Energy-momentum tensor from the Yang–Mills gradient flow

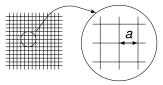
鈴木 博 Hiroshi Suzuki

九州大学 Kyushu University

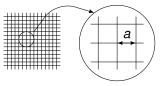
2018/04/12 @ IPMU

- H.S., Prog. Theor. Exp. Phys. (2013) 083B03 [arXiv:1304.0533 [hep-lat]]
- H. Makino and H.S., Prog. Theor. Exp. Phys. (2014) 063B02 [arXiv:1403.4772 [hep-lat]], arXiv:1410.7538 [hep-lat]
- O. Morikawa and H.S., arXiv:1803.04132 [hep-th]

• Lattice gauge theory: the most successful non-perturbative formulation of gauge theory. By discretizing the spacetime...

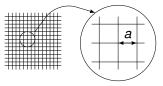


• Lattice gauge theory: the most successful non-perturbative formulation of gauge theory. By discretizing the spacetime...



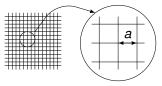
internal gauge symmetry is preserved exactly...

 Lattice gauge theory: the most successful non-perturbative formulation of gauge theory. By discretizing the spacetime...



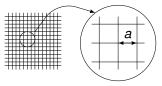
- internal gauge symmetry is preserved exactly...
- but incompatible with spacetime symmetries (translation, Poincaré, SUSY, conformal, ...) for a ≠ 0.

 Lattice gauge theory: the most successful non-perturbative formulation of gauge theory. By discretizing the spacetime...



- internal gauge symmetry is preserved exactly...
- but incompatible with spacetime symmetries (translation, Poincaré, SUSY, conformal, ...) for $a \neq 0$.
- For $a \neq 0$, one cannot define the Noether current associated with the translational invariance, EMT $\{T_{\mu\nu}\}_R(x)$.

• Lattice gauge theory: the most successful non-perturbative formulation of gauge theory. By discretizing the spacetime...



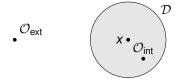
- internal gauge symmetry is preserved exactly...
- but incompatible with spacetime symmetries (translation, Poincaré, SUSY, conformal, ...) for $a \neq 0$.
- For $a \neq 0$, one cannot define the Noether current associated with the translational invariance, EMT $\{T_{\mu\nu}\}_R(x)$.
- Even for the continuum limit $a \rightarrow 0$, this is difficult, because EMT is a composite operator which generally contains UV divergences:

$$a imes rac{1}{a} \stackrel{a o 0}{ o} 1.$$

• Is it possible to construct EMT on the lattice, which becomes the correct EMT automatically in the continuum limit $a \rightarrow 0$?

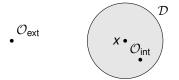
- Is it possible to construct EMT on the lattice, which becomes the correct EMT automatically in the continuum limit $a \rightarrow 0$?
- The correct EMT is characterized by the Ward–Takahashi relation

$$\left\langle \mathcal{O}_{\text{ext}} \int_{\mathcal{D}} d^D x \, \partial_\mu \left\{ T_{\mu\nu} \right\}_R(x) \, \mathcal{O}_{\text{int}} \right\rangle = - \left\langle \mathcal{O}_{\text{ext}} \, \partial_\nu \mathcal{O}_{\text{int}} \right\rangle.$$



- Is it possible to construct EMT on the lattice, which becomes the correct EMT automatically in the continuum limit $a \rightarrow 0$?
- The correct EMT is characterized by the Ward–Takahashi relation

$$\left\langle \mathcal{O}_{\mathsf{ext}} \int_{\mathcal{D}} d^D x \, \partial_\mu \left\{ \mathcal{T}_{\mu\nu} \right\}_R (x) \, \mathcal{O}_{\mathsf{int}} \right\rangle = - \left\langle \mathcal{O}_{\mathsf{ext}} \, \partial_\nu \mathcal{O}_{\mathsf{int}} \right\rangle.$$



• This contains the correct normalization and the conservation law.

• If such a construction is possible, we expect wide application to physics related to spacetime symmetries: QCD thermodynamics, transport coefficients in gauge theory, momentum/spin structure of baryons, conformal field theory, dilaton physics, ...

- If such a construction is possible, we expect wide application to physics related to spacetime symmetries: QCD thermodynamics, transport coefficients in gauge theory, momentum/spin structure of baryons, conformal field theory, dilaton physics, ...
- The present work is also an attempt to understand EMT in quantum field theory in the non-perturbative level.

EMT on the lattice (Caracciolo et al. (1989-))

• Under the hypercubic symmetry, the operator reproducing the correct EMT of QCD for $a \rightarrow 0$ is given by

$$\{T_{\mu\nu}\}_{R}(\mathbf{x}) = \sum_{i=1}^{7} Z_{i}\mathcal{O}_{i\mu\nu}(\mathbf{x})|_{\text{lattice}} - \mathsf{VEV},$$

where

$$\begin{split} \mathcal{O}_{1\mu\nu}(x) &\equiv \sum_{\rho} F^{a}_{\mu\rho}(x) F^{a}_{\nu\rho}(x), \qquad \qquad \mathcal{O}_{2\mu\nu}(x) \equiv \delta_{\mu\nu} \sum_{\rho,\sigma} F^{a}_{\rho\sigma}(x) F^{a}_{\rho\sigma}(x), \\ \mathcal{O}_{3\mu\nu}(x) &\equiv \bar{\psi}(x) \left(\gamma_{\mu} \overleftrightarrow{D}_{\nu} + \gamma_{\nu} \overleftrightarrow{D}_{\mu} \right) \psi(x), \quad \mathcal{O}_{4\mu\nu}(x) \equiv \delta_{\mu\nu} \bar{\psi}(x) \overleftrightarrow{D} \psi(x), \\ \mathcal{O}_{5\mu\nu}(x) &\equiv \delta_{\mu\nu} m_{0} \bar{\psi}(x) \psi(x), \end{split}$$

and, Lorentz non-covariant ones:

$$\mathcal{O}_{6\mu\nu}(\mathbf{x}) \equiv \delta_{\mu\nu} \sum_{\rho} F^{a}_{\mu\rho}(\mathbf{x}) F^{a}_{\mu\rho}(\mathbf{x}), \qquad \mathcal{O}_{7\mu\nu}(\mathbf{x}) \equiv \delta_{\mu\nu} \bar{\psi}(\mathbf{x}) \gamma_{\mu} \overleftrightarrow{D}_{\mu} \psi(\mathbf{x})$$

EMT on the lattice (Caracciolo et al. (1989-))

• Under the hypercubic symmetry, the operator reproducing the correct EMT of QCD for $a \rightarrow 0$ is given by

$$\{T_{\mu\nu}\}_R(\mathbf{x}) = \sum_{i=1}^7 Z_i \mathcal{O}_{i\mu\nu}(\mathbf{x})|_{\text{lattice}} - \text{VEV},$$

where

$$\begin{split} \mathcal{O}_{1\mu\nu}(x) &\equiv \sum_{\rho} F^{a}_{\mu\rho}(x) F^{a}_{\nu\rho}(x), \qquad \qquad \mathcal{O}_{2\mu\nu}(x) \equiv \delta_{\mu\nu} \sum_{\rho,\sigma} F^{a}_{\rho\sigma}(x) F^{a}_{\rho\sigma}(x), \\ \mathcal{O}_{3\mu\nu}(x) &\equiv \bar{\psi}(x) \left(\gamma_{\mu} \overleftrightarrow{D}_{\nu} + \gamma_{\nu} \overleftrightarrow{D}_{\mu} \right) \psi(x), \quad \mathcal{O}_{4\mu\nu}(x) \equiv \delta_{\mu\nu} \bar{\psi}(x) \overleftrightarrow{\overline{D}} \psi(x), \\ \mathcal{O}_{5\mu\nu}(x) &\equiv \delta_{\mu\nu} m_{0} \bar{\psi}(x) \psi(x), \end{split}$$

and, Lorentz non-covariant ones:

$$\mathcal{O}_{6\mu\nu}(\mathbf{x}) \equiv \delta_{\mu\nu} \sum_{\rho} F^{a}_{\mu\rho}(\mathbf{x}) F^{a}_{\mu\rho}(\mathbf{x}), \qquad \mathcal{O}_{7\mu\nu}(\mathbf{x}) \equiv \delta_{\mu\nu} \bar{\psi}(\mathbf{x}) \gamma_{\mu} \overleftrightarrow{\mathbf{D}}_{\mu} \psi(\mathbf{x})$$

• Seven non-universal coefficients *Z_i* must be determined by lattice perturbation theory or by a non-perturbative method

鈴木 博 Hiroshi Suzuki (九州大学)

Energy-momentum tensor from...

