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Some physical motivations:

. Generlcaﬂy Perturbatlon Theory 1n

* Asymptotlc s OM, QFT, String Theory
“* IR Renormalon Puzzle in asymptotically free QFTs

* Non-perturbative phys. /wo Instantons
\ Role of non-BPS saddles?

The Blgger scheme:

* Non-pert. definition of asymptotically free QFTs

* Analytic continuation of path integrals
Lefschetz thimbles



Back to the Basics:

How do we compute physical quantities?

— 3 Unless Magic Happens (1.e. localization,
integrability,..) : Perturbation Theory

Just by diagram counting
(Dyson, Lipatov)

=Y .o - Cp ~ T
n=0
Gevrey-1 Type
1 = el il
Idea: Insert factor 1= — dt t" e
n! Jq

Commute Sum w/ Integral



Standard Borel Transform:

Take f(g9) = Z Cng"
n=0 ‘
Germ of
= analytic
: = Cn n—1  functions
Consider B f|(t) = t S
] (n = 1)! at the origin

Obtain a possible Analytic Continuation for f(g)

= / " dte 9 BIf)(1)

Laplace transtorm back: Analytic for R(g) > 0



Formal Power Series Germ of Analytic functions

Borel

> in the origin
7 e Transform ~ >0 n
62) = 2 enz™" B3O = Y ey
= n=0 .
Asymptotic Laplace
Expansion Transform
Z — OO

Analytic Function
in the Region Jt(2) > 0

£O[BI])(2) = / " dc e BIg)(0)



Different analytic continuations of the SAME
physical observable (in pert.theory)

0

67: ©.©)
/ Same weak
0

Solf](g) = co dt e~"9 B[f](t)

coupling expansion

Directional Borel Resummations

A

Borel t-plane

Whenever we cross
. a Stokes [ine
(1.e. singular direction)
. o [11(6) ~ Snlf)(a) #0




Different analytic continuations of the SAME
physical observable (in pert.theory)

0

= / T dte s BIf)()

Different continuations

e 3> Ambiguities

of the same
perturbative series

On a Stokes line S+[fl(g) — S_[f](g) ~ 2mie 59



Different analytic continuations of the SAME
physical observable (in pert.theory)

0

= / T dte s BIf)()

Different continuations

e 3> Ambiguities

of the same
perturbative series

On a Stokes line S+1fllg) —S—|fl(g) @

Non-perturbative - non-analytic

and Imaginary



Resurgence:

Location of singularities in Borel plane:

o

Non-Perturbative Objects with that
particular action

-QM Instantons

Behaviour close to singularities _D-branes|shenker]

=

Fluctuations on top of
Non-Perturbative Objects

(Large Order Perturbation Theory)




What about QFT:

“* IR renormalons in 2d OQFT:

CPN-1 ) O(N), Grassmanian models; [Argyres, Dunne, Unsal see also
Yamazaki -Yonekura ]

PCM, [Cherman, DD, Dunne, Unsal]
n-deformed PCM Role of Complex Saddles; [Demulder, DD, Thompson]

* 3 d Chern-Simons; [Garoufalidis - Gukov, Marino, Putrov]

% 4d q\/;Q From Localization; [Russo - Aniceto , Russo, Schiappa - Honda]

% 4d N=4 SYM @ strong coupling

CUSP Anomaly; [Aniceto - DD, Hatsudal]
Dressing Phase; [Arutyunov, DD, Savin]

% Path integral interpretation (Lefshetz Thimbles).

[Behtash, Dunne, Sulejmanpasic, Unsal, Nitta,Sakai,...]



http://inspirehep.net/author/profile/%C3%9Cnsal%2C%20Mithat?recid=1396147&ln=en
http://inspirehep.net/author/profile/%C3%9Cnsal%2C%20Mithat?recid=1396147&ln=en
http://inspirehep.net/author/profile/Behtash%2C%20Alireza?recid=1396147&ln=en
http://inspirehep.net/author/profile/Behtash%2C%20Alireza?recid=1396147&ln=en
http://inspirehep.net/author/profile/Sulejmanpasic%2C%20Tin?recid=1396147&ln=en
http://inspirehep.net/author/profile/Sulejmanpasic%2C%20Tin?recid=1396147&ln=en
http://inspirehep.net/author/profile/%C3%9Cnsal%2C%20Mithat?recid=1396147&ln=en
http://inspirehep.net/author/profile/%C3%9Cnsal%2C%20Mithat?recid=1396147&ln=en
http://inspirehep.net/author/profile/%C3%9Cnsal%2C%20Mithat?recid=1396147&ln=en
http://inspirehep.net/author/profile/%C3%9Cnsal%2C%20Mithat?recid=1396147&ln=en
http://inspirehep.net/author/profile/Yamazaki%2C%20Masahito?recid=1593766&ln=en
http://inspirehep.net/author/profile/Yamazaki%2C%20Masahito?recid=1593766&ln=en
http://inspirehep.net/author/profile/Yamazaki%2C%20Masahito?recid=1593766&ln=en
http://inspirehep.net/author/profile/Yamazaki%2C%20Masahito?recid=1593766&ln=en
http://inspirehep.net/author/profile/Yonekura%2C%20Kazuya?recid=1593766&ln=en
http://inspirehep.net/author/profile/Yonekura%2C%20Kazuya?recid=1593766&ln=en

