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Lattice gauge theory and the energy—momentum

tensor (EMT)

@ Lattice gauge theory: the most successful non-perturbative formulation of
gauge theory. By discretizing the spacetime. ..
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Lattice gauge theory and the energy—momentum

tensor (EMT)

@ Lattice gauge theory: the most successful non-perturbative formulation of
gauge theory. By discretizing the spacetime. ..

@ internal gauge symmetry is preserved exactly. ..

@ but incompatible with spacetime symmetries (translation, Poincaré,
SUSY, conformal, ...) for a # 0.

@ For a # 0, one cannot define the Noether current associated with the
translational invariance, EMT {T,, }r(x).

@ Even for the continuum limit a — 0, this is difficult, because EMT is a
composite operator which generally contains UV divergences:

1
axfa3>01.
a
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EMT in lattice gauge theory?

@ Is it possible to construct EMT on the lattice, which becomes the correct
EMT automatically in the continuum limit 2 — 0?
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EMT in lattice gauge theory?

@ Is it possible to construct EMT on the lattice, which becomes the correct
EMT automatically in the continuum limit 2 — 0?

@ The correct EMT is characterized by the Ward—Takahashi relation

<Oext/ dDX ap, {T;w},q (X) Oint> = - <Oext 8innt> .
D

D
Oext
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EMT in lattice gauge theory?

@ Is it possible to construct EMT on the lattice, which becomes the correct
EMT automatically in the continuum limit 2 — 0?

@ The correct EMT is characterized by the Ward—Takahashi relation

<Oext/ dDX ap, {T;w},q (X) Oint> = - <Oext 8innt> .
D

D
Oext

@ This contains the correct normalization and the conservation law.
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EMT in lattice gauge theory?

@ If such a construction is possible, we expect wide application to physics
related to spacetime symmetries: QCD thermodynamics, transport
coefficients in gauge theory, momentum/spin structure of baryons,
conformal field theory, dilaton physics, ...
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EMT in lattice gauge theory?

@ If such a construction is possible, we expect wide application to physics
related to spacetime symmetries: QCD thermodynamics, transport
coefficients in gauge theory, momentum/spin structure of baryons,
conformal field theory, dilaton physics, ...

@ The present work is also an attempt to understand EMT in quantum field
theory in the non-perturbative level.

2018/04/12 @ IPMU 4/34
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EMT on the lattice (Caracciolo et al. (1989-))

@ Under the hypercubic symmetry, the operator reproducing the correct
EMT of QCD for a — 0 is given by

{Tuv},q Z ZO/MV X)‘Iattlce VEV,
i=1

where

01 [,U/ Z OZW/ = 6;;1/

O3ut/(X) = dJ(X) (711 D,+ ’Yvﬁl‘) Y(x), O4HV(X) = 5"‘”1[)()() D”L/J(X),
OSHV(X) = 5Wm01/_)(x)¢(x)a

and, Lorentz non-covariant ones:

OS[LV = (5;“/ X O7,uu(x) = 5#1/1/;()()7#(3#1/)()()
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EMT on the lattice (Caracciolo et al. (1989-))

@ Under the hypercubic symmetry, the operator reproducing the correct
EMT of QCD for a — 0 is given by

{Tuv},q Z ZO/MV X)‘Iattlce VEV,
i=1

where

01 HV Z OZW/ = 5;;1/

O3ut/(X) = dJ(X) (711 D,+ ’Yvﬁl‘) Y(x), O4HV(X) = 5"‘”1[)()() D”L/J(X),
OSHI/(X) = 5Ml,m01/_)(X)¢(X),

and, Lorentz non-covariant ones:

OSHV = (5;“/ X O7,uu(x) = 5#1/7/;()()7#(3#1/)()()

@ Seven non-universal coefficients Z; must be determined by lattice
perturbation theory or by a non-perturbative method
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Yang—Mills gradient flow (Lischer, (2009-))

@ Yang—Mills gradient flow is an evolution of the gauge field A, (x) along a
fictitious time t € [0, o), according to

dSym
— @ 2™ __paG, = AB
atBH(tvx) gO 6Bﬂ(t7X) G H(t7X) H(tax) + )

where
G (t, x) = 0,B,(t, X)=0, Bu(t, X)+[Bu(t, x), B,(t, x)], Dy = 0u+[By,]
and its initial value is the conventional gauge field

B.(t=0,x) = A.(x).
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Yang—Mills gradient flow (Lischer, (2009-))

@ Yang—Mills gradient flow is an evolution of the gauge field A, (x) along a
fictitious time t € [0, o), according to

dSym

atBu(tvx) = _gg(SB (t X)
u\Ls

= DuGyu(t,X) = ABH(t’X) _|_ ceey

where
G (t, X) = 0B, (t, X)=0, Bu(t, X)+[Byu(t, x), B,(t, X)],  Dp = 9u+[By, ]
and its initial value is the conventional gauge field

B.(t=0,x) = A.(x).

@ RHS is the Yang—Mills equation of motion, the gradient in function space
if Sym is regarded as a potential height. So the name of the gradient flow.
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Yang—Mills gradient flow (Lischer, (2009-))

@ This is a sort of diffusion equation in which the diffusion length is

X ~ V8t.
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Yang—Mills gradient flow (Lischer, (2009-))

@ This is a sort of diffusion equation in which the diffusion length is

X ~ V8t.