Yang-Mills gradient flow (Lüscher, (2009-))

Yang–Mills gradient flow is an evolution of the gauge field A_μ(x) along a fictitious time t ∈ [0,∞), according to

$$\partial_t B_\mu(t,x) = -g_0^2 \frac{\delta S_{\mathrm{YM}}}{\delta B_\mu(t,x)} = D_\nu G_{\nu\mu}(t,x) = \Delta B_\mu(t,x) + \cdots,$$

where

$$G_{\mu\nu}(t,x) = \partial_{\mu}B_{\nu}(t,x) - \partial_{\nu}B_{\mu}(t,x) + [B_{\mu}(t,x), B_{\nu}(t,x)], \qquad D_{\mu} = \partial_{\mu} + [B_{\mu}, \cdot]$$

and its initial value is the conventional gauge field

$$B_{\mu}(t=0,x)=A_{\mu}(x).$$

Yang-Mills gradient flow (Lüscher, (2009-))

Yang–Mills gradient flow is an evolution of the gauge field A_μ(x) along a fictitious time t ∈ [0,∞), according to

$$\partial_t B_\mu(t,x) = -g_0^2 \frac{\delta S_{\mathrm{YM}}}{\delta B_\mu(t,x)} = D_\nu G_{\nu\mu}(t,x) = \Delta B_\mu(t,x) + \cdots,$$

where

$$G_{\mu\nu}(t,x) = \partial_{\mu}B_{\nu}(t,x) - \partial_{\nu}B_{\mu}(t,x) + [B_{\mu}(t,x), B_{\nu}(t,x)], \qquad D_{\mu} = \partial_{\mu} + [B_{\mu}, \cdot]$$

and its initial value is the conventional gauge field

$$B_{\mu}(t=0,x)=A_{\mu}(x).$$

 RHS is the Yang–Mills equation of motion, the gradient in function space if S_{YM} is regarded as a potential height. So the name of the gradient flow. • This is a sort of diffusion equation in which the diffusion length is

 $x \sim \sqrt{8t}$.

This is a sort of diffusion equation in which the diffusion length is

 $x \sim \sqrt{8t}$.

• The flow makes the field configuration smooth; it generates the smearing/cooling for a lattice gauge field.

This is a sort of diffusion equation in which the diffusion length is

 $x \sim \sqrt{8t}$.

- The flow makes the field configuration smooth; it generates the smearing/cooling for a lattice gauge field.
- But, why this can be relevant to lattice EMT???

This is a sort of diffusion equation in which the diffusion length is

 $x \sim \sqrt{8t}$.

- The flow makes the field configuration smooth; it generates the smearing/cooling for a lattice gauge field.
- But, why this can be relevant to lattice EMT???
- The key is the UV finiteness of the gradient flow

Perturbative expansion of the gradient flow

• Yang–Mills gradient flow

$$\partial_t B_\mu(t,x) = D_\nu G_{\nu\mu}(t,x) + \alpha_0 D_\mu \partial_\nu B_\nu(t,x), \qquad B_\mu(t=0,x) = A_\mu(x),$$

where the term with α_0 is introduced to suppress the gauge modes.

Perturbative expansion of the gradient flow

Yang–Mills gradient flow

$$\partial_t B_\mu(t,x) = D_\nu G_{\nu\mu}(t,x) + \alpha_0 D_\mu \partial_\nu B_\nu(t,x), \qquad B_\mu(t=0,x) = A_\mu(x),$$

where the term with α_0 is introduced to suppress the gauge modes. • This equation can be formally solved as

$$B_{\mu}(t,x) = \int d^D y \left[\mathcal{K}_t(x-y)_{\mu\nu} \mathcal{A}_{\nu}(y) + \int_0^t ds \, \mathcal{K}_{t-s}(x-y)_{\mu\nu} \mathcal{R}_{\nu}(s,y) \right],$$

by using the heat kernel,

$$\mathcal{K}_{t}(\boldsymbol{x})_{\mu\nu} = \int_{\rho} \frac{e^{j\rho\boldsymbol{x}}}{\rho^{2}} \left[(\delta_{\mu\nu}\rho^{2} - \rho_{\mu}\rho_{\nu})e^{-t\rho^{2}} + \rho_{\mu}\rho_{\nu}e^{-\alpha_{0}t\rho^{2}} \right]$$

Perturbative expansion of the gradient flow

Yang–Mills gradient flow

$$\partial_t B_\mu(t,x) = D_\nu G_{\nu\mu}(t,x) + \alpha_0 D_\mu \partial_\nu B_\nu(t,x), \qquad B_\mu(t=0,x) = A_\mu(x),$$

where the term with α_0 is introduced to suppress the gauge modes. • This equation can be formally solved as

$$B_{\mu}(t,x) = \int d^D y \left[K_t(x-y)_{\mu\nu} A_{\nu}(y) + \int_0^t ds \, K_{t-s}(x-y)_{\mu\nu} R_{\nu}(s,y) \right],$$

by using the heat kernel,

$$K_{t}(x)_{\mu\nu} = \int_{p} \frac{e^{ipx}}{p^{2}} \left[(\delta_{\mu\nu}p^{2} - p_{\mu}p_{\nu})e^{-tp^{2}} + p_{\mu}p_{\nu}e^{-\alpha_{0}tp^{2}} \right]$$

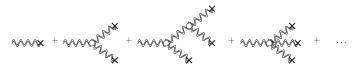
• *R* is the non-linear terms

$$\mathbf{R}_{\mu} = \mathbf{2}[\mathbf{B}_{\nu}, \partial_{\nu}\mathbf{B}_{\mu}] - [\mathbf{B}_{\nu}, \partial_{\mu}\mathbf{B}_{\nu}] + (\alpha_{0} - 1)[\mathbf{B}_{\mu}, \partial_{\nu}\mathbf{B}_{\nu}] + [\mathbf{B}_{\nu}, [\mathbf{B}_{\nu}, \mathbf{B}_{\mu}]].$$

The solution

$$\mathcal{B}_{\mu}(t,x)=\int d^D y\left[\mathcal{K}_t(x-y)_{\mu
u}\mathcal{A}_{
u}(y)+\int_0^t ds\,\mathcal{K}_{t-s}(x-y)_{\mu
u}\mathcal{R}_{
u}(s,y)
ight],$$

is represented pictorially as (double lines: K, crosses: A_{μ} , white circles: R),



Backup: Justification of the "gauge fixing term"

• Under the infinitesimal gauge transformation

$$B_{\mu}(t,x) \rightarrow B_{\mu}(t,x) + D_{\mu}\omega(t,x),$$

the flow equation

$$\partial_t B_{\mu}(t,x) = D_{\nu} G_{\nu\mu}(t,x) + \alpha_0 D_{\mu} \partial_{\nu} B_{\nu}(t,x),$$

changes to

 $\partial_t B_{\mu}(t,x) = D_{\nu} G_{\nu\mu}(t,x) + \alpha_0 D_{\mu} \partial_{\nu} B_{\nu}(t,x) - D_{\mu} (\partial_t - \alpha_0 D_{\nu} \partial_{\nu}) \omega(t,x).$

Backup: Justification of the "gauge fixing term"

• Under the infinitesimal gauge transformation

$$B_{\mu}(t,x) \rightarrow B_{\mu}(t,x) + D_{\mu}\omega(t,x),$$

the flow equation

$$\partial_t B_\mu(t,x) = D_\nu G_{\nu\mu}(t,x) + \alpha_0 D_\mu \partial_\nu B_\nu(t,x),$$

changes to

$$\partial_t B_{\mu}(t,x) = D_{\nu} G_{\nu\mu}(t,x) + \alpha_0 D_{\mu} \partial_{\nu} B_{\nu}(t,x) - D_{\mu} (\partial_t - \alpha_0 D_{\nu} \partial_{\nu}) \omega(t,x).$$

• Choosing $\omega(t, x)$ as

$$(\partial_t - \alpha_0 D_\nu \partial_\nu) \omega(t, x) = -\delta \alpha_0 \partial_\nu B_\nu(t, x), \qquad \omega(t = 0, x) = 0,$$

 α_0 can be changed accordingly

$$\alpha_{0} \to \alpha_{0} + \delta \alpha_{0}.$$

Backup: Justification of the "gauge fixing term"

• Under the infinitesimal gauge transformation

$$B_{\mu}(t,x) \rightarrow B_{\mu}(t,x) + D_{\mu}\omega(t,x),$$

the flow equation

$$\partial_t B_\mu(t,x) = D_\nu G_{\nu\mu}(t,x) + \alpha_0 D_\mu \partial_\nu B_\nu(t,x),$$

changes to

$$\partial_t B_{\mu}(t,x) = D_{\nu} G_{\nu\mu}(t,x) + \alpha_0 D_{\mu} \partial_{\nu} B_{\nu}(t,x) - D_{\mu} (\partial_t - \alpha_0 D_{\nu} \partial_{\nu}) \omega(t,x).$$

Choosing ω(t, x) as

$$(\partial_t - \alpha_0 D_\nu \partial_\nu) \omega(t, x) = -\delta \alpha_0 \partial_\nu B_\nu(t, x), \qquad \omega(t = 0, x) = 0,$$

 α_0 can be changed accordingly

$$\alpha_0 \rightarrow \alpha_0 + \delta \alpha_0.$$

• Thus, a gauge invariant quantity (in usual 4D sense) is independent of α_0 , as far as it does not contain the flow time derivative ∂_t .