[s Perturbation theory ALWAYS Asymptotic?




[s Perturbation theory ALWAYS Asymptotic?

Generically Yes, unless Magic cancellations

happen:

e.g. Supersymmetry

e e Y




ousy QM:

Consider simplest susy QM with superpotential W(x):

1 1
=
29

For example susy double-well W(z)=2°/3 —z%/2

W' (@)? + i + 5 W () G

V,=W'(x)?
0.20 .

0.15 +

0.10 -




ousy QM:

Consider simplest susy QM with superpotential W(x):

1
29

W' (@)? + i + 5 W () G

For example susy double-well W(z)=2°/3 —z%/2

V=W “Ground-State”

0.20 -

-

e

=Wi(z)/g

non-normalizable:

TSHSY

| Witten]




ousy QM:

Consider simplest susy QM with superpotential W(x):
1
29
For example susy double-well W(z)=2°/3 —z%/2

W' (@)? + i + 5 W () G

E(]g)ert _ 0 Ground-State

However

II events lift vacuum energy




How can resurgence possibly predict for us from
erturbation theory gpert _
P e

the NP physics, i.e. II contribution?

0(92)>




How can resurgence possibly predict for us from
erturbation theory gpert _
P e

the NP physics, i.e. II contribution?

0(92)>

Cheshire Cat Resurgence

[Dunne, Unsal - Kozcaz, Sulejmanpasic, Tanizaki, Unsal]

Deconstruct the “0” coming from perturbation theory




Cheshire Cat Resurgence in QM:

Idea:
In the Hilbert sector H(n; k) with well-def fermion

number k, the purely bosonic Hamiltonian is:

1 1
Hy=2p2 + —W'(z)? + 5 (2k = Np)W" ()

2 24

analytically continue in the number of fermions




Cheshire Cat Resurgence in QM:

Idea:
In the Hilbert sector H(n; k) with well-def fermion

number k, the purely bosonic Hamiltonian is:

1 1
Hy=2p2 + —W'(z)? + 5 (2k = Np)W" ()

29
1 /

2

/ ]‘ //
5 W)+ 5CW (@) with ¢ € C




Cheshire Cat Resurgence in QM:
Idea:

Use

g 2 1 / 2 1 // :
el | W —CW e C
b =D 2 () + QC B it

and compute the ground state energy:

O

Z cn(€)g"

n=0

for generic ¢ we have ¢, (¢) ~ n!

Use resurgence to extract NP physics and
only at the end send the susy pt ¢ — 1




e Cat Resurgence
is still present even if supersymmetry
has made it invisible

What about in susy QFT?




2d Susy N = (2,2) CPV !

Matter

o U(1) gauge multiplet » Twisted Chiral X
w /lowest Component ¢

¢* N Chirals ®; = Charged +1 under U(1)

Parameters

o* Gauge coupling w/ [e]=1

e¢* FI term and theta angle

géPN—l — L/ i.e. weak coupling ¢ > 1




2d Susy N = (2,2) CPV !
QCD-like Physics

** mass gap generation

o¢* Expected IR renormalons

«¢* Poles of Borel transform on positive
haﬂf line [Dunne,Unsal,Argyres]

Unlike QCD we can apply Susy localisation




Susy LOCahZ athIl: (Duistermaat Heckman Formula)

Idea: (Apologies to the experts in the audience)

Suppose we have symmetry generator Q such that Q?=0
then we add a Q-exact term to the path-integral

A / Depg= 12 LY

Cfi_f — / D¢ QV e_S[qb] —tQV — () (Think of Q from BRST and gauge fixing)

So the original path integral wo/ QV term is also equal

Z0] = lim Z|t]

{— 00

in this limit the path-integral localizes on QV=0 and
saddle point approximation becomes exact




Susy LOCahZ athIl: (Duistermaat Heckman Formula)

Idea:
Z|0] = lim Z|t]