@ The flow makes the field configuration smooth; it generates the
smearing/cooling for a lattice gauge field.
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Yang—Mills gradient flow (Lischer, (2009-))

@ This is a sort of diffusion equation in which the diffusion length is

X ~ V8t.

@ The flow makes the field configuration smooth; it generates the
smearing/cooling for a lattice gauge field.

@ But, why this can be relevant to lattice EMT?7??
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Yang—Mills gradient flow (Lischer, (2009-))

@ This is a sort of diffusion equation in which the diffusion length is

X ~ V8t.

@ The flow makes the field configuration smooth; it generates the
smearing/cooling for a lattice gauge field.

@ But, why this can be relevant to lattice EMT?7??
@ The key is the UV finiteness of the gradient flow
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Perturbative expansion of the gradient flow

@ Yang—Mills gradient flow
0B,.(t,x) = D,G,.(t,x) + «D,0,B,(t, x), B.(t=0,x) = A.(x),

where the term with «q is introduced to suppress the gauge modes.
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Perturbative expansion of the gradient flow

@ Yang—Mills gradient flow
0B,.(t,x) = D,G,.(t,x) + «D,0,B,(t, x), B.(t=0,x) = A.(x),

where the term with «q is introduced to suppress the gauge modes.
@ This equation can be formally solved as

Bu(t,x):/dDy

t
Kt(x - y)uVAy(}/) +/0 dS Kt—s(x - y);u/Ru(sa }’)] )

by using the heat kernel,

eipx . ot
KX = | <5 [(%pz—pupu)e Y +pu.poe 0“’}-
p
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Perturbative expansion of the gradient flow

@ Yang—Mills gradient flow
0B,.(t,x) = D,G,.(t,x) + «D,0,B,(t, x), B.(t=0,x) = A.(x),

where the term with «q is introduced to suppress the gauge modes.
@ This equation can be formally solved as

Bu(t,x):/dDy

t
Kt(x - }’)WAD(Y) +/0 dS Kt—s(X - }’)WRV(S, }’)] )

by using the heat kernel,

eipx . ot
KX = | <5 [(%pz—pupu)e Y +pu.poe (ﬂ-
p

@ R is the non-linear terms

R.=2[B,,0,B,] —[B.,,0,B,] + (a0 — 1)[B,,0,B,] + [B.,[B.. B.]].
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Perturbative expansion of the gradient flow

@ The solution

B,(t,x) = /dDy

Ki(x = ¥)wAu(y) + /0 dsKi s(x —y)whR.(s, y)] ;

is represented pictorially as (double lines: K, crosses: A, white circles:
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Backup: Justification of the “gauge fixing term”

@ Under the infinitesimal gauge transformation
B,.(t,x) = B,(t,x)+ D,w(t, x),
the flow equation
0B.(t,x) = D,G,,.(t, x) + aD,0,B,(t, x),
changes to

0B,.(t,x) = D,G,.(t, x) + aD,0,B,(t,x) — D,(0; — a0 D, 0, )w(t, X).
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Backup: Justification of the “gauge fixing term”

@ Under the infinitesimal gauge transformation
B,.(t,x) = B,(t,x)+ D,w(t, x),
the flow equation
0B.(t,x) = D,G,,.(t, x) + aD,0,B,(t, x),
changes to
0B,(t,x) = D, G,,(t, X) + a9D,0,B,(t,x) — D, (9; — oD, 0, )w(t, X).
@ Choosing w(t, x) as
(0t — 2D, 0, )w(t, x) = —0apd, B, (t, X), w(t=10,x)=0,
ap can be changed accordingly

ag — ag + dag.
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Backup: Justification of the “gauge fixing term”

@ Under the infinitesimal gauge transformation
B,.(t,x) = B,(t,x)+ D,w(t, x),
the flow equation
0B.(t,x) = D,G,,.(t, x) + aD,0,B,(t, x),
changes to
0B,.(t,x) = D,G,.(t, x) + aD,0,B,(t,x) — D,(0; — a0 D, 0, )w(t, X).
@ Choosing w(t, x) as
(0t — 2D, 0, )w(t, x) = —0apd, B, (t, X), w(t=10,x)=0,
ag can be changed accordingly
ag — ag + dag.

@ Thus, a gauge invariant quantity (in usual 4D sense) is independent
of g, as far as it does not contain the flow time derivative 9;.
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Quantum correlation functions

@ Quantum correlation function of the flowed gauge field is obtained by the
functional integral over the initial value A, (x):

(B (t1,%1) -+ - By, (tn, Xn))
1 —
- E /’DAH Bf’“ (t1 ’ X1) e BHn(tfh XI’I) e*SYM*ngfscc.
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Quantum correlation functions

@ Quantum correlation function of the flowed gauge field is obtained by the
functional integral over the initial value A, (x):

(B (t1,%1) -+ - By, (tn, Xn))
1 —
- E /’DA’U' Bf’“ (t1 ’ X1) e BHn(tfh XI’I) e*SYM*ngfscc.