鈴木 博 Hiroshi Suzuki (九州大学)

 Quantum correlation function of the flowed gauge field is obtained by the functional integral over the initial value A_μ(x):

$$\langle B_{\mu_1}(t_1, x_1) \cdots B_{\mu_n}(t_n, x_n) \rangle$$

= $\frac{1}{\mathcal{Z}} \int \mathcal{D} A_{\mu} B_{\mu_1}(t_1, x_1) \cdots B_{\mu_n}(t_n, x_n) e^{-S_{\text{YM}}-S_{\text{gf}}-S_{c\bar{c}}}.$

 Quantum correlation function of the flowed gauge field is obtained by the functional integral over the initial value A_μ(x):

$$egin{aligned} &\langle \mathcal{B}_{\mu_1}(t_1,x_1)\cdots\mathcal{B}_{\mu_n}(t_n,x_n)
angle \ &=rac{1}{\mathcal{Z}}\int\mathcal{D}\mathcal{A}_{\mu}\,\mathcal{B}_{\mu_1}(t_1,x_1)\cdots\mathcal{B}_{\mu_n}(t_n,x_n)\,e^{-\mathcal{S}_{ ext{YM}}-\mathcal{S}_{ ext{gf}}-\mathcal{S}_{ ext{cc}}}. \end{aligned}$$

For example, the contraction of two A_μ's

produces the free propagator of the flowed field

$$\left\langle B^{a}_{\mu}(t,x)B^{b}_{\nu}(s,y)\right\rangle_{0} \\ = \delta^{ab}g^{2}_{0}\int_{\rho}\frac{e^{i\rho(x-y)}}{(\rho^{2})^{2}}\left[(\delta_{\mu\nu}\rho^{2}-\rho_{\mu}\rho_{\nu})e^{-(t+s)\rho^{2}} + \frac{1}{\lambda_{0}}\rho_{\mu}\rho_{\nu}e^{-\alpha_{0}(t+s)\rho^{2}} \right]$$

• Similarly, for (black circle: Yang–Mills vertex)

we have the loop flow-line Feynman diagram

• Similarly, for (black circle: Yang–Mills vertex)

we have the loop flow-line Feynman diagram

Recall that the flowed gauge field is represented as

Renormalizability of the gradient flow I (Lüscher–Weisz (2011))

Correlation function of the flowed gauge field

 $\langle B_{\mu_1}(t_1, x_1) \cdots B_{\mu_n}(t_n, x_n) \rangle, \qquad t_1 > 0, \ldots, t_n > 0,$

when expressed in terms of renormalized parameters, is UV finite without the wave function renormalization.

Renormalizability of the gradient flow I (Lüscher–Weisz (2011))

Correlation function of the flowed gauge field

 $\langle B_{\mu_1}(t_1,x_1)\cdots B_{\mu_n}(t_n,x_n)\rangle, \qquad t_1>0,\ldots,t_n>0,$

when expressed in terms of renormalized parameters, is UV finite without the wave function renormalization.

• Two-point function in the tree level (in the Feynman gauge $\lambda_0 = \alpha_0 = 1$)

$$\left\langle B^a_\mu(t,x)B^b_\nu(s,y)\right\rangle_0 = \delta^{ab}g_0^2\delta_{\mu\nu}\int_\rho e^{ip(x-y)}\frac{e^{-(t+s)\rho^2}}{\rho^2}.$$

Renormalizability of the gradient flow I (Lüscher–Weisz (2011))

Correlation function of the flowed gauge field

 $\langle B_{\mu_1}(t_1,x_1)\cdots B_{\mu_n}(t_n,x_n)\rangle, \qquad t_1>0,\ldots,t_n>0,$

when expressed in terms of renormalized parameters, is UV finite without the wave function renormalization.

• Two-point function in the tree level (in the Feynman gauge $\lambda_0 = \alpha_0 = 1$)

$$\left\langle B^a_\mu(t,x)B^b_\nu(s,y)\right\rangle_0 = \delta^{ab}g_0^2\delta_{\mu\nu}\int_p e^{ip(x-y)}\frac{e^{-(t+s)p^2}}{p^2}.$$

One-loop corrections (consisting only from Yang–Mills vertices)

where the last counter term arises from the parameter renormalization

$$g_0^2 = \mu^{2\epsilon} g^2 Z, \qquad \lambda_0 = \lambda Z_3^{-1}.$$

Renormalizability of the gradient flow I

• Usually, further wave function renormalization $(A^a_\mu = Z^{1/2}Z^{1/2}_3(A_R)^a_\mu)$ is required for the two-point function to become UV finite.

Renormalizability of the gradient flow I

- Usually, further wave function renormalization $(A^a_\mu = Z^{1/2}Z^{1/2}_3(A_R)^a_\mu)$ is required for the two-point function to become UV finite.
- In the present flowed system, we also have the white circles (flow vertex)

It turns out that these provide the same effect as the wave function renormalization!

Renormalizability of the gradient flow I

- Usually, further wave function renormalization $(A^a_\mu = Z^{1/2}Z^{1/2}_3(A_R)^a_\mu)$ is required for the two-point function to become UV finite.
- In the present flowed system, we also have the white circles (flow vertex)

It turns out that these provide the same effect as the wave function renormalization!

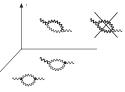
• All order proof of this fact, using a local D + 1-dimensional field theory

Renormalizability of the gradient flow I

- Usually, further wave function renormalization $(A^a_\mu = Z^{1/2}Z^{1/2}_3(A_R)^a_\mu)$ is required for the two-point function to become UV finite.
- In the present flowed system, we also have the white circles (flow vertex)

It turns out that these provide the same effect as the wave function renormalization!

• All order proof of this fact, using a local *D* + 1-dimensional field theory



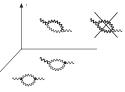
• No bulk (t > 0) counterterm: because of the gaussian damping factor $\sim e^{-tp^2}$ in the propagator.

Renormalizability of the gradient flow I

- Usually, further wave function renormalization $(A^a_\mu = Z^{1/2}Z^{1/2}_3(A_R)^a_\mu)$ is required for the two-point function to become UV finite.
- In the present flowed system, we also have the white circles (flow vertex)

It turns out that these provide the same effect as the wave function renormalization!

• All order proof of this fact, using a local *D* + 1-dimensional field theory



- No bulk (t > 0) counterterm: because of the gaussian damping factor $\sim e^{-p^2}$ in the propagator.
- No boundary (t = 0) counterterm besides Yang–Mills ones: because of a BRS symmetry.

Renormalizability of the gradient flow II

Correlation function of the flow gauge field

$$\langle B_{\mu_1}(t_1, x_1) B_{\mu_2}(t_2, x_2) \cdots B_{\mu_n}(t_n, x_n) \rangle, \qquad t_1 > 0, \dots, t_n > 0,$$

remains finite even for the equal-point product

$$t_1 \rightarrow t_2, \qquad x_1 \rightarrow x_2,$$

Renormalizability of the gradient flow II

Correlation function of the flow gauge field

$$\langle B_{\mu_1}(t_1, x_1) B_{\mu_2}(t_2, x_2) \cdots B_{\mu_n}(t_n, x_n) \rangle, \quad t_1 > 0, \dots, t_n > 0,$$

remains finite even for the equal-point product

$$t_1 \rightarrow t_2, \qquad x_1 \rightarrow x_2.$$

 The new loop always contains the gaussian damping factor ~ e^{-tp²} which makes integral finite; no new UV divergences arise. • Any composite operators of the flowed gauge field $B_{\mu}(t,x)$ are automatically renormalized UV finite quantities, although the flowed field is a certain combination of the bare gauge field.

- Any composite operators of the flowed gauge field $B_{\mu}(t, x)$ are automatically renormalized UV finite quantities, although the flowed field is a certain combination of the bare gauge field.
- Such UV finite quantities must be independent of the regularization.

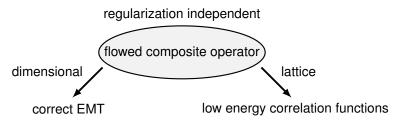
- Any composite operators of the flowed gauge field $B_{\mu}(t,x)$ are automatically renormalized UV finite quantities, although the flowed field is a certain combination of the bare gauge field.
- Such UV finite quantities must be independent of the regularization.
- \Rightarrow Construction of the energy–momentum tensor in lattice gauge theory.