{— 00

in this limit the path-integral localizes on QV=0 and
saddle point approximation becomes exact

let O
e —Sldal) 292
;6 <C_etC’)B

0

/ Quadratic fluctuations, aka 1-loop det
¢o Critical points of QV such that QV=0




Susy Localization for N = (2,2) theories on S

[Doroud, Gomis, Lee, Le Floch - Benini, Cremonesi]

Punch line: Susy loci :

R radius of 52

/ Do| — Z / do  nota “path”-integral anymore

ISEH " —

1N

e = ['(—ic — B/2)
7 = s 4T & O
CPY Bze:z/oo o = T'(1+io— B/2)

— |

“sum”over susy loci one-loop determinant

on-shell action




E.g. CP’
Zepr =2 [1(2v/0) Ko(2v/Q) + Ko(2v/2)10(2v/7) ]

2TLT

g = e*™7 = e ?™+? Instanton fugacity

Comment:

o¢* Correct Chiral ring structure

1
Z(CIP)N 1

(V) =

(g9, )NZ@IPN =0 ACIPN 1

os* tt" Equations are not satisfied  [Cecotti, Vafa - Gomis, Lee]
E.g. CP*

= 1
qq 0407 log Zcpr = qq <(2:IP>1 72
Cpl




Two-Sphere localized partition function
captures full physics, perturbative and
non-perturbative

2TLT

q=—¢e — 27519 Instanton fugacity

Vortex-Anti-Vortex configurations

Can we use resurgence applied to purely
perturbative expansion, i.e. from Feynman

diagrams on S? ?




Weak coupling: > 1

For concreteness CP! sum over Fourier modes, i.e.
topological sectors

= s e

BeZ

Resurgence triangle:
[Dunne, Unsal]
B=-1 B=0

DUS3INSAY




Weak coupling: > 1

For concreteness CP! sum over Fourier modes, i.e.
topological sectors

= s e

BeZ

Resurgence triangle:

[Dunne, Unsal]

In each topological sector we have perturbative
piece plus infinite tower of II contributions,
e.g. B=0 here

e, g 1 T Ay
2 l W G g ¥ ) e

(IT)k factor

Perturbation thveory in (IT)k sector



Weak coupling: > 1

In each topological sector, and for every II
contribution on top of that, perturbation theory
truncates after N orders

Does the resurgence program fail?

Idea: Analytically continue in the number of fermions!




Weak coupling: > 1
Idea: Analytically continue in the number of fermions!
AFTER having localized

Go back to one-loop determinant for matter fields

det(’)¢ > =22
= detOp = [[ (G —io) (i +1+i0)¥*

No Index-theo,
just eigenvalues of quadratic fluctuations.
Similarly for fermions

Introduce unbalance Boson / Fermions

= : detOy\
NN = (gt) x et09)™




We consider the modified partition function

~

~ do —4mi o
Z(A,f) = Z s Zmat
BeZ

where using zeta function regularisation

—1 N / ’ .
Zmatter(a)=[(—1)39(3) L(zio +|B|/2) ] o—2A(2¢ (=1)+¢'(0)(|Bl+1)+|B|? /4+ic—a?)

_ I'(1+1i0+|B|/2)
X exp _A(2z'a +1) (logl"(l +i0 + |B|/2) — log'(—io + |B|/2) )]

X exp :—2A (zp(—2)(1 +io +|B|/2) + ¥ (—ic + |B] /2)] .

just some logGamma functions and digammas,
don’t panic, they are gone now




We consider the modified partition function

—~ do —4mi €0 r7
Z(A,g) = Z s Zmat
BeZ

and the contour of integration is

+ ([B|/2+1)

>

i [B|/2

I$1




We consider the modified partition function

~ do —4mi €0 rp
Z(A,g) = Z s Zmat
BeZ

using the known discontinuities properties for the
logGamma and digamma functions we obtain
e.g. B=0 sector of the full partition function

)

Co(A,8) =) etk ik A g [5(](A, ¢)

k=0

with the modified directional Borel resummation

cotie
S:@A = [ deetntog NHAGHGE G, A)
0




O

Co(A,8) =) etk itk A g, [5(M(A ¢)

k=0

with the modified directional Borel resummation

ocot1e
/ dx 6—47T§xx—N—I—A(2k—I—1)(I)(k) (CE,A)
0

/

50 (z,A) = _(—l)N sin(mA) [

™

wz/ sin(mx)
I'(1+ )2

exp [A(2a: +1)(logI'(1 4+ z) —logI'(1 — z)) — 2A (w(_z)(l +z)+ D1 - w))] :

N
] exp [2A(z + w(—2>(1))] X (4.20)

the exact form is not important!




