of the distance to the source and v emission after BH formation.

Result of the fitting $(N_{0.5s} = 10000)$

 They are distinguishable with 99% C.L. for both mixing parameter sets.

Result of the fitting $(N_{0.5s} = 400)$

 The distinction is difficult for left case but feasible for right case (90% of MC simulations).

Analyses with time-shift $(N_{0.5s} = 10000)$

larger than this line is rejected.

time shift (s)

Analyses with time-shift $(N_{0.5s} = 400)$

4. Conclusion

<u>Summary</u>

- We have performed a series of black-holeforming core collapse simulations for nonrotating 40M_{solar} star with various EOS's.
- We have found that EOS affects the emission duration and luminosity of v.
- Differences in v light curve is statistically distinguishable by SuperKamiokande for the progenitors in our Galaxy.
- → These results implies possibilities to probe the properties of hot and dense nuclear matter from neutrino astronomy.

Future work

- More EOS's.
 - EOS with quarks, hyperons and pions.
 - EOS by other frameworks (e.g., many body theory etc.)
- More initial models.
 - Mass loss and convection may affect the density profile of outer layer.
- More detailed treatments for v detection.
 - Earth effect
 - Oscillation by self interaction
- → This is the beginning!!