@ For example, the contraction of two A,’s

M
AYAYAYA . S YAVAVAY] EEAVAVAVAVAVAVAVAV)
produces the free propagator of the flowed field

(Bi(t,X)BL(s.¥)),

elp(x=y)

Jabgo W {((ﬂwp —pupv)e (tro)® pupl, —ag(t+s)p?
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Quantum correlation functions

@ Similarly, for (black circle: Yang—Mills vertex)

e o

we have the loop flow-line Feynman diagram

o
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Quantum correlation functions

@ Similarly, for (black circle: Yang—Mills vertex)

e o

we have the loop flow-line Feynman diagram

o

@ Recall that the flowed gauge field is represented as
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Renormalizability of the gradient flow |

(Luscher—Weisz (2011))

@ Correlation function of the flowed gauge field
<Bu1(t1ax1)"’B,un(tnaxn)), t>0,...,t, >0,

when expressed in terms of renormalized parameters, is UV finite without
the wave function renormalization.
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Renormalizability of the gradient flow |

(Luscher—Weisz (2011))

@ Correlation function of the flowed gauge field
<Bﬂ1(t1ax1)"’B,un(tnaxn)), t>0,...,t, >0,

when expressed in terms of renormalized parameters, is UV finite without
the wave function renormalization.
@ Two-point function in the tree level (in the Feynman gauge \g = ag = 1)

a b __ sab2 ip(x—y) e—(t+s)p2
(Bi(t,x)B2(s,y)), = 6% 950 | € —F
p
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Renormalizability of the gradient flow |

(Luscher—Weisz (2011))

@ Correlation function of the flowed gauge field
<B#1(t1ax1)"’B,un(tnaxn)), t>0,...,t, >0,

when expressed in terms of renormalized parameters, is UV finite without
the wave function renormalization.
@ Two-point function in the tree level (in the Feynman gauge \g = ag = 1)

2
a b __ sab 2 ip(x—y) e—(t+s)p
<Bﬂ(t,x)B,,(s7y)>0—5 960, | €
p

@ One-loop corrections (consisting only from Yang—Mills vertices)

T el

where the last counter term arises from the parameter renormalization
G%=1GPZ,  l=2Zy.
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Renormalizability of the gradient flow |

@ Usually, further wave function renormalization (A2 = Z‘/ZZQ/Z(AR);"‘L) is
required for the two-point function to become UV finite.
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Renormalizability of the gradient flow |

@ Usually, further wave function renormalization (A2 = Z‘/ZZQ/Z(AR);"‘L) is
required for the two-point function to become UV finite.
@ In the present flowed system, we also have the white circles (flow vertex)

o o

It turns out that these provide the same effect as the wave function
renormalization!
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Renormalizability of the gradient flow |

@ Usually, further wave function renormalization (A2 = Z‘/ZZQ/Z(AR);"‘L) is
required for the two-point function to become UV finite.
@ In the present flowed system, we also have the white circles (flow vertex)

o o

It turns out that these provide the same effect as the wave function
renormalization!
@ All order proof of this fact, using a local D + 1-dimensional field theory

R

e
ety
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Renormalizability of the gradient flow |

@ Usually, further wave function renormalization (A2 = Z‘/ZZQ/Z(AR);"‘L) is
required for the two-point function to become UV finite.
@ In the present flowed system, we also have the white circles (flow vertex)

o o

It turns out that these provide the same effect as the wave function
renormalization!
@ All order proof of this fact, using a local D + 1-dimensional field theory

R

e
ety

@ No bulk (t > 0) counterterm: because of the gaussian damping
factor ~ e~*" in the propagator.
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Renormalizability of the gradient flow |

@ Usually, further wave function renormalization (A2 = Z‘/ZZQ/Z(AR);"‘L) is
required for the two-point function to become UV finite.
@ In the present flowed system, we also have the white circles (flow vertex)

o o

It turns out that these provide the same effect as the wave function
renormalization!
@ All order proof of this fact, using a local D + 1-dimensional field theory

R

e
ety

@ No bulk (t > 0) counterterm: because of the gaussian damping
factor ~ e~*" in the propagator.

@ No boundary (t = 0) counterterm besides Yang—Mills ones: because of a
BRS symmetry.
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Renormalizability of the gradient flow Il

@ Correlation function of the flow gauge field
<B:U*1 (t1 » X4 )Bﬂz(tZ? X2) T Bﬂn(tn, Xn)> ) b > 07 N 0,
remains finite even for the equal-point product

th — b, X1 — Xo.

HoA X
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Renormalizability of the gradient flow Il

@ Correlation function of the flow gauge field
<B:U*1 (t1 » X4 )Bﬂz(tZ? X2) T Bﬂn(tnv Xn)> ) b > 07 N 0,
remains finite even for the equal-point product

th — b, X1 — Xo.

HoA X

@ The new loop always contains the gaussian damping factor ~ e~ which
makes integral finite; no new UV divergences arise.
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Renormalizability of the gradient flow Il

@ Any composite operators of the flowed gauge field B,,(t, x) are
automatically renormalized UV finite quantities, although the flowed field
is a certain combination of the bare gauge field.
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Renormalizability of the gradient flow Il

@ Any composite operators of the flowed gauge field B,,(t, x) are
automatically renormalized UV finite quantities, although the flowed field
is a certain combination of the bare gauge field.