Our strategy for lattice EMT (arXiv:1304.0533)

• We bridge lattice regularization and dimensional regularization which preserves the translational invariance, by using a flowed composite operator as an intermediate tool.

Our strategy for lattice EMT (arXiv:1304.0533)

- We bridge lattice regularization and dimensional regularization which preserves the translational invariance, by using a flowed composite operator as an intermediate tool.
- Schematically,



EMT in the dimensional regularization

The action

$$S = -\frac{1}{2g_0^2}\int d^D x \, \mathrm{tr} \left[F_{\mu\nu}(x)F_{\mu\nu}(x)\right] + \int d^D x \, \bar{\psi}(x)(D + m_0)\psi(x).$$

EMT in the dimensional regularization

The action

$$S = -\frac{1}{2g_0^2} \int d^D x \operatorname{tr} \left[F_{\mu\nu}(x) F_{\mu\nu}(x) \right] + \int d^D x \, \bar{\psi}(x) (D + m_0) \psi(x).$$

Under the localized translation (plus the gauge transformation),

$$\begin{split} \delta \boldsymbol{A}_{\mu}(\boldsymbol{x}) &= \xi_{\nu}(\boldsymbol{x}) \boldsymbol{F}_{\nu\mu}(\boldsymbol{x}), \\ \delta \psi(\boldsymbol{x}) &= \xi(\boldsymbol{x})_{\mu} \boldsymbol{D}_{\mu} \psi(\boldsymbol{x}), \\ \delta \bar{\psi}(\boldsymbol{x}) &= \xi(\boldsymbol{x})_{\mu} \bar{\psi}(\boldsymbol{x}) \overleftarrow{\boldsymbol{D}}_{\mu}. \end{split}$$

we have

$$\delta \boldsymbol{S} = -\int \boldsymbol{d}^{D} \boldsymbol{x} \, \xi_{
u}(\boldsymbol{x}) \partial_{\mu} \left[T_{\mu
u}(\boldsymbol{x}) + \boldsymbol{A}_{\mu
u}(\boldsymbol{x})
ight],$$

where

$$A_{\mu\nu}(x) = \frac{1}{4} \bar{\psi}(x) \left(\gamma_{\mu} \overleftrightarrow{D}_{\nu} - \gamma_{\nu} \overleftrightarrow{D}_{\mu} \right) \psi(x)$$

is the generator of the local Lorenz transformation and is neglected here, and...

EMT in dimensional regularization

• ... and $T_{\mu\nu}(x)$ is the symmetric EMT:

$$egin{aligned} &T_{\mu
u}(x)\ &=rac{1}{g_0^2}\left\{\mathcal{O}_{1\mu
u}(x)-rac{1}{4}\mathcal{O}_{2\mu
u}(x)
ight\}+rac{1}{4}\mathcal{O}_{3\mu
u}(x)-rac{1}{2}\mathcal{O}_{4\mu
u}(x)-\mathcal{O}_{5\mu
u}(x), \end{aligned}$$

where

$$\begin{split} \mathcal{O}_{1\mu\nu}(x) &\equiv \sum_{\rho} F^{a}_{\mu\rho}(x) F^{a}_{\nu\rho}(x), \qquad \qquad \mathcal{O}_{2\mu\nu}(x) \equiv \delta_{\mu\nu} \sum_{\rho,\sigma} F^{a}_{\rho\sigma}(x) F^{a}_{\rho\sigma}(x), \\ \mathcal{O}_{3\mu\nu}(x) &\equiv \bar{\psi}(x) \left(\gamma_{\mu} \overleftarrow{D}_{\nu} + \gamma_{\nu} \overleftarrow{D}_{\mu} \right) \psi(x), \quad \mathcal{O}_{4\mu\nu}(x) \equiv \delta_{\mu\nu} \bar{\psi}(x) \overleftarrow{D} \psi(x), \\ \mathcal{O}_{5\mu\nu}(x) &\equiv \delta_{\mu\nu} m_{0} \bar{\psi}(x) \psi(x). \end{split}$$

EMT in dimensional regularization

• ... and $T_{\mu\nu}(x)$ is the symmetric EMT:

$$egin{aligned} &T_{\mu
u}(x)\ &=rac{1}{g_0^2}\left\{\mathcal{O}_{1\mu
u}(x)-rac{1}{4}\mathcal{O}_{2\mu
u}(x)
ight\}+rac{1}{4}\mathcal{O}_{3\mu
u}(x)-rac{1}{2}\mathcal{O}_{4\mu
u}(x)-\mathcal{O}_{5\mu
u}(x), \end{aligned}$$

where

$$\begin{split} \mathcal{O}_{1\mu\nu}(x) &\equiv \sum_{\rho} F^{a}_{\mu\rho}(x) F^{a}_{\nu\rho}(x), \qquad \qquad \mathcal{O}_{2\mu\nu}(x) \equiv \delta_{\mu\nu} \sum_{\rho,\sigma} F^{a}_{\rho\sigma}(x) F^{a}_{\rho\sigma}(x), \\ \mathcal{O}_{3\mu\nu}(x) &\equiv \bar{\psi}(x) \left(\gamma_{\mu} \overleftarrow{D}_{\nu} + \gamma_{\nu} \overleftarrow{D}_{\mu} \right) \psi(x), \quad \mathcal{O}_{4\mu\nu}(x) \equiv \delta_{\mu\nu} \bar{\psi}(x) \overleftarrow{D} \psi(x), \\ \mathcal{O}_{5\mu\nu}(x) &\equiv \delta_{\mu\nu} m_{0} \bar{\psi}(x) \psi(x). \end{split}$$

 We define the renormalized EMT by subtracting its (possibly divergent) vacuum expectation value:

$$\{T_{\mu\nu}\}_{R}(x) \equiv T_{\mu\nu}(x) - \langle T_{\mu\nu}(x) \rangle.$$

EMT in dimensional regularization

• ... and $T_{\mu\nu}(x)$ is the symmetric EMT:

$$egin{aligned} & T_{\mu
u}(x) \ &= rac{1}{g_0^2} \left\{ \mathcal{O}_{1\mu
u}(x) - rac{1}{4} \mathcal{O}_{2\mu
u}(x)
ight\} + rac{1}{4} \mathcal{O}_{3\mu
u}(x) - rac{1}{2} \mathcal{O}_{4\mu
u}(x) - \mathcal{O}_{5\mu
u}(x), \end{aligned}$$

where

$$\begin{split} \mathcal{O}_{1\mu\nu}(x) &\equiv \sum_{\rho} F^{a}_{\mu\rho}(x) F^{a}_{\nu\rho}(x), \qquad \qquad \mathcal{O}_{2\mu\nu}(x) \equiv \delta_{\mu\nu} \sum_{\rho,\sigma} F^{a}_{\rho\sigma}(x) F^{a}_{\rho\sigma}(x), \\ \mathcal{O}_{3\mu\nu}(x) &\equiv \bar{\psi}(x) \left(\gamma_{\mu} \overleftarrow{D}_{\nu} + \gamma_{\nu} \overleftarrow{D}_{\mu} \right) \psi(x), \quad \mathcal{O}_{4\mu\nu}(x) \equiv \delta_{\mu\nu} \bar{\psi}(x) \overleftarrow{D} \psi(x), \\ \mathcal{O}_{5\mu\nu}(x) &\equiv \delta_{\mu\nu} m_{0} \bar{\psi}(x) \psi(x). \end{split}$$

 We define the renormalized EMT by subtracting its (possibly divergent) vacuum expectation value:

$$\{T_{\mu\nu}\}_{R}(\mathbf{x})\equiv T_{\mu\nu}(\mathbf{x})-\langle T_{\mu\nu}(\mathbf{x})\rangle.$$

• Under the dimensional regularization, this is the correct EMT.

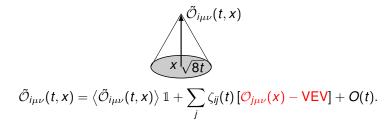
• We thus want to find a composite operator of the flowed fields which reduces to the EMT under the dimensional regularization.

- We thus want to find a composite operator of the flowed fields which reduces to the EMT under the dimensional regularization.
- But how?

- We thus want to find a composite operator of the flowed fields which reduces to the EMT under the dimensional regularization.
- But how?
- In general, the relation between composite operators in t > 0 (heaven) and in 4D (the earth) is not obvious at all...

- We thus want to find a composite operator of the flowed fields which reduces to the EMT under the dimensional regularization.
- But how?
- In general, the relation between composite operators in t > 0 (heaven) and in 4D (the earth) is not obvious at all...
- The relation becomes tractable, in the limit in which the flow time becomes small $t \rightarrow 0$.