O

Co(A,8) =) etk itk A g, [5(M(A ¢)

k=0

with the modified directional Borel resummation

coxtte
S:@WIA = | deetrizg NHAGIgR (g, A)
0

The important thing is:
&%) (2, A) ~ sin[rA(2k + 1 Z (k) (A

0

Polynomials in A




The grin of the cat:

focus on the purely perturbative part of (o(A, €)

(i.e. purely perturbative part of the B=0 contribution to the partition function, i.e.
perturbation theory)

sin(mA) < T'(n+1+A - N)
= (7r )Z) ( (47T§)n+1T )C%)(A)

as soon as A ¢ Z perturbation theory is asymptotic

FHA, €) = (me)N




The grin of the cat:

focus on the purely perturbative part of (o(A, €)

(i.e. purely perturbative part of the B=0 contribution to the partition function, i.e.
perturbation theory)

e _Asin(rA) =T(n+1+A-N
R Y

n=0

however we have to be careful with the limit A — 0

sin(rA)'(n +1 + A — N) is non-zero only for n<N

£ ‘.

) L i.e. at the susy point A =0
Perturbation theory truncates
dramatically




The grin of the cat:

focus on the purely perturbative part of (o(A, €)

(i.e. purely perturbative part of the B=0 contribution to the partition function, i.e.
perturbation theory)

Cfpe’rt ( A)

ge’r (A, f) — (4#5)”""1

This is an example of Cheshire cat

resurgence!

® Work at A non-integer,

® use resurgence to extract NP info
from P data,

®Send A to 0,




The grin of the cat:
focus on the purely perturbative part of (o(A, €)

(i.e. purely perturbative part of the B=0 contribution to the partition function, i.e.
perturbation theory)

5o (A, ) = (4ne)N ™ AZ =
0 47.‘-6 n—l—l

Large orders in perturbation theory:

(1)
CP"'(A) ~sin(mA) n€12iA—) - | O(n2)>

['(n —4A)
(_I_Q)n—élA

+ sin(mA) cos(3wA) (05” (A) + O(n—l)) =




The grin of the cat:
focus on the purely perturbative part of (o(A, €)

(i.e. purely perturbative part of the B=0 contribution to the partition function, i.e.
perturbation theory)

5o (A, ) = (4ne)N ™ AZ =
0 47.‘-5 n—l—l

Large orders in perturbation theory:

T (0 — 2A) ci(A) =
’(+1)n = (Cél) (A) I n —12A — | O(n 2)

e T (n— 4A

(CSQ)(A) = O(n_l)) =

Stokes Constants




The grin of the cat:
focus on the purely perturbative part of (o(A, €)

(i.e. purely perturbative part of the B=0 contribution to the partition function, i.e.
perturbation theory)

5o (A, ) = (4ne)N ™ AZ =
0 47.‘-6 n—l—l

Large orders in perturbation theory:

cM(A)

CRe(B) ~ - —=

n

Instantons-anti-Instantons actions




The grin of the cat:
focus on the purely perturbative part of (o(A, €)

(i.e. purely perturbative part of the B=0 contribution to the partition function, i.e.
perturbation theory)

5o (A, ) = (4ne)N ™ AZ =
0 47.‘-6 n—l—l

Large orders in perturbation theory:

Perturbative coefficients in the II sector




In particular as A goes to 0 only a finite number of
coefficients C']_g1> (0), Cz(f) (0),... remains non-zero
in each (IT)k sector

pert
pert( f 47_‘_5 N AZC

(47E) ”“

And from the limit of the purely perturbative

expansion we can derive the perturbation

coefficients in (II)k sector for the SUSY theory

\

o ATRE (4 2_ 1 1 I4Hk—7 1
2 1 W i @ * s e

o0

(ID)k factor




SUSY non-asymptotic expansion

i 1

4Hk—’7 1

7
<

O

[(BD* (4n€) (kDT (4mE)?

Co(B,8) =) e e
k=0
Resurgence:

= 2
ek AS:

[@M)(A, €)

® [ arge orders in perturbation theory;

® Cancellations of ambiguities;

® Reconstruct NP physics out of P data




Conclusions & Outlook:

“* Even 1n the case of a truncating perturbative
expansion resurgence 1s still there;

“* As soon as we break shightly SUSY, 1.e. A #£0
the body of the Cheshire cat reappears;

“ Interpretation of the deformation? A = n € Z
% Obtain similar results considering CP"~"

“* How general 1s Cheshire resurgence 1n

SUSY theories?



Thanks tor Listen«i?n_gl
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