@ Such UV finite quantities must be independent of the regularization.
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Renormalizability of the gradient flow Il

@ Any composite operators of the flowed gauge field B,,(t, x) are
automatically renormalized UV finite quantities, although the flowed field
is a certain combination of the bare gauge field.

@ Such UV finite quantities must be independent of the regularization.
@ = Construction of the energy—momentum tensor in lattice gauge theory.
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Our strategy for lattice EMT (arXiv:1304.0533)

@ We bridge lattice regularization and dimensional regularization which
preserves the translational invariance, by using a flowed composite
operator as an intermediate tool.
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Our strategy for lattice EMT (arXiv:1304.0533)

@ We bridge lattice regularization and dimensional regularization which
preserves the translational invariance, by using a flowed composite
operator as an intermediate tool.

@ Schematically,

regularization independent

flowed composite operator

dimensionil/ \Iattice

correct EMT low energy correlation functions
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EMT in the dimensional regularization

@ The action

s _2195 [ dx (R (0F 0]+ [ dPx 00D + mo)u(x).

#7K 1§ Hiroshi Suzuki (JuMHAZ) Energy-momentum tensor from. .. 2018/04/12 @ IPMU 18/34



EMT in the dimensional regularization

@ The action
S_ _;gg/dox tr [Fow () Fru (X)] +/de1Z(x)(lD+ mo)Y(x).

@ Under the localized translation (plus the gauge transformation),
3AL(X) = & (X)Fuu(x),
50(X) = £0), D(x), 59(x) = £()ub(x) D,
we have
55 =~ [ @°X€,000, [Tuul) + Aul)].
where
Au(¥) = 35() (1B~ D) ()

is the generator of the local Lorenz transformation and is neglected here,
and...
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EMT in dimensional regularization

@ ... and T,,(x) is the symmetric EMT:

T (%)
= 2 {00 = G020} + 50300 ~ 504() ~ O, (),
where
O1,(x Z Oz (X —5;1,1/

O06) = 50 (w Dot DM) $A). Oul) = 000 B,
05;11/()() = 5/,Lvm01Z)(X)¢(X)‘
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EMT in dimensional regularization

@ ... and T,,(x) is the symmetric EMT:
T (X)

= 2 {00 = G020} + 50300 ~ 504() ~ O, (),

where

01 l“’ Z 02;“/ = 5;1,1/

O06) = 50 (w Dot DM) $0). Onalr) = 5,00 B0,
O5;AU(X) = 5/,Lvm01Z)(X)¢(X)‘

@ We define the renormalized EMT by subtracting its (possibly divergent)
vacuum expectation value:

{T,uu}F; (x) = T;W(X) - <T;W(X)>'
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EMT in dimensional regularization

@ ... and T,,(x) is the symmetric EMT:
T (X)

= 2 {00 = G020} + 50300 ~ 504() ~ O, (),

where

01 l“’ Z 02;“/ = 5;1,1/

Out6) = 0 (w Dot DM) $0). Onalr) = 5,00 B0,
O5;LU(X) = 5/,Lvm01Z)(X)¢(X)‘

@ We define the renormalized EMT by subtracting its (possibly divergent)
vacuum expectation value:

{T,uu}F; (x) = T;W(X) - <T;W(X)>'

@ Under the dimensional regularization, this is the correct EMT.
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Small flow-time expansion

@ We thus want to find a composite operator of the flowed fields which
reduces to the EMT under the dimensional regularization.
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Small flow-time expansion

@ We thus want to find a composite operator of the flowed fields which
reduces to the EMT under the dimensional regularization.

@ But how?
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Small flow-time expansion

@ We thus want to find a composite operator of the flowed fields which
reduces to the EMT under the dimensional regularization.

@ But how?

@ In general, the relation between composite operators in t > 0 (heaven)
and in 4D (the earth) is not obvious at all.. .

#8718 Hiroshi Suzuki (FuXZ)
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Small flow-time expansion

@ We thus want to find a composite operator of the flowed fields which
reduces to the EMT under the dimensional regularization.

@ But how?
@ In general, the relation between composite operators in t > 0 (heaven)
and in 4D (the earth) is not obvious at all.. .

@ The relation becomes tractable, in the limit in which the flow time
becomes small t — 0.
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Small flow-time expansion

@ We thus want to find a composite operator of the flowed fields which
reduces to the EMT under the dimensional regularization.

@ But how?

@ In general, the relation between composite operators in t > 0 (heaven)
and in 4D (the earth) is not obvious at all.. .

@ The relation becomes tractable, in the limit in which the flow time
becomes small t — 0.

@ Small flow-time expansion (Lischer—-Weisz (2011)):

@juy(t,X)

AN

Cxvep

Oi(t,x) = (Oipun (£, X)) L+ Y _ (1) [0, (x) — VEV] + O(8).
J
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Small flow-time expansion

@ Small flow-time expansion:

@iuy(t, X)

AN

(Cxvep

@i,uu(t, X) = <(§iuv(ta X)> 1+ Zglj(t) [Oj/w(x) - VEV] + O(t)
i
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Small flow-time expansion

@ Small flow-time expansion:

@iuy(t, X)

AN

(Cxvep

Oiu (1, %) = (i (t, X)) 1+Zg,, ) [0}, (x) — VEV] + O(¢).