- We thus want to find a composite operator of the flowed fields which reduces to the EMT under the dimensional regularization.
- But how?
- In general, the relation between composite operators in t > 0 (heaven) and in 4D (the earth) is not obvious at all...
- The relation becomes tractable, in the limit in which the flow time becomes small $t \rightarrow 0$.
- Small flow-time expansion (Lüscher–Weisz (2011)):



• Small flow-time expansion:

$$\tilde{\mathcal{O}}_{i\mu\nu}(t,\mathbf{x}) = \langle \tilde{\mathcal{O}}_{i\mu\nu}(t,\mathbf{x}) \rangle \mathbb{1} + \sum_{j} \zeta_{ij}(t) \left[\mathcal{O}_{j\mu\nu}(\mathbf{x}) - \mathsf{VEV} \right] + O(t).$$

 \tilde{O} . (t v)

• Small flow-time expansion:

$$\tilde{\mathcal{O}}_{i\mu\nu}(t,x) = \langle \tilde{\mathcal{O}}_{i\mu\nu}(t,x) \rangle \mathbb{1} + \sum_{j} \zeta_{ij}(t) \left[\mathcal{O}_{j\mu\nu}(x) - \mathsf{VEV} \right] + O(t).$$

õ

(+ y)

Inverting this relation,

$$\mathcal{O}_{i\mu\nu}(\mathbf{x}) - \mathsf{VEV} = \lim_{t \to 0} \left\{ \sum_{j} \left(\zeta^{-1} \right)_{ij}(t) \left[\tilde{\mathcal{O}}_{j\mu\nu}(t, \mathbf{x}) - \left\langle \tilde{\mathcal{O}}_{j\mu\nu}(t, \mathbf{x}) \right\rangle \mathbb{1} \right] \right\}.$$

• Small flow-time expansion:

$$\tilde{\mathcal{O}}_{i\mu\nu}(t,\mathbf{x}) = \langle \tilde{\mathcal{O}}_{i\mu\nu}(t,\mathbf{x}) \rangle \mathbb{1} + \sum_{j} \zeta_{ij}(t) \left[\mathcal{O}_{j\mu\nu}(\mathbf{x}) - \mathsf{VEV} \right] + O(t).$$

 $\tilde{\mathcal{O}}$ $(t \mathbf{y})$

Inverting this relation,

$$\mathcal{O}_{i\mu\nu}(\mathbf{x}) - \mathsf{VEV} = \lim_{t \to 0} \left\{ \sum_{j} \left(\zeta^{-1} \right)_{ij}(t) \left[\tilde{\mathcal{O}}_{j\mu\nu}(t, \mathbf{x}) - \left\langle \tilde{\mathcal{O}}_{j\mu\nu}(t, \mathbf{x}) \right\rangle \mathbb{1} \right] \right\}.$$

So, if we know the t → 0 behavior of the coefficients ζ_{ij}(t), the 4D operator in the LHS can be extracted as the t → 0 limit.

A renormalization group argument

• We are interested in the $t \rightarrow 0$ behavior of the coefficients $\zeta_{ij}(t)$ in

$$ilde{\mathcal{O}}_{i\mu
u}(t,\mathbf{x}) = \left\langle ilde{\mathcal{O}}_{i\mu
u}(t,\mathbf{x}) \right\rangle \mathbb{1} + \sum_{j} \zeta_{ij}(t) \left[\mathcal{O}_{j\mu
u}(\mathbf{x}) - \left\langle \mathcal{O}_{j\mu
u}(\mathbf{x}) \right\rangle \mathbb{1} \right] + O(t).$$

A renormalization group argument

• We are interested in the $t \rightarrow 0$ behavior of the coefficients $\zeta_{ij}(t)$ in

$$ilde{\mathcal{O}}_{i\mu
u}(t, \mathbf{x}) = ig\langle ilde{\mathcal{O}}_{i\mu
u}(t, \mathbf{x}) ig
angle \, \mathbb{1} + \sum_j \zeta_{ij}(t) \, [\mathcal{O}_{j\mu
u}(\mathbf{x}) - \langle \mathcal{O}_{j\mu
u}(\mathbf{x})
angle \, \mathbb{1}] + \mathcal{O}(t).$$

 If all the composite operators in this relation are made out from bare quantities,

$$\left(\mu\frac{\partial}{\partial\mu}\right)_{\mathbf{0}}\zeta_{ij}(t)=\mathbf{0},$$

and $\zeta_{ij}(t)$ are indep. of the renormalization scale μ , when expressed in terms of running parameters. We may take, for example, $\mu = 1/\sqrt{8t}$, and

$$\zeta_{ij}(t) \left[g, m; \mu\right] = \zeta_{ij}(t) \left[\bar{g}(1/\sqrt{8t}), \bar{m}(1/\sqrt{8t}); 1/\sqrt{8t}\right].$$

A renormalization group argument

• We are interested in the $t \rightarrow 0$ behavior of the coefficients $\zeta_{ij}(t)$ in

$$ilde{\mathcal{O}}_{i\mu
u}(t, \mathbf{x}) = ig\langle ilde{\mathcal{O}}_{i\mu
u}(t, \mathbf{x}) ig
angle \, \mathbb{1} + \sum_j \zeta_{ij}(t) \, [\mathcal{O}_{j\mu
u}(\mathbf{x}) - \langle \mathcal{O}_{j\mu
u}(\mathbf{x})
angle \, \mathbb{1}] + \mathcal{O}(t).$$

 If all the composite operators in this relation are made out from bare quantities,

$$\left(\mu\frac{\partial}{\partial\mu}\right)_{\mathbf{0}}\zeta_{ij}(t)=\mathbf{0},$$

and $\zeta_{ij}(t)$ are indep. of the renormalization scale μ , when expressed in terms of running parameters. We may take, for example, $\mu = 1/\sqrt{8t}$, and

$$\zeta_{ij}(t) [g, m; \mu] = \zeta_{ij}(t) \left[\overline{g}(1/\sqrt{8t}), \overline{m}(1/\sqrt{8t}); 1/\sqrt{8t} \right].$$

• For $t \to 0$, $\bar{g}(1/\sqrt{8t}) \to 0$ because of the asymptotic freedom; use of perturbation theory is thus justified!

1

Flow of fermion fields

• A possible choice (Lüscher (2013))

$$\begin{aligned} \partial_t \chi(t, \mathbf{x}) &= \left[\Delta - \alpha_0 \partial_\mu B_\mu(t, \mathbf{x}) \right] \chi(t, \mathbf{x}), \qquad \chi(t = 0, \mathbf{x}) = \psi(\mathbf{x}), \\ \partial_t \bar{\chi}(t, \mathbf{x}) &= \bar{\chi}(t, \mathbf{x}) \left[\overleftarrow{\Delta} + \alpha_0 \partial_\mu B_\mu(t, \mathbf{x}) \right], \qquad \bar{\chi}(t = 0, \mathbf{x}) = \bar{\psi}(\mathbf{x}), \end{aligned}$$

where

$$\begin{split} \Delta &= D_{\mu} D_{\mu}, \qquad \qquad D_{\mu} = \partial_{\mu} + B_{\mu}, \\ \overleftarrow{\Delta} &= \overleftarrow{D}_{\mu} \overleftarrow{D}_{\mu}, \qquad \qquad \overleftarrow{D}_{\mu} \equiv \overleftarrow{\partial}_{\mu} - B_{\mu}. \end{split}$$

Flow of fermion fields

• A possible choice (Lüscher (2013))

$$\begin{aligned} \partial_t \chi(t, x) &= \left[\Delta - \alpha_0 \partial_\mu B_\mu(t, x) \right] \chi(t, x), \qquad \chi(t = 0, x) = \psi(x), \\ \partial_t \bar{\chi}(t, x) &= \bar{\chi}(t, x) \left[\overleftarrow{\Delta} + \alpha_0 \partial_\mu B_\mu(t, x) \right], \qquad \bar{\chi}(t = 0, x) = \bar{\psi}(x), \end{aligned}$$

where

$$\begin{split} \Delta &= D_{\mu} D_{\mu}, & D_{\mu} = \partial_{\mu} + B_{\mu}, \\ \overleftarrow{\Delta} &= \overleftarrow{D}_{\mu} \overleftarrow{D}_{\mu}, & \overleftarrow{D}_{\mu} \equiv \overleftarrow{\partial}_{\mu} - B_{\mu}. \end{split}$$

 It turns out that the flowed fermion field requires the wave function renormalization:

$$\chi_R(t,x) = Z_{\chi}^{1/2}\chi(t,x), \qquad \qquad ar{\chi}_R(t,x) = Z_{\chi}^{1/2}ar{\chi}(t,x), \ Z_{\chi} = 1 + rac{g^2}{(4\pi)^2}C_2(R)3rac{1}{\epsilon} + O(g^4).$$

Flow of fermion fields

• A possible choice (Lüscher (2013))

$$\begin{aligned} \partial_t \chi(t, x) &= \left[\Delta - \alpha_0 \partial_\mu B_\mu(t, x) \right] \chi(t, x), \qquad \chi(t = 0, x) = \psi(x), \\ \partial_t \bar{\chi}(t, x) &= \bar{\chi}(t, x) \left[\overleftarrow{\Delta} + \alpha_0 \partial_\mu B_\mu(t, x) \right], \qquad \bar{\chi}(t = 0, x) = \bar{\psi}(x), \end{aligned}$$

where

$$\begin{split} \Delta &= D_{\mu} D_{\mu}, \qquad \qquad D_{\mu} = \partial_{\mu} + B_{\mu}, \\ \overleftarrow{\Delta} &= \overleftarrow{D}_{\mu} \overleftarrow{D}_{\mu}, \qquad \qquad \overleftarrow{D}_{\mu} \equiv \overleftarrow{\partial}_{\mu} - B_{\mu}. \end{split}$$

 It turns out that the flowed fermion field requires the wave function renormalization:

$$\chi_R(t,x) = Z_{\chi}^{1/2}\chi(t,x),$$
 $\bar{\chi}_R(t,x) = Z_{\chi}^{1/2}\bar{\chi}(t,x),$
 $Z_{\chi} = 1 + \frac{g^2}{(4\pi)^2}C_2(R)3\frac{1}{\epsilon} + O(g^4).$

• Still, any composite operators of $\chi_R(t, x)$ are UV finite.

Ringed fermion fields

• Recall that the flowed fermion field requires the wave function renormalization:

$$\chi_R(t,x) = Z_{\chi}^{1/2}\chi(t,x), \qquad \bar{\chi}_R(t,x) = Z_{\chi}^{1/2}\bar{\chi}(t,x),$$

although composite operators of $\chi_R(t, x)$ are UV finite.

Ringed fermion fields

• Recall that the flowed fermion field requires the wave function renormalization:

$$\chi_R(t,x) = Z_{\chi}^{1/2}\chi(t,x), \qquad \bar{\chi}_R(t,x) = Z_{\chi}^{1/2}\bar{\chi}(t,x),$$

although composite operators of $\chi_R(t, x)$ are UV finite.

To avoid the complication associated with this, we introduce

$$\mathring{\chi}(t,x) = \mathcal{C} \frac{\chi(t,x)}{\sqrt{t^2 \left\langle \bar{\chi}(t,x) \overleftrightarrow{\mathcal{D}} \chi(t,x) \right\rangle}} = \chi_{\mathcal{B}}(t,x) + \mathcal{O}(g^2),$$

where

$$\mathcal{C} \equiv \sqrt{\frac{-2\dim(R)}{(4\pi)^2}},$$

and similarly for $\bar{\chi}(t, x)$.

Ringed fermion fields

• Recall that the flowed fermion field requires the wave function renormalization:

$$\chi_R(t,x) = Z_{\chi}^{1/2}\chi(t,x), \qquad \bar{\chi}_R(t,x) = Z_{\chi}^{1/2}\bar{\chi}(t,x),$$

although composite operators of $\chi_R(t, x)$ are UV finite.

1

To avoid the complication associated with this, we introduce

$$\mathring{\chi}(t,x) = \mathcal{C} \frac{\chi(t,x)}{\sqrt{t^2 \left\langle \bar{\chi}(t,x) \overleftrightarrow{\mathcal{D}} \chi(t,x) \right\rangle}} = \chi_{\mathcal{B}}(t,x) + \mathcal{O}(g^2),$$

where

$$\mathcal{C} \equiv \sqrt{\frac{-2\dim(R)}{(4\pi)^2}},$$

and similarly for $\bar{\chi}(t, x)$.

Since Z_χ is cancelled out in χ^{*}(t, x), any composite operators of χ^{*}(t, x) and χ^{*}(t, x) are UV finite.

EMT from the gradient flow

• We take following composite operators of flowed fields:

$$\begin{split} \tilde{\mathcal{O}}_{1\mu\nu}(t,x) &\equiv G^{a}_{\mu\rho}(t,x)G^{a}_{\nu\rho}(t,x), \\ \tilde{\mathcal{O}}_{2\mu\nu}(t,x) &\equiv \delta_{\mu\nu}G^{a}_{\rho\sigma}(t,x)G^{a}_{\rho\sigma}(t,x), \\ \tilde{\mathcal{O}}_{3\mu\nu}(t,x) &\equiv \ddot{\chi}(t,x)\left(\gamma_{\mu}\overleftarrow{D}_{\nu}+\gamma_{\nu}\overleftarrow{D}_{\mu}\right)\dot{\chi}(t,x), \\ \tilde{\mathcal{O}}_{4\mu\nu}(t,x) &\equiv \delta_{\mu\nu}\dot{\chi}(t,x)\overleftarrow{\mathcal{D}}\dot{\chi}(t,x), \\ \tilde{\mathcal{O}}_{5\mu\nu}(t,x) &\equiv \delta_{\mu\nu}m\dot{\chi}(t,x)\dot{\chi}(t,x), \end{split}$$

and then set the small flow-time expansion:

$$\tilde{\mathcal{O}}_{i\mu\nu}(t,x) = \left\langle \tilde{\mathcal{O}}_{i\mu\nu}(t,x) \right\rangle \mathbb{1} + \sum_{j} \zeta_{ij}(t) \left[\mathcal{O}_{j\mu\nu}(x) - \left\langle \mathcal{O}_{j\mu\nu}(x) \right\rangle \mathbb{1} \right] + O(t).$$

EMT from the gradient flow

• We take following composite operators of flowed fields:

$$\begin{split} \tilde{\mathcal{O}}_{1\mu\nu}(t,x) &\equiv G^{a}_{\mu\rho}(t,x)G^{a}_{\nu\rho}(t,x), \\ \tilde{\mathcal{O}}_{2\mu\nu}(t,x) &\equiv \delta_{\mu\nu}G^{a}_{\rho\sigma}(t,x)G^{a}_{\rho\sigma}(t,x), \\ \tilde{\mathcal{O}}_{3\mu\nu}(t,x) &\equiv \ddot{\chi}(t,x)\left(\gamma_{\mu}\overleftarrow{D}_{\nu}+\gamma_{\nu}\overleftarrow{D}_{\mu}\right)\dot{\chi}(t,x), \\ \tilde{\mathcal{O}}_{4\mu\nu}(t,x) &\equiv \delta_{\mu\nu}\dot{\chi}(t,x)\overleftarrow{\mathcal{D}}\dot{\chi}(t,x), \\ \tilde{\mathcal{O}}_{5\mu\nu}(t,x) &\equiv \delta_{\mu\nu}m\dot{\chi}(t,x)\dot{\chi}(t,x), \end{split}$$

and then set the small flow-time expansion:

$$ilde{\mathcal{O}}_{i\mu
u}(t,\mathbf{x}) = ig\langle ilde{\mathcal{O}}_{i\mu
u}(t,\mathbf{x}) ig
angle \, \mathbb{1} + \sum_j ig\zeta_{ij}(t) \, [\mathcal{O}_{j\mu
u}(\mathbf{x}) - \langle \mathcal{O}_{j\mu
u}(\mathbf{x})
angle \, \mathbb{1}] + O(t).$$

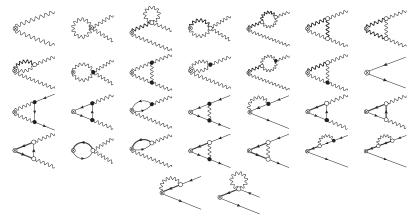
We compute ζ_{ij}(t) to the one-loop order and substitute

$$\mathcal{O}_{i\mu\nu}(\mathbf{x}) - \langle \mathcal{O}_{i\mu\nu}(\mathbf{x}) \rangle \ \mathbb{1} = \lim_{t \to 0} \left\{ \sum_{j} \left(\zeta^{-1} \right)_{ij}(t) \left[\tilde{\mathcal{O}}_{j\mu\nu}(t, \mathbf{x}) - \left\langle \tilde{\mathcal{O}}_{j\mu\nu}(t, \mathbf{x}) \right\rangle \ \mathbb{1} \right] \right\},$$

in the expression of the EMT in the dimensional regularization

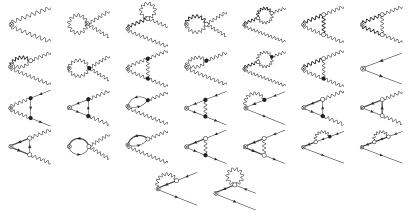
Computation of expansion coefficients $\zeta_{ij}(t)$

• To the one-loop order, we have to evaluate following flow-line Feynman diagrams:



Computation of expansion coefficients $\zeta_{ij}(t)$

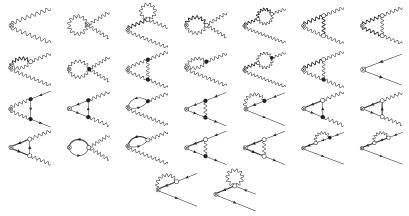
 To the one-loop order, we have to evaluate following flow-line Feynman diagrams:



• Even to write down correct set of diagrams is tedious...