@ Inverting this relation,

OW(X)_VEV—;I%{Z O/W(t X) — <@jm/(t7x)> ]1]} :

J
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Small flow-time expansion

@ Small flow-time expansion:

@iuy(t, X)

AN

(Cxvep

@i,uu(t, X) = <(§iuv(ta X)> 1+ Zglj(t) [Oj/w(x) - VEV] + O(t)
i

@ Inverting this relation,

J

Oipw(X) — VEV = tlfg) {Z (471),',' (1) [@/W(tv x) — <@fﬂy(t7 x)) 1] } :

@ So, if we know the t — 0 behavior of the coefficients ¢;(t), the 4D
operator in the LHS can be extracted as the t — 0 limit.
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A renormalization group argument

@ We are interested in the t — 0 behavior of the coefficients (;(t) in

@ipu(ta X) - <(§i;u/(t7 X)> 1+ ZCU(t) [OINV(X) - <O],U«V(X)> ]]'] + O(t)
J
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A renormalization group argument

@ We are interested in the t — 0 behavior of the coefficients (;(t) in

@ipu(ta X) - <@i;u/(t7 X)> 1+ ZCU(t) [OINV(X) - <O],U«V(X)> ]]'] + O(t)
J

@ If all the composite operators in this relation are made out from bare

quantities,
0
— ] ¢i(t) =0,
<’u8ﬂ>o Gi(t)

and (;(t) are indep. of the renormalization scale 1., when expressed in
terms of running parameters. We may take, for example, ;. = 1//8t, and

Gi(t) g, m: il = G(t) [§(1/v/BE). im(1/v80); 1/V8H]
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A renormalization group argument

@ We are interested in the t — 0 behavior of the coefficients (;(t) in

@iuu(ta X) - <@i;u/(t7 X)> 1+ ZCU(t) [OIHV(X) - <O],U«V(X)> ]]'] + O(t)
J

@ If all the composite operators in this relation are made out from bare

quantities,
0
— ] ¢i(t) =0,
<M8M>O Gi(t)

and (;(t) are indep. of the renormalization scale 1., when expressed in
terms of running parameters. We may take, for example, ;. = 1//8t, and

Gi(t) g, m: il = G(t) [§(1/v/BE). im(1/v80); 1/V8H]

@ Fort — 0, g(1/V/8t) — 0 because of the asymptotic freedom; use of
perturbation theory is thus justified!
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Flow of fermion fields

@ A possible choice (Liuscher (2013))

Iex(t, x) = [A — a00, B, (t, X)) x(t, X)

<_ -
Ot x) = X(t.%) [ B +a0duBu(t.x)] . Xt =0.x) = h(x),
where
A:D;,LD/,H DM:aMJ’_BN’
A=p,D,, D.=%9,-8,
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Flow of fermion fields

@ A possible choice (Liuscher (2013))
aI‘X(ta X) = [A - aoaﬂBﬂ(t7 X)] X(ta X)

<_ -
Ot x) = X(t.%) [ B +a0duBu(t.x)] . Xt =0.x) = h(x),
where
A:D;,LD/,H DM:aMJ’_BN’
A=p,D,, D.=%9,-8,

@ It turns out that the flowed fermion field requires the wave function
renormalization:

Xﬁ(tvx) :Z;/ZX(LX), )_(R(t,X) :Z)l/z)_((t,)(),

_ g 1 4
Z, =1+ (@) Cg(Fi’)S6 + O(g%).

2018/04/12 @ IPMU 23/34
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Flow of fermion fields

@ A possible choice (Liuscher (2013))
aI‘X(ta X) = [A - aoaﬂBﬂ(t7 X)] X(ta X)

<_ -
Ot x) = X(t.%) [ B +a0duBu(t.x)] . Xt =0.x) = h(x),
where
A:D;,LD/,H DM:aMJ’_BN’
A=p,D,, D.=%9,-8,

@ It turns out that the flowed fermion field requires the wave function
renormalization:

Xﬁ(tvx) :Z;/ZX(LX), )_(R(t,X) :Z)l/z)_((t,)(),

_ g 1 4
Z, =1+ (@) Cg(Fi’)S6 + O(g%).

@ Still, any composite operators of xg(t, x) are UV finite.

2018/04/12 @ IPMU 23/34
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Ringed fermion fields

@ Recall that the flowed fermion field requires the wave function
renormalization:

XR(t,X):Z;(/ZX(t,X), )_(H(LX):Z;(/Z)_((I',X),

although composite operators of xg(t, x) are UV finite.
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Ringed fermion fields

@ Recall that the flowed fermion field requires the wave function
renormalization:

XR(t,X):Z;(/ZX(t,X), )_(H(LX):Z;(/Z)_((I',X),

although composite operators of xg(t, x) are UV finite.
@ To avoid the complication associated with this, we introduce

x(t, x)
¢ 2 (x(t.0 D x(t.x))

X(tx)=C = xa(t,x) + 0(g),

where
—2dim(R)

C= @2

and similarly for x(t, x).
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Ringed fermion fields

@ Recall that the flowed fermion field requires the wave function
renormalization:

XR(t,X):Z;(/ZX(t,X), )_(H(LX):Z;(/Z)_((I',X),

although composite operators of xg(t, x) are UV finite.
@ To avoid the complication associated with this, we introduce

x(t, x)
¢ 2 (x(t.0 D x(t.x))

X(tx)=C = xa(t,x) + 0(g),

where
—2dim(R)

C= @

and similarly for x(t, x).
@ Since Z, is cancelled out in x(t, x), any composite operators of x(t, x)
and x(t, x) are UV finite.
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EMT from the gradient flow

@ We take following composite operators of flowed fields:
O1,u(t, x) = Gi,(t,x)GE (1, x),
Oz, (1, x) = 6 Gay (1, X) G5, (1, X),
. . = .
OSMU(t7 X) = >_C(t7 X) (V}L D v + 7V<BM> X(t7 X)7
~ o —
O4uu(t7 X) = 6/1V>2(ta X) D)c((ta X)a
@S,uu(ty X) = 5,ul/m>£<(ta X))z(tv X)a
and then set the small flow-time expansion:
O (t. %) = (Oin (£ X)) T+ D (1) [0 (%) = (Ojn (%)) 1] + O().
J
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EMT from the gradient flow

@ We take following composite operators of flowed fields:
O1,u(t, x) = Gi,(t,x)GE (1, x),
Oz, (1, x) = 6 Gay (1, X) G5, (1, X),
. . = .
OSMU(t7 X) = >_C(t7 X) (V}L D v + 7V<BM> X(t7 X)7
~ o —
O4uu(t7 X) = 6/1V>2(ta X) D)c((ta X)a
@S,uu(ty X) = 5,ul/m>£<(ta X))z(tv X)a
and then set the small flow-time expansion:
O (t. %) = (Oin (£ X)) T+ D (1) [0 (%) = (Ojn (%)) 1] + O().
J

@ We compute (j(t) to the one-loop order and substitute

i (%)= (Oj (%)) 1 = lim {Z (€7 (O[O (t. ) = (O (t. %)) 1] } :

i
in the expression of the EMT in the dimensional regularization
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Computation of expansion coefficients ¢j(t)

@ To the one-loop order, we have to evaluate following flow-line Feynman
diagrams:
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Computation of expansion coefficients ¢j(t)

@ To the one-loop order, we have to evaluate following flow-line Feynman
diagrams:

@ Even to write down correct set of diagrams is tedious. ..

26/34
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Computation of expansion coefficients ¢j(t)

@ To the one-loop order, we have to evaluate following flow-line Feynman
diagrams:

@ Even to write down correct set of diagrams is tedious. ..
@ ... and it is very easy to make mistakes in the loop calculation, as |
actually did!
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Universal formula for EMT

@ For the system containing fermions (with Makino, arXiv:1403.4772),
{Tw}p(x)
. 1
= !m{q(t)ijp(t, x)G3,(t, x) + |:C2(t) - 4c1(t)] O, Goo (1, X)Gay (1, X)
. — .
+0s(0%(6,X) (3 D+ D ) 1(8X)

+ [ca(t) — 2¢5(1)] 0, X(1, X)%> (t, x) + c5()x(t, x)x%(t, x) — VEV},

where (for the MS scheme; for MS scheme, set Inm — v — 2In2)

1 1 7 3
- byl — —— |=Cs(G) — —T(RIN| ,
& 9(1/V/81)2 ol (47)2 [3 2(9 2 ) f]

0= Mo Mram
[ (477)2[* 2()+§()f],

(1)—1 14 s t>20 R [3+| 432]
c = - — +1n s
3 2 2(R) 2 (432)

1
cq(t) = gdgém/m)z

(/f)

ch(t) = —m(1/V/8l) {1 Co(R) [SIn‘rr + ’ + In(432)]}

#7K 1§ Hiroshi Suzuki (JuMHAZ) Energy-momentum tensor from. .. 2018/04/12 @ IPMU 27/34



Universal formula for EMT

@ and

1

"°:<4w>2{

1
3

1

CA(G) - TN, b= s

6C2(R).
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Universal formula for EMT

@ and

1 11 4 1

W [302(6) - 3T(R)Nf} ) do = W6C2(R)-

@ Correlation functions of the RHS of the formula can be computed
non-perturbatively by using lattice regularization.

bo =
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Universal formula for EMT

@ and

1 11 4 1

W [302(6) - 3T(R)Nf} ) do = W6C2(R)-

@ Correlation functions of the RHS of the formula can be computed
non-perturbatively by using lattice regularization.

@ The coefficients c;(t) are universal, i.e., indep. of the lattice transcription.

bo =
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Universal formula for EMT

@ and

1

1
® = (any

3G TR, b= o26C(R)

@ Correlation functions of the RHS of the formula can be computed
non-perturbatively by using lattice regularization.

@ The coefficients c;(t) are universal, i.e., indep. of the lattice transcription.

@ “Universality” holds however only when one removes the regulator.
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Universal formula for EMT

@ and

1

1
* = e

3G TR, b= o26C(R)

@ Correlation functions of the RHS of the formula can be computed
non-perturbatively by using lattice regularization.