Computation of expansion coefficients $\zeta_{ij}(t)$

 To the one-loop order, we have to evaluate following flow-line Feynman diagrams:



- Even to write down correct set of diagrams is tedious...
- ... and it is very easy to make mistakes in the loop calculation, as I actually did!

鈴木 博 Hiroshi Suzuki (九州大学)

• For the system containing fermions (with Makino, arXiv:1403.4772), $\{T_{\mu\nu}\}_{R}(x)$ $= \lim_{t \to 0} \left\{ c_{1}(t)G^{a}_{\mu\rho}(t,x)G^{a}_{\nu\rho}(t,x) + \left[c_{2}(t) - \frac{1}{4}c_{1}(t)\right]\delta_{\mu\nu}G^{a}_{\rho\sigma}(t,x)G^{a}_{\rho\sigma}(t,x) + c_{3}(t)\overset{*}{\chi}(t,x)\left(\gamma_{\mu}\overleftrightarrow{D}_{\nu} + \gamma_{\nu}\overleftrightarrow{D}_{\mu}\right)\overset{*}{\chi}(t,x) + \left[c_{4}(t) - 2c_{3}(t)\right]\delta_{\mu\nu}\overset{*}{\chi}(t,x)\overleftrightarrow{D}\overset{*}{\chi}(t,x) + c_{5}'(t)\overset{*}{\chi}(t,x)\overset{*}{\chi}(t,x) - \mathsf{VEV} \right\},$

where (for the MS scheme; for $\overline{\text{MS}}$ scheme, set ln $\pi \rightarrow \gamma_E - 2 \ln 2$)

$$\begin{split} c_1(t) &= \frac{1}{\bar{g}(1/\sqrt{8t})^2} - b_0 \ln \pi - \frac{1}{(4\pi)^2} \left[\frac{7}{3} C_2(G) - \frac{3}{2} T(R) N_{\rm f} \right], \\ c_2(t) &= \frac{1}{8} \frac{1}{(4\pi)^2} \left[\frac{11}{3} C_2(G) + \frac{11}{3} T(R) N_{\rm f} \right], \\ c_3(t) &= \frac{1}{4} \left\{ 1 + \frac{\bar{g}(1/\sqrt{8t})^2}{(4\pi)^2} C_2(R) \left[\frac{3}{2} + \ln(432) \right] \right\}, \\ c_4(t) &= \frac{1}{8} d_0 \bar{g}(1/\sqrt{8t})^2, \\ c_5'(t) &= -\bar{m}(1/\sqrt{8t}) \left\{ 1 + \frac{\bar{g}(1/\sqrt{8t})^2}{(4\pi)^2} C_2(R) \left[3 \ln \pi + \frac{7}{2} + \ln(432) \right] \right\} \end{split}$$

鈴木 博 Hiroshi Suzuki (九州大学)

$$b_0 = rac{1}{(4\pi)^2} \left[rac{11}{3} C_2(G) - rac{4}{3} T(R) N_{
m f}
ight], \qquad d_0 = rac{1}{(4\pi)^2} 6 C_2(R).$$

and

$$b_0 = rac{1}{(4\pi)^2} \left[rac{11}{3} C_2(G) - rac{4}{3} T(R) N_{
m f}
ight], \qquad d_0 = rac{1}{(4\pi)^2} 6 C_2(R).$$

• Correlation functions of the RHS of the formula can be computed non-perturbatively by using lattice regularization.

$$b_0 = rac{1}{(4\pi)^2} \left[rac{11}{3} C_2(G) - rac{4}{3} T(R) N_{
m f}
ight], \qquad d_0 = rac{1}{(4\pi)^2} 6 C_2(R).$$

- Correlation functions of the RHS of the formula can be computed non-perturbatively by using lattice regularization.
- The coefficients $c_i(t)$ are universal, i.e., indep. of the lattice transcription.

$$b_0 = rac{1}{(4\pi)^2} \left[rac{11}{3} C_2(G) - rac{4}{3} T(R) N_{
m f}
ight], \qquad d_0 = rac{1}{(4\pi)^2} 6 C_2(R).$$

- Correlation functions of the RHS of the formula can be computed non-perturbatively by using lattice regularization.
- The coefficients $c_i(t)$ are universal, i.e., indep. of the lattice transcription.
- "Universality" holds however only when one removes the regulator.

$$b_0 = rac{1}{(4\pi)^2} \left[rac{11}{3} C_2(G) - rac{4}{3} T(R) N_{
m f}
ight], \qquad d_0 = rac{1}{(4\pi)^2} 6 C_2(R).$$

- Correlation functions of the RHS of the formula can be computed non-perturbatively by using lattice regularization.
- The coefficients $c_i(t)$ are universal, i.e., indep. of the lattice transcription.
- "Universality" holds however only when one removes the regulator.
- Thus, we have to first take the continuum limit *a* → 0 and then take the small flow time limit *t* → 0.

and

$$b_0 = rac{1}{(4\pi)^2} \left[rac{11}{3} C_2(G) - rac{4}{3} T(R) N_{
m f}
ight], \qquad d_0 = rac{1}{(4\pi)^2} 6 C_2(R).$$

- Correlation functions of the RHS of the formula can be computed non-perturbatively by using lattice regularization.
- The coefficients $c_i(t)$ are universal, i.e., indep. of the lattice transcription.
- "Universality" holds however only when one removes the regulator.
- Thus, we have to first take the continuum limit *a* → 0 and then take the small flow time limit *t* → 0.
- Practically, we cannot simply take $a \rightarrow 0$ and may take *t* as small as possible in the fiducial window,

$$a \ll \sqrt{8t} \ll \frac{1}{\Lambda}.$$

Thus the usefulness with presently-accessible lattice parameters is not obvious a priori...

Asakawa–Hatsuda–Itou–Kitazawa–H.S. (FlowQCD Collaboration).

- Asakawa-Hatsuda-Itou-Kitazawa-H.S. (FlowQCD Collaboration).
- One point functions...

- Asakawa–Hatsuda–Itou–Kitazawa–H.S. (FlowQCD Collaboration).
- One point functions...
- Thermal average of diagonal elements of EMT: the trace part (the trace anomaly),

$$\langle \varepsilon - \mathbf{3} \mathbf{p} \rangle_T = - \langle \{ T_{\mu\mu} \}_R (\mathbf{x}) \rangle_T,$$

and the traceless part (the entropy density),

$$\langle \varepsilon + p \rangle_T = - \langle \{T_{00}\}_R(x) \rangle_T + \frac{1}{3} \sum_{i=1,2,3} \langle \{T_{ii}\}_R(x) \rangle_T$$

- Asakawa–Hatsuda–Itou–Kitazawa–H.S. (FlowQCD Collaboration).
- One point functions...
- Thermal average of diagonal elements of EMT: the trace part (the trace anomaly),

$$\langle \varepsilon - \mathbf{3} \mathbf{p} \rangle_T = - \langle \{ T_{\mu\mu} \}_R (\mathbf{x}) \rangle_T,$$

and the traceless part (the entropy density),

$$\langle \varepsilon + p \rangle_T = - \langle \{T_{00}\}_R(x) \rangle_T + \frac{1}{3} \sum_{i=1,2,3} \langle \{T_{ii}\}_R(x) \rangle_T.$$

• Thermodynamical quantities are obtained by the expectation value of EMT just at that temperature *T* (no integration wrt the temperature).

- Asakawa–Hatsuda–Itou–Kitazawa–H.S. (FlowQCD Collaboration).
- One point functions...
- Thermal average of diagonal elements of EMT: the trace part (the trace anomaly),

$$\langle \varepsilon - \mathbf{3} \mathbf{p} \rangle_T = - \langle \{ T_{\mu\mu} \}_R (\mathbf{x}) \rangle_T,$$

and the traceless part (the entropy density),

$$\langle \varepsilon + p \rangle_T = - \langle \{T_{00}\}_R(x) \rangle_T + \frac{1}{3} \sum_{i=1,2,3} \langle \{T_{ii}\}_R(x) \rangle_T.$$

- Thermodynamical quantities are obtained by the expectation value of EMT just at that temperature *T* (no integration wrt the temperature).
- We do not need to compute renormalization factors Z_i.