@ The coefficients c;(t) are universal, i.e., indep. of the lattice transcription.

@ “Universality” holds however only when one removes the regulator.

@ Thus, we have to first take the continuum limit a — 0 and then take the
small flow time limit ¢t — 0.
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Universal formula for EMT

@ and

1

1
* = e

3G TR, b= o26C(R)

@ Correlation functions of the RHS of the formula can be computed
non-perturbatively by using lattice regularization.

@ The coefficients c;(t) are universal, i.e., indep. of the lattice transcription.
@ “Universality” holds however only when one removes the regulator.

@ Thus, we have to first take the continuum limit a — 0 and then take the
small flow time limit ¢ — 0.

@ Practically, we cannot simply take a — 0 and may take t as small as
possible in the fiducial window,

’
a<<\/Q<<K.

Thus the usefulness with presently-accessible lattice parameters is not
obvious a priori. . .
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Application to thermodynamics of SU(3) pure

Yang—Mills theory (arXiv:1312.7492)

@ Asakawa—Hatsuda—ltou—Kitazawa—H.S. (FlowQCD Collaboration).
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Application to thermodynamics of SU(3) pure

Yang—Mills theory (arXiv:1312.7492)

@ Asakawa—Hatsuda—ltou—Kitazawa—H.S. (FlowQCD Collaboration).
@ One point functions. . .
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Application to thermodynamics of SU(3) pure

Yang—Mills theory (arXiv:1312.7492)

@ Asakawa—Hatsuda—ltou—Kitazawa—H.S. (FlowQCD Collaboration).
@ One point functions. . .
@ Thermal average of diagonal elements of EMT: the trace part (the trace

anomaly),
(e—=3p)r =— <{Tu#},q (X)>7- )
and the traceless part (the entropy density),

P = Tooda O+ 5 3 ATida(0))y.

i=1,2,3
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Application to thermodynamics of SU(3) pure

Yang—Mills theory (arXiv:1312.7492)

@ Asakawa—Hatsuda—ltou—Kitazawa—H.S. (FlowQCD Collaboration).
@ One point functions. . .
@ Thermal average of diagonal elements of EMT: the trace part (the trace

anomaly),
(e=3p)r =— <{Tu#},q (X)>7-a
and the traceless part (the entropy density),

P = Tooda O+ 5 3 ATida(0))y.

i=1,2,3

@ Thermodynamical quantities are obtained by the expectation value of
EMT just at that temperature T (no integration wrt the temperature).
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Application to thermodynamics of SU(3) pure

Yang—Mills theory (arXiv:1312.7492)

@ Asakawa—Hatsuda—ltou—Kitazawa—H.S. (FlowQCD Collaboration).
@ One point functions. . .
@ Thermal average of diagonal elements of EMT: the trace part (the trace

anomaly),
(e=3p)r =— <{TH#}R (X)>7-a
and the traceless part (the entropy density),

1
(et+p)r=-UToo}r(X))r + 3 > UTida(x)r-
i=1,2,3
@ Thermodynamical quantities are obtained by the expectation value of
EMT just at that temperature T (no integration wrt the temperature).
@ We do not need to compute renormalization factors Z,.
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Application to thermodynamics of SU(3) pure

Yang—Mills theory (arXiv:1312.7492)

@ Asakawa—Hatsuda—ltou—Kitazawa—H.S. (FlowQCD Collaboration).
@ One point functions. . .
@ Thermal average of diagonal elements of EMT: the trace part (the trace

anomaly),
(e=3p)r =— <{TH#}R (X)>7-a
and the traceless part (the entropy density),

P = {Tda O+ 5 3 UTida(0)y

i=1,2,3

@ Thermodynamical quantities are obtained by the expectation value of
EMT just at that temperature T (no integration wrt the temperature).

@ We do not need to compute renormalization factors Z,.

° Experlment setting:

Wilson plaquette action.
N X Nr = 323 x x (6,8, 10, 32), B = 5.89-6.56, ~ 300 configurations.

Wilson flow: 2th order Runge—Kutta with e/a2 = 0.025.

Scale setting: 8 <> aAm from ALPHA Collaboration, aT¢ at 3 = 6.20 from Boyd et al.

4-loop running coupling in the MS scheme.

Clover field strength wa (x).
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Application to thermodynamics of SU(3) pure

Yang—Mills theory

@ Thermal expectation values versus the flow time /8t at T = 1.65T:

#8718 Hiroshi Suzuki (FuXZ)

.
I 2a>sqre8n ! :

T
1

| 1

for NT=10—1 : :
1
1

for NT =8—!
for NT =6—>!

6—o beta=6.20 NT=6

—
:over
: smeared)|

Energy-momentum tensor from. ..
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Application to thermodynamics of SU(3) pure

Yang—Mills theory

@ Thermal expectation values versus the flow time /8t at T = 1.65T:

—————— —
L Vol I over |
25k 2a>sqrt®) | I : smeared]
T forNt=10— : ! :
wb 20 for NT =8—! ! —
El 5 B for NT =6—>1 a
- .
w
~

©—9 beta=6.20 N1=6

5—a beta=6.40 NT=8

*— beta=6.56 N1=10
L L

ol 1 [ B S
0 0.1 0.2 0.3 0.4 0.5

N8 T
@ We observe stable behavior for 2a < v/8t < 1/(2T) which indicates (!!!)

the t — 0 limit.
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Application to thermodynamics of SU(3) pure

Yang—Mills theory

@ Continuum limit (from values at v/8tT = 0.40):

3 T T T
25 ©  our result —
< —— Borsanyietal. |
— 2 © Okamotoetal.| —|
S~ — Boydetal.
~—~
2 .
o
w I —
N— |
0.5 -
0 : : :
6f |
s _
ﬁ'H o
£ 4 I
Al
3 _
$ L
~ 2 —
1+ _
L ! . !
0
1 15 2
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Application to thermodynamics of SU(3) pure

Yang—Mills theory

@ Continuum limit (from values at v/8tT = 0.40):

3 T ‘ T
2.5 o our result —
—— Borsanyietal. |
‘fh . o Okamoto etal.|
~ — Boydetal.
—~
2 -
en
w I —
N— |
0.5 —
0 : : :
6f |
s _
"=
£ 4 I
A
3 _
&
~ 2 —
1+ _
! . !
0
1 L5 2
T/T
C

@ That our simple method produces results being consistent with past
comprehensive studies indicates that our reasoning is correct.
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Recent status in quenched QCD

@ Asakawa—Hatsuda—Iritani—ltou—Kitazawa—H.S. (FlowQCD Collaboration);
Kitazawa’s slide at Lattice 2015

New Results: Thermodynamics (e+p)

[ R 1 h FlowQCD, in prep.

Opv
Upw(t) + £ E(t)subt.

ay(t) dap(t) ) Tlff/ — le(t) +O(t)
5.3 T T T T T
52— BW12 etp Eggg E O Existence of O(t) effect
51 At § T4 ol O Linear behavior for
5 t e tT? < 0.015
% a8 Mj . (V8t < 0.35771)
S s ﬁ preliminary , + t>0 limit is necessary
47 s j
e } T =1.66T1, 5
a5 1 . "

0 0005 001 0015 002 0025 003
tT2

BW12:Budapest-Wuppertal, 2012
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Summary and prospects

@ We developed a formula that relates a correctly-normalized conserved
EMT and composite operators defined through the gradient flow:

{(Tulg(x) = !i_r)r(l){q(t)Gjp(t, X)G2,(t, x) + {Cg(t) - lcﬂt)} 8,0 G2, (1, X) G
+05(1(t.%) (3 Do+ D ) (8 X)

+lex(t) - 26a(0] B Kt DR + SO0 - VEV
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Summary and prospects

@ We developed a formula that relates a correctly-normalized conserved
EMT and composite operators defined through the gradient flow:

(T (x) = !i_r)r(l){q(t)Gjp(t, X) G2, (t,X) + {Cg(t) - lcﬂt)} 5. G2, (1, X) G
D) it
D

S0t %) + (D XKt x) VEV}

+ CG(t)i(t’ X) (’Y;A(B)y + v
+ [C4(t) - 203(0] 6uu>z((t7 X)

@ Correlation functions of RHS can be computed by lattice Monte Carlo
simulation
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Summary and prospects

@ We developed a formula that relates a correctly-normalized conserved
EMT and composite operators defined through the gradient flow:

(T (x) = !i_r)r(l){q(t)Gjp(t, X) G2, (t,X) + {Cg(t) - lcﬂt)} 5. G2, (1, X) G
D) it
D

S0t %) + (D XKt x) VEV}

+ CG(t)i(t’ X) (’Y;A(B)y + v
+ [C4(t) - 203(0] 6uu>z((t7 X)

@ Correlation functions of RHS can be computed by lattice Monte Carlo
simulation

@ Possible obstacle would be

a< V8t
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Summary and prospects

@ We developed a formula that relates a correctly-normalized conserved
EMT and composite operators defined through the gradient flow:

{(Tulg(x) = !i_r)r(l){q(t)Gjp(t, X)G2,(t, x) + {Cg(t) - lcﬂt)} 8,0 G2, (1, X) G
D) X(t.x)
D

S0t %) + (D XKt x) VEV}

e = =
+ es(O)%(6X) (7 Do+

+ [C4(t) - 203(0] 6uu>z((t7 X)

@ Correlation functions of RHS can be computed by lattice Monte Carlo
simulation
@ Possible obstacle would be

a< V8t

@ One-point functions at the finite temperature show encouraging results;
the method appears promising even practically!
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Summary and prospects

@ Systematic method to find the t — 0 limit
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Summary and prospects

@ Systematic method to find the t — 0 limit
@ Better algorithm for the fermion flow
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Summary and prospects

@ Systematic method to find the t — 0 limit
@ Better algorithm for the fermion flow

@ Further physical applications: EoS of QCD, viscosities in gauge theory,
momentum/spin structure of baryons, critical exponents in low-energy
conformal field theory, dilaton physics, ...
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Summary and prospects

@ Systematic method to find the t — 0 limit
@ Better algorithm for the fermion flow

@ Further physical applications: EoS of QCD, viscosities in gauge theory,
momentum/spin structure of baryons, critical exponents in low-energy
conformal field theory, dilaton physics, ...

@ Further theoretical applications of the gradient flow. ..
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