- Asakawa–Hatsuda–Itou–Kitazawa–H.S. (FlowQCD Collaboration).
- One point functions...
- Thermal average of diagonal elements of EMT: the trace part (the trace anomaly),

$$\langle \varepsilon - \mathbf{3} \mathbf{p} \rangle_T = - \langle \{ T_{\mu\mu} \}_R (\mathbf{x}) \rangle_T,$$

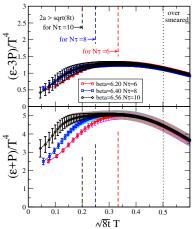
and the traceless part (the entropy density),

$$\langle \varepsilon + p \rangle_T = - \langle \{T_{00}\}_R(x) \rangle_T + \frac{1}{3} \sum_{i=1,2,3} \langle \{T_{ii}\}_R(x) \rangle_T.$$

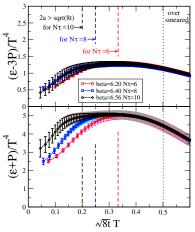
- Thermodynamical quantities are obtained by the expectation value of EMT just at that temperature T (no integration wrt the temperature).
- We do not need to compute renormalization factors Z_i.
- Experiment setting:
 - Wilson plaquette action.
 - $N_{S}^{3} \times N_{\tau} = 32^{3} \times (6, 8, 10, 32), \beta = 5.89-6.56, \sim 300$ configurations.

 - Wilson flow: 2th order Runge–Kutta with ε/a² = 0.025.
 Scale setting: β ↔ aΛ_{MS} from ALPHA Collaboration, aT_C at β = 6.20 from Boyd et al.
 - 4-loop running coupling in the MS scheme.
 - Clover field strength G^a_{µµ}(x).

• Thermal expectation values versus the flow time $\sqrt{8t}$ at $T = 1.65T_c$:



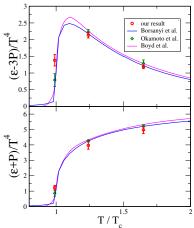
• Thermal expectation values versus the flow time $\sqrt{8t}$ at $T = 1.65T_c$:



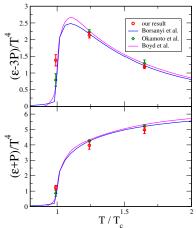
We observe stable behavior for 2a < √8t < 1/(2T) which indicates (!!!) the t → 0 limit.

鈴木 博 Hiroshi Suzuki (九州大学)

• Continuum limit (from values at $\sqrt{8t}T = 0.40$):



• Continuum limit (from values at $\sqrt{8t}T = 0.40$):



 That our simple method produces results being consistent with past comprehensive studies indicates that our reasoning is correct.

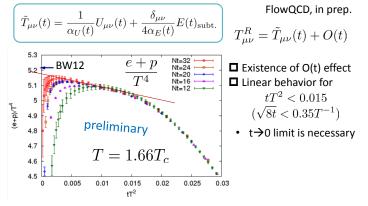
鈴木 博 Hiroshi Suzuki (九州大学)

Energy-momentum tensor from...

Recent status in quenched QCD

 Asakawa–Hatsuda–Iritani–Itou–Kitazawa–H.S. (FlowQCD Collaboration); Kitazawa's slide at Lattice 2015

New Results: Thermodynamics (e+p)



BW12:Budapest-Wuppertal, 2012

• We developed a formula that relates a correctly-normalized conserved EMT and composite operators defined through the gradient flow:

$$\{T_{\mu\nu}\}_{R}(x) = \lim_{t \to 0} \left\{ c_{1}(t)G^{a}_{\mu\rho}(t,x)G^{a}_{\nu\rho}(t,x) + \left[c_{2}(t) - \frac{1}{4}c_{1}(t)\right]\delta_{\mu\nu}G^{a}_{\rho\sigma}(t,x)G^{a}_{\mu\nu}\right\}$$

+ $c_{3}(t)\mathring{\chi}(t,x)\left(\gamma_{\mu}\overleftarrow{D}_{\nu} + \gamma_{\nu}\overleftarrow{D}_{\mu}\right)\mathring{\chi}(t,x)$
+ $\left[c_{4}(t) - 2c_{3}(t)\right]\delta_{\mu\nu}\mathring{\chi}(t,x)\overleftarrow{D}\mathring{\chi}(t,x) + c'_{5}(t)\mathring{\chi}(t,x)\mathring{\chi}(t,x) - \mathsf{VEV} \right\}$

• We developed a formula that relates a correctly-normalized conserved EMT and composite operators defined through the gradient flow:

$$\begin{split} \{T_{\mu\nu}\}_{R}(x) &= \lim_{t \to 0} \left\{ c_{1}(t)G_{\mu\rho}^{a}(t,x)G_{\nu\rho}^{a}(t,x) + \left[c_{2}(t) - \frac{1}{4}c_{1}(t)\right]\delta_{\mu\nu}G_{\rho\sigma}^{a}(t,x)G_{\rho\sigma}^{a}(t,x)G_{\rho\sigma}^{a}(t,x)\right.\\ &+ c_{3}(t)\mathring{\chi}(t,x)\left(\gamma_{\mu}\overleftarrow{D}_{\nu} + \gamma_{\nu}\overleftarrow{D}_{\mu}\right)\mathring{\chi}(t,x) \\ &+ \left[c_{4}(t) - 2c_{3}(t)\right]\delta_{\mu\nu}\mathring{\chi}(t,x)\overleftarrow{D}\mathring{\chi}(t,x) + c_{5}'(t)\mathring{\chi}(t,x)\mathring{\chi}(t,x) - \mathsf{VEV} \bigg\} \end{split}$$

Correlation functions of RHS can be computed by lattice Monte Carlo simulation

• We developed a formula that relates a correctly-normalized conserved EMT and composite operators defined through the gradient flow:

$$\begin{split} \{T_{\mu\nu}\}_{R}(x) &= \lim_{t \to 0} \left\{ c_{1}(t)G^{a}_{\mu\rho}(t,x)G^{a}_{\nu\rho}(t,x) + \left[c_{2}(t) - \frac{1}{4}c_{1}(t)\right]\delta_{\mu\nu}G^{a}_{\rho\sigma}(t,x)G^{a}_{\mu\nu}(t,x)\right. \\ &+ c_{3}(t)\mathring{\chi}(t,x)\left(\gamma_{\mu}\overleftarrow{D}_{\nu} + \gamma_{\nu}\overleftarrow{D}_{\mu}\right)\mathring{\chi}(t,x) \\ &+ \left[c_{4}(t) - 2c_{3}(t)\right]\delta_{\mu\nu}\mathring{\chi}(t,x)\overleftarrow{D}\mathring{\chi}(t,x) + c_{5}'(t)\mathring{\chi}(t,x)\mathring{\chi}(t,x) - \mathsf{VEV} \bigg\} \end{split}$$

- Correlation functions of RHS can be computed by lattice Monte Carlo simulation
- Possible obstacle would be

$$a \ll \sqrt{8t}$$

• We developed a formula that relates a correctly-normalized conserved EMT and composite operators defined through the gradient flow:

$$\begin{split} \{T_{\mu\nu}\}_{R}(x) &= \lim_{t \to 0} \left\{ c_{1}(t)G^{a}_{\mu\rho}(t,x)G^{a}_{\nu\rho}(t,x) + \left[c_{2}(t) - \frac{1}{4}c_{1}(t)\right]\delta_{\mu\nu}G^{a}_{\rho\sigma}(t,x)G^{a}_{\mu\nu}(t,x)\right. \\ &+ c_{3}(t)\mathring{\chi}(t,x)\left(\gamma_{\mu}\overleftarrow{D}_{\nu} + \gamma_{\nu}\overleftarrow{D}_{\mu}\right)\mathring{\chi}(t,x) \\ &+ \left[c_{4}(t) - 2c_{3}(t)\right]\delta_{\mu\nu}\mathring{\chi}(t,x)\overleftarrow{D}\mathring{\chi}(t,x) + c_{5}'(t)\mathring{\chi}(t,x)\mathring{\chi}(t,x) - \mathsf{VEV} \bigg\} \end{split}$$

- Correlation functions of RHS can be computed by lattice Monte Carlo simulation
- Possible obstacle would be

$$a \ll \sqrt{8t}$$

 One-point functions at the finite temperature show encouraging results; the method appears promising even practically! • Systematic method to find the $t \rightarrow 0$ limit

- Systematic method to find the $t \rightarrow 0$ limit
- Better algorithm for the fermion flow

- Systematic method to find the $t \rightarrow 0$ limit
- Better algorithm for the fermion flow
- Further physical applications: EoS of QCD, viscosities in gauge theory, momentum/spin structure of baryons, critical exponents in low-energy conformal field theory, dilaton physics, ...

- Systematic method to find the $t \rightarrow 0$ limit
- Better algorithm for the fermion flow
- Further physical applications: EoS of QCD, viscosities in gauge theory, momentum/spin structure of baryons, critical exponents in low-energy conformal field theory, dilaton physics, ...
- Further theoretical applications of the gradient